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Text-based automatic Match-Cut generation

Figure 1. Automatic match-cut generation with MatchDiffusion. In the history of cinema, there is prevalent use of match-cut transitions,
i.e. semantic shifts in the content of two scenes that share the same structure, as exemplified by Stanley Kubrick’s iconic transition from
a bone to a spaceship (bottom left). However, obtaining visually appealing match-cuts requires sophisticated planning and multiple shots,
due to the complexity of the transition. Our proposed MatchDiffusion approach is able to automatically generate match-cuts following
textual prompts (right), thanks to a training-free inference technique composed of Joint and Disjoint Diffusion mechanisms (top left).

Abstract

Match-cuts are powerful cinematic tools that create seam-
less transitions between scenes, delivering strong visual and
metaphorical connections. However, crafting match-cuts is
a challenging, resource-intensive process requiring deliber-
ate artistic planning. In MatchDiffusion, we present the first
training-free method for match-cut generation using text-
to-video diffusion models. MatchDiffusion leverages a key
property of diffusion models: early denoising steps define
the scene’s broad structure, while later steps add details.
Guided by this insight, MatchDiffusion employs “Joint Dif-
fusion” to initialize generation for two prompts from shared

noise, aligning structure and motion. It then applies “Dis-
joint Diffusion”, allowing the videos to diverge and intro-
duce unique details. This approach produces visually co-
herent videos suited for match-cuts. User studies and met-
rics demonstrate MatchDiffusion’s effectiveness and poten-
tial to democratize match-cut creation. Visit our website for
video results. Our code is open source.

1. Introduction
“The art challenges the technology,
and the technology inspires the art.”

– John Lasseter

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Cinematic transitions are powerful storytelling tools that
evoke emotions, suggest the passage of time, or visually
connect themes [28]. Among transitions, match-cuts are
defined as “Two successive shots joined to create a strong
similarity of compositional elements” [34]. They are partic-
ularly effective in bridging two scenes with strikingly dif-
ferent content but similar composition, creating a strong
sense of visual continuity. For instance, in Kubrick’s
“2001: A Space Odyssey”, a match-cut is used to transi-
tion from a bone thrown by an ape into a satellite orbit-
ing Earth—conveying Humanity’s evolutionary leap, from
primitive tools to space technology, without a single word.

Despite their visual elegance and narrative power,
match-cuts are notoriously difficult to create. They require
careful planning and precise visual alignment, often shap-
ing the entire production process to ensure a cohesive transi-
tion [1, 29, 33, 42, 44]. This complexity limits match-cuts to
experienced filmmakers with substantial resources, making
them rare cinematic gems. Our aim is to democratize this
powerful tool by providing a simple method that allows cre-
ators of various skill levels to experiment with match-cuts,
helping amateurs and experienced filmmakers to quickly it-
erate and refine ideas before full-scale production.

While many video editing tasks—such as scene inter-
polation [11], video morphing [27], and multi-text gen-
eration [36]—create continuity by generating intermediate
frames, gradually deforming visuals, or extending narra-
tives across prompts, match cuts operate differently. Rather
than blending scenes, they establish a direct visual connec-
tion between two distinct yet compositionally aligned shots.
Leveraging this principle, we formulate match-cut genera-
tion as synthesizing a pair of videos that share structural co-
herence while differing in semantics, further post-processed
into a match-cut. To achieve this, we exploit an empir-
ical property of text-to-video diffusion models, extending
prior diffusion analyses [8, 23, 35]. We introduce MatchD-
iffusion, a training-free approach that generates match-cuts
from two prompts by guiding the diffusion process.

Our method first performs “Joint Diffusion”, by initial-
izing the synthesis for both prompts from a single noise
sample and then guiding both along a common denoising
path for the first denoising steps. This process translates
into a cohesive layout and structure being shared between
the two videos. After this stage, we then perform “Disjoint
Diffusion”, where we allow the videos’ diffusion paths to
diverge, as guided by their corresponding prompts. With
these processes, MatchDiffusion generates videos that in-
dependently exhibit unique content while jointly displaying
visual coherence established in the early stages—resulting
in distinct yet harmonized scenes suitable for a match-cut.
Please refer to Fig. 1 for an overview of our approach.

