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Abstract

Deep neural networks are widely used in various computer
vision tasks, but their vulnerability to adversarial perturba-
tions remains a significant challenge for reliable decision-
making. Adversarial purification, a test-time defense strat-
egy, has shown potential in countering these threats by re-
moving noise through diffusion models. This plug-and-play
method, using off-the-shelf models, appears highly effec-
tive. However, the purified data from diffusion often devi-
ates more from the original data than the adversarial ex-
amples, leading to missing critical information and caus-
ing misclassification. In this study, we propose that upsam-
pling with Super-Resolution (SR), followed by downsam-
pling, can also aid in eliminating adversarial noise, similar
to the noise addition and removal process in diffusion mod-
els. While SR alone is not as effective as the diffusion pro-
cess, it better restores the original features typically asso-
ciated with the early layers of networks. By combining SR,
which initially mitigates damage to early-layer information
from adversarial attacks, with diffusion, we observe a syn-
ergistic effect, leading to enhanced performance over diffu-
sion models alone. Our comprehensive evaluations demon-
strate that this combined approach, PuriFlow, significantly
improves accuracy and robustness, working synergistically
with state-of-the-art methods.

1. Introduction
Deep Neural Networks (DNNs) have been widely accepted
in various computer vision tasks. However, their suscep-
tibility to small, human-imperceptible noises can lead to
untrustworthy decision-making. In particular, the subtle,
maliciously manipulated noises, known as adversarial per-
turbations, produce fatal images called adversarial exam-
ples [10]. This intentional threat appears across numerous
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Figure 1. The overview of PuriFlow, which begins with restoring
features of adversarial examples using the SR and drifting down-
sampled SR images within the forward diffusion. The perturbed
images are then denoised in the reverse diffusion for classification.

types of attacks [3, 9, 13, 34], leaving many DNNs vulner-
able and posing substantial challenges to their deployment
in AI-powered systems.

To counter the adversarial threats, adversarial purifica-
tion [38, 58] has emerged as a test-time defense strategy.
This approach is powered by leveraging off-the-shelf diffu-
sion models. At its core, noise removal through stochastic
denoising effectively eliminates artifacts introduced by var-
ious attacks. Unlike adversarial training and certified meth-
ods [27, 30, 34], which require prior knowledge of target
attacks, this simple application of generative power excels
in protecting classifier without the need for training, point-
ing to a new direction.

While diffusion models appear effective in purification, a
key problem remains widely discussed in studies [5, 