To evaluate our diffusion-based approach to synthesizing
match-cuts, we implement intuitive baselines using existing

methods (e.g. [27, 50, 54]). We selected each of these
methods for its potential to effectively assess aspects of the
generation of match-cuts. Alongside these baselines, we
propose metrics to quantify match-cut quality, and allow
comparing synthesis methods. Together, these elements
establish an evaluation framework that demonstrates our
method’s effectiveness and adaptability.

In summary, our contributions are three-fold: (i) We
formalize the task of creating match-cuts as synthesizing
video pairs that are structurally coherent yet semantically
divergent. (ii) We introduce MatchDiffusion, a training-free
method that leverages pre-trained diffusion models to auto-
mate the generation of match-cuts. (iii) We implement ro-
bust baselines and propose metrics for evaluating match-cut
quality, establishing a benchmark for synthesis methods.

2. Related works
Noise manipulation in diffusion models Early works
showed that manipulating noise in diffusion models can
yield desirable outputs. In images, fusing noise estimates
from multiple prompts enables composition [5, 57], while
Visual Anagrams [13] and Factorized Diffusion [12] reveal
how summing noise can produce optical illusions. SyncDif-
fusion [20] applies similar ideas to generate panoramic im-
ages. SyncTweedies [18] unifies such strategies, including
MultiDiffusion [5], under a general framework. In videos,
noise is often fused across all iterations to ensure long-term
consistency [36, 45, 46] or enable scene interpolation [11],
with emerging properties over time also explored [7]. Cru-
cially, these methods combine noise across all steps to pro-
duce a single scene. In contrast, we formulate match cuts as
a distinct problem, exploiting diffusion’s emerging proper-
ties in a novel way to generate coherent video pairs.
Match-cut synthesis. Cutting in video editing has been
widely explored. Some focus on detecting cut points in
untrimmed videos using audio-visual cues [30], audio-beat
alignment [32], or transitions for dialogue scenes [19],
without differentiating types of transitions. Shen et al. [40]
propose smooth transitions such as fades and panes, exclud-
ing straight cuts. Pardo et al. [31] offer a dataset for straight-
cut classification, with match-cuts as one category, though
underrepresented. Recently, retrieval-based approaches
addressed match-cut creation: one curating candidates via
audio-visual features [9], the other focusing on audio-based
match-cuts [10]. These studies tackle match-cut synthe-
sis through retrieval, whereas we propose a generative
approach to synthesize video pairs that form a match-cut.
Multi-scene video generation. Recent work has explored
multi-shot video generation. Several works [22, 25, 26]
generate multi-scene layouts from scripts derived by large
language models (LLMs), while others [14, 51, 56] focus on
ensuring temporal coherence and reducing hallucinations
between frames. TALC [4] improves temporal alignment
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Figure 2. Feature emergence during denoising. While the first
iterations (top) yield ambiguous outputs displaying colors and ba-
sic structure, further iterations inject semantics (middle), until the
final output is generated (bottom).

with aligned captions, while Contrastive-Sequential Diffu-
sion [37] enhances visual coherence in multi-scene videos.
MiNT [49] allows for cut synthesis, but maintains high se-
mantic consistency. Unlike these, which focus on ensuring
consistency within a single narrative, our method prioritizes
structural coherence across two distinct prompts, optimiz-
ing for structure and motion consistency suited for match-
cut transitions rather than narrative flow.

3. MatchDiffusion

Given two prompts (ρ′, ρ′′) describing different scenes, our
goal is to generate a pair of videos (x′, x′′) that align with
their respective prompts while remaining visually cohesive
for match-cut transitions. Each video is generated sepa-
rately, allowing them to be seamlessly post-processed into
a match-cut. For example, this can be done by joining the
first half of x′ with the second half of x′′. This setup en-
ables multiple cut styles from a single video pair. On our
website, we showcase three such styles: straight cuts, al-
pha blending, and flickering. While these are just a few
editorial options, the synchronized outputs open the door to
many other creative possibilities. We rely on a key property
of diffusion models to achieve paired video synthesis: as
highlighted in prior works [8, 23, 35] and illustrated in Fig-
ure 2, diffusion models establish broad structural patterns in
the early denoising stages, while finer details and prompt-
specific textures emerge later. By leveraging this progres-
sion, we design MatchDiffusion, a two-stage training-free
pipeline tailored for match-cut generation. MatchDiffusion
comprises: (1) Joint Diffusion (Section 3.2), where we set
up a shared visual structure based on both prompts, fol-
lowed by (2) Disjoint Diffusion (Section 3.3), where each
video independently develops the semantics corresponding
to its prompt. In the following sections, we introduce pre-
liminaries, then go into detail into each stage of MatchD-
iffusion, elaborating on how the joint and disjoint diffusion
stages provide the balance needed for match-cut generation.

3.1. Preliminaries
We first introduce the working mechanism of diffusion
models for text-to-video (T2V) synthesis. T2V models op-
erate by iteratively denoising Gaussian noise, with the goal
of producing a fully denoised video that aligns with a con-
ditioning textual prompt. Recent methods [53] execute this
process in a latent space established by a pretrained autoen-
coder, mitigating computational costs [39]. The autoen-
coder comprises an encoder E and a decoder D. The la-
tent space of this autoencoder is then iteratively denoised
by a noise estimation network ϵθ over T steps, starting from
sampled Gaussian noise zT ∼ N (0, I). We denote the la-
tent video representation at the t-th iteration as zt, where
t ∈ {0, ..., T}. That is, the network ϵθ predicts the noise ϵt
for zt. The network’s prediction is conditioned on both the
input textual prompt ρ and the timestep t: ϵt = ϵθ(zt, ρ, t).

This noise prediction is then used to update the noisy
latent representation, following scheduling strategies such
as DDPM [16] or DDIM [41]. Namely, at step t, the noisy
representation zt is denoised into z

(t)
0 by combining the esti-

mated noise with the latent representation: z(t)0 = zt−γtϵt,
where γt is a scaling factor function of t. Then, another
Gaussian noise ϵ ∼ N (0, I) sample is used to noise z

(t)
0

again, following a noise schedule whose intensity decreases
over timesteps. Formally: zt−1 = ηtz

(t)
0 + σtϵ, where ηt

and σt regulate the noise intensity, which decreases with in-
creasing t [16, 41]. After T timesteps, z0 is decoded via
x = D(z0) into the output video x.

For creating a match-cut, we generate two videos simul-
taneously by breaking the diffusion process into two stages:
a joint stage where the latent representation of the videos is
shared, and a disjoint one where representations are allowed
to diverge. We now elaborate on each.

3.2. Joint Diffusion
The first stage of MatchDiffusion is Joint Diffusion. Dur-
ing this stage, we simultaneously generate both videos by
forcing the synthesis to incorporate both input prompts for
the first K denoising iterations, where K ∈ {0, ..., T}. Af-
ter these K iterations, the result is a single latent display-
ing an abstract structure that broadly satisfies both prompts.
Our intuition behind this design builds on previous work
on hybrid images [6, 12, 13], showing that the diffusion
process can be manipulated to produce images displaying
different scenes depending on viewing conditions. How-
ever, our scenario is unique, since we require each output,
x′ and x′′, to clearly and independently comply with its own
prompt, sharing only selected appearance-related traits. As
illustrated in Figure 2, the intermediate denoising outputs
z
(t)
0 reveal motion patterns and the scene layout—the essen-

tial elements for match-cuts—emerge in early stages, while
later refinement steps focus on details related to semantic
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Figure 3. MatchDiffusion. We formulate the task of creating match-cuts as generating a pair of videos sharing a general appearance while
having different in semantics. A portion of the frames of these videos can then be combined to enable match-cut transitions. To generate
these videos, MatchDiffusion first performs a Joint Diffusion process for K steps (left) by combining the noise predictions from the two
prompts via a function f . Then, a Disjoint Diffusion process is executed to obtain the final outputs x′ and x′′, i.e. denoising separately for
the remaining T −K iterations with one prompt per path. Optionally, MatchDiffusion also supports manual user intervention by allowing
the integration of generated video tone and structural edits.

content. As shown in Figure 3 (left), for the first K itera-
tions, we combine noise predictions from each prompt us-
ing a function f , ensuring shared foundational characteris-
tics early in synthesis. The joint diffusion process is defined
by modifying noise estimate to:

ϵt = f(ϵθ(zt, ρ
′, t), ϵθ(zt, ρ

′′, t)), (1)

while keeping the computation of zt−1 unchanged, as de-
scribed in Section 3.1. Although this formulation supports
different expressions for f , we choose it to simply be the
averaging function, i.e. f(a, b) = (a+b)/2.

3.3. Disjoint Diffusion

After K iterations of Joint Diffusion, we obtain a noisy la-
tent zT−K encoding characteristics that are desirable to pre-
serve in both x′ and x′′. This second stage of Disjoint Dif-
fusion allows the remaining T − K steps of the diffusion
process to start from this latent but depart from the shared
path to introduce the characteristics that are specific to the
individual prompts. In particular, Disjoint Diffusion starts
from zT−K and finishes denoising via T −K evaluations of
ϵθ, conditioned on one prompt at a time. As such, Disjoint
Diffusion produces separate noise predictions ϵ′t and ϵ′′t , as
shown in Figure 3 (right). This procedure ensures that the
emergence of semantics and details specific to each prompt
occurs while maintaining the structure encoded in the initial
K steps. For t ∈ {0, ..., T −K}, this becomes:

ϵ′t = ϵθ(z
′
t, ρ

′, t), ϵ′′t = ϵθ(z
′′
t , ρ

′′, t). (2)

When t = T − K, both z′t and z′′t are set to zT−K . After
Disjoint Diffusion, we obtain two videos, x′ = D(z′0) and
x′′ = D(z′′0 ), which can be combined into a match-cut.

One might assume that results of MatchDiffusion
resemble those of video-to-video translation based on
SDEdit [27], which perform prompt-based editing by in-
jecting noise into an existing video xinit from step K on-
ward. However, our approach is fundamentally different, as
we jointly synthesize the two scenes, rather than modifying
an initial video. That is, MatchDiffusion generates outputs
that satisfy both prompts from scratch, effectively narrowing
the range of possible appearances to those that align with
the shared structure and characteristics specified by both
prompts. This process enables the synthesis of match-cuts
for semantically uncorrelated scenes, as shown in Fig. 6,
where the video-to-video translation approach fails.

User intervention. To allow for iterative user editing, we
propose a human-in-the-loop strategy for a finer customiza-
tion of the generated videos. Namely, a user may wish to de-
part from the strict color adherence of the match-cut to bet-
ter align with the tone of a preceding sequence, or to mod-
ify the background. While this could be achieved with post-
processing, we propose a more natural mechanism that inte-
grates user interventions directly into the diffusion process.

We define τ as a generic user-driven modification, which
may be automatic (e.g., a color look-up table) or manual
(e.g., adding scene elements). We incorporate τ in the de-
noised video at the start of a disjoint diffusion path, e.g.
x
(K)
0 = D(z

(K)
0 ), as shown in Fig. 4. By doing so, we

14976



Background video
Masks

1- Masks

: background editing

Disjoint
Diffusion

encode

decode

Figure 4. User intervention. For reproducing the match-cut in the
teaser, we apply a background mask to the denoised output gener-
ated by joint diffusion. After the remaining denoising iterations,
the output is refined to integrate the new background.

obtain an updated video i.e. x̃(K)
0 = τ(x

(K)
0 ). We then

encode this video into its corresponding z̃
(K)
0 and proceed

with disjoint diffusion. Hence, we integrate τ seamlessly
into the synthesized video by leveraging the diffusion pro-
cess itself to achieving realistic modifications. Although
some [52] have proposed similar intervention mechanisms
for some τ such as background editing, our novel integra-
tion with Disjoint Diffusion allows us to preserve a coherent
match-cut. Importantly, since the diffusion process contin-
ues for T−K steps after τ ’s application, even modifications
that would otherwise compromise scene realism in post-
processing will be inherently refined, as shown in Fig. 4.

4. Experiments

We provide our experimental setup in Section 4.1, then
show results of the match-cuts generated by MatchDiffu-
sion in Section 4.2. Later, we compare against baselines,
using qualitative and quantitative evaluations as well as user
studies, in Section 4.3. We further report results with poten-
tial user interventions in Section 4.4. We conclude with a
sensitivity analysis of MatchDiffusion to K in Section 4.5.

4.1. Setup
MatchDiffusion settings. For the backbone of MatchDif-
fusion, we choose the open-source text-to-video (T2V) dif-
fusion model CogVideoX-5B [53]. For sampling, we use
a DDIM scheduler [41] with T = 50 steps. For baselines
and ours, we generate videos with 40 frames, and form a
match-cut by concatenating the first 20 frames of x′ with
the last 20 of x′′. We tune K for each pair of prompts. Our
method’s computational cost is the same as the backbone
(i.e. CogVideoX-5B) since it does not add any extra com-
putational cost. We report results on 50 prompt pairs.

Baselines. To the best of our knowledge, we are the first
to synthesize match-cuts from scratch. Hence, the defini-
tion of suitable baselines is challenging. We define here
three strong baselines in our best efforts to define different
strategies for training-free match-cut synthesis:
Video-to-video. We define a video-to-video (V2V) trans-
lation baseline, and note that these approaches are designed
for structural consistency. We first use ρ′ to generate x′ with
the T2V version of CogVideoX-5B. Then, we use the V2V
version of the same model (based on SDEdit [27]) to inject
noise at step K in x′, and denoise using ρ′′, obtaining x′′.
Motion Transfer. Recent literature has highlighted the pos-
sibility of conditioning the generation of new videos with
the motion of an existing video. These motion transfer ap-
proaches allow for disentangling the motion from the refer-
ence scene content. Compared to V2V, this approach in-
creases the flexibility in the outputs, allowing to signifi-
cantly depart from the appearance of the reference video.
We use a T2V model to generate x′ from ρ′, then we use
either SMM [54] or MOFT [50] to synthesize a new video
with ρ′′ as input, and x′ as guidance. For a fair comparison,
we reimplemented SMM and MOFT on top of CogVideoX-
5B. Hence, all our baselines use the same backbone. In
supplementary, we include extra analysis on the suitability
of these baselines for match-cuts, along with experiments
using alternative backbones and V2V methods.

Metrics. The evaluation of a match-cut is highly subjec-
tive. However, we propose different metrics to quantify de-
sirable aspects of a match-cut. First, we use a frame-wise
CLIPScore [15] to assess prompt adherence of the gener-
ated video. We average the CLIPScore of x′ and ρ′, and x′′

and ρ′′ for each frame. This ensures that each video respects
its prompt. To evaluate motion agreement between x′ and
x′′, we use the Motion Consistency metric of SMM [54],
evaluating the motion consistency of tracklets extracted by a
pre-trained tracking model [17]. Finally, we use LPIPS [55]
to quantify frame-wise perceptual similarity across x′ and
x′′. Intuitively, a low LPIPS should indicate structurally-
consistent outputs, i.e. suitable for match-cuts. In Supp.,
we measure the video quality of our method’s results and
show that it does not yield to any quality degradation.

4.2. Results
We report outputs of MatchDiffusion in Figs. 1, 5, and 6.
In Fig. 5, we show a variety of match-cuts generated by
our method, highlighting its ability to connect diverse con-
cepts across different scenes. In the first two rows, MatchD-
iffusion demonstrates capacity to bridge unrelated scenes
through background elements. For example, in the light-
house scene, the beam of light seamlessly transitions into
the fog of the adjacent scene, creating a cohesive visual
connection. The third row illustrates a color-based match:
transitioning from a spice market to a painter’s palette by
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“waves lapping at the shore, foam fizzing at the water.” “a line of ants marching along a forest floor.”

“a lighthouse beam sweeping across a dark ocean.” “a car’s headlights cutting through the fog.”

“a colorful market stall filled with spices in glass jars” “a painter mixing oil colors on a palette”

“a whiskey bottle on a rustic wooden table” “a cozy wooden cabin among snow.”

“an aerial view of a busy, circular highway.” “an aerial view of a person ice skating”

Figure 5. Generated match-cuts. MatchDiffusion can automatically synthesize match-cuts based on the prompts in green and red. Note
how the cuts enjoy highly consistent appearance while preserving each prompt’s semantics. Please see the website for more samples.

aligning the colors in each scene. The last two rows high-
light structural alignment across scenes. In the fourth row,
the shape of a bottle transitions into a wooden cabin, ex-
ploiting how the liquid’s color mirrors the hues of the cabin.
The final row connects a highway with an ice-skating scene,
aligning the circular highway shape with the ice ring’s struc-
ture. These examples demonstrate the ability of MatchDif-
fusion to generate creative match-cuts that would otherwise
be challenging to envision.

4.3. Comparison with baselines
Qualitative comparison. Fig. 6 displays frames before
and after the transition for three different prompts, com-
paring MatchDiffusion with our proposed baselines. This
figure illustrates how each approach handles various cases
of match-cuts. As seen in the first column, V2V tends to

produce similar-looking scenes across prompts. This re-
sult is expected, as these methods are primarily designed
to translate features within scenes that already share visual
similarities (e.g., changing the season from summer to win-
ter). When faced with highly dissimilar prompts, V2V typ-
ically alters minor aspects of the scene, which fall short
of achieving the strong semantic shifts needed for a high-
quality match-cut. For example, in the first row, the burning
parchment merely becomes more rounded in the subsequent
frame. Instead, motion transfer methods, such as SMM and
MOFT, yield results aligned with the prompts, preserving
movement across frames. However, in the same example,
we observe that SMM and MOFT depart significantly from
the appearance of the original image, preventing the struc-
tural alignment present in match-cuts. Finally, MatchDiffu-
sion achieves smoother and cohesive transitions by aligning
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V2V SMM MOFT MatchDiffusion

"A parchment catching fire"
"A sunset at the ocean"

"A metro speeding through a station"
"A conveyor belt carrying boxes"

"A crescent moon rising over a desert"
"A lantern being lit in a campsite"

Figure 6. Qualitative comparison with baselines. Overall, we notice that V2V does not allow for drastic modifications of the scene in
presence of prompts with strong semantic differences (e.g., first row). On the contrary, motion transfer baselines (SMM and MOFT) depart
significantly from the content of the scene, prohibiting for a visually-appealing match-cut. Only MatchDiffusion achieves a satisfying
balance between semantic changes and prompt consistency.

Method CLIPScore ↑ Motion ↑ LPIPS ↓
T2V (Lower Bound) 0.33 0.40 0.74

V2V 0.31 0.67 0.31
SMM 0.34 0.64 0.74
MOFT 0.33 0.66 0.56
MatchDiffusion 0.34 0.70 0.32

Table 1. Metrics comparison. Aligned with qualitative re-
sults (Fig. 6), we report that V2V is mostly impacted in CLIP-
Score, due to many translations not being able to follow the
prompts. On the other hand, SMM and MOFT excessively modify
the scene, resulting in a high LPIPS. Only MatchDiffusion allows
for high performance in all metrics. Best results are boldfaced,
second best are underlined. Red cells show the worst performing
scores. Our method (gray) strikes the best balance among all.

both structure and motion across scenes. In the first row,
the burning flame transitions into the sunrise reflection, cre-
ating a transition that aligns well with the match-cut effect.

Metrics evaluation. Note that match-cut synthesis is a
novel task, making quantitative evaluation inherently chal-
lenging. Nonetheless, we present quantitative results in Ta-
ble 1. We start from a lower-bound baseline (T2V), defined
as prompting CogVideoX-5B independently for (ρ′, ρ′′).
The lower bound achieves a moderate CLIPScore due to its
performance as a T2V method, but fails to capture continu-
ity across scenes, as reflected by its low Motion Consistency
(0.40) and high LPIPS (0.74). In contrast, V2V achieves the
lowest LPIPS (0.31) and the highest Motion Consistency
(0.71), indicating strong structural alignment across frames
as expected. However, its CLIPScore is significantly lower
than that of all other methods, suggesting the difficulty to
adhere to highly distinct prompts, as seen in Fig. 6. Con-
versely, motion transfer methods introduce too much free-

0% 25% 50% 75% 100%

Ours

MOFT

V2V

User quality agreement

Strongly agree
Agree

Neutral
Disagree

Strongly Disagree

Figure 7. User study. We evaluate users’ agreement with a state-
ment describing match cuts, to assess how much our generated
videos align with the requirements in terms of visual consistency
and prompt adherence. We significantly outperform all baselines.

dom in the scene structure, as confirmed by the consider-
ably higher LPIPS (0.73 for SMM, 0.53 for MOFT). Fi-
nally, MatchDiffusion enjoys a well-balanced performance.
With a CLIPScore of 0.33, it matches the prompt adherence
of SMM, MOFT and the vanilla model (T2V), while still
achieving a Motion Consistency (0.69) and LPIPS (0.32)
score that matches the V2V baseline.

User study. Match-cuts target human audiences, and thus
we conduct an evaluation against baselines based on user
quality assessment. In this evaluation, we aim to quantify
the smoothness of our transitions, while respecting different
prompts. To do so, we show users both prompts, (ρ′, ρ′′),
along with the match-cuts generated by MatchDiffusion and
baselines. We then ask users to evaluate their agreement
in a Likert-5 [21] scale with: “This video accurately re-
flects the scenes described by the text and smoothly tran-
sitions between them, maintaining consistent colors, struc-
ture, movement, and appearance from one scene to the next
one”. This question assesses if the videos align with the
expected consistency, while preserving different semantics.
We query 35 users (average age 30.11±7.29 years old). We
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Figure 8. Intervention effects. In (a), we verify that our user
intervention strategy allows to depart from the original image fol-
lowing τ with no detrimental impact to realism. We quantify this
effect in (b): although our SSIM with reference frames is lower, we
maintain very similar CLIPScore. We plot results as mean and std.

test against MOFT only for motion transfer, to maximize
the questions per method presented to users. Results are
reported in Fig. 7, showing that users significantly prefer
MatchDiffusion over the baselines. In particular, we high-
light that 39.44% of them strongly agree with our state-
ment, against 12.36% for the best baseline (MOFT). This
evidence suggests superior quality of our match-cuts.

4.4. Evaluating user interventions
We evaluate our optional user intervention strategy (Sec-
tion 3.3) to test whether MatchDiffusion can relax strict
color/structure adherence while still generating match-cuts.
We apply three τ functions to x

(K)
0 : (1) color jittering,

(2) histogram matching with random COCO [24] images,
and (3) gamma correction. Ideally, τ should integrate with
Disjoint Diffusion, preserving realism and scene structure.
Fig. 8a shows results: applying τ post-generation exag-
gerates colors, reducing realism, while applying it to x

(0)
K

(“Ours”) preserves realism despite minor structure shifts
(e.g., leaf shape). This allows transformations that maintain
scene composition, making them suitable for match-cuts.
To assess the quality of these interventions, we randomize
the parameters of τ five times and apply it to 36 synthesized
video pairs, x′ and x′′, generating a total of 180 for each
of the two strategies. We then compute SSIM [48] between
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0.30

0.32

CLIPScore

0 10 20 30 40 50

K

0.50

0.75

Motion

0 10 20 30 40 50

K

0.0

0.5
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Figure 9. Effects of K. Increasing K to the maximum produces
a hybrid video between prompts, maximizing motion fidelity and
bringing LPIPS to zero. CLIPScore is slightly impacted since hy-
brid videos present traits of both prompts.

the videos and their post-processed counterparts to quan-
tify visual modifications, along with CLIPScore of τ(x)
with the corresponding ρ. Fig. 8b shows that our method
maintains the same CLIPScore while achieving a greater
reduction in SSIM compared to the post-processing alter-
native. This suggests that our approach alters the video’s
appearance more significantly while still adhering to the
prompt. In Fig. 8b histogram matching shows lower SSIM
due to structural changes (e.g., the leaf in Fig. 8a). Our ex-
periments show that our pipeline produces diverse videos,
smoothly integrating τ and enabling varied match-cuts.

4.5. Impact of K
We investigate the impact of the number of Joint Diffusion
steps (K) on MatchDiffusion. Fig. 9 shows the impact of K
on metrics. While most results presented in Figure 5 have
K between 10 and 15, we notice that although CLIPScore
decreases, Motion Fidelity and LPIPS monotonically im-
prove. This fact deserves ad hoc considerations. The case
of K = 0 is equivalent to the lower bound (i.e. no shared
structure), while K = 50 means that x′ and x′′ share all
the diffusion process (similar to Factorized Diffusion [12]),
hence x′ = x′′. In this case, MatchDiffusion produces a
hybrid video (shown in supplementary). This property is
not useful for match-cuts but might enable other applica-
tions. For the purpose of match-cut generation, the user’s
needs play a central role; K serves as a tunable parameter
to adjust the results according to artistic preferences.

5. Conclusions

We presented MatchDiffusion, the first method for the syn-
thesis of match-cuts. We formalized the match-cut gener-
ation problem as a synthesis of two videos, and proposed
a method for exploiting emerging characteristics of diffu-
sion models. MatchDiffusion has limitations, opening fu-
ture research directions. Effective prompting requires cre-
ativity, and automated prompt engineering could make the
method more accessible to a broader audience. Finally, re-
fining conditioning mechanisms to give users control over
specific aspects of the match-cut could simplify interaction
and reduce reliance on precise prompts.
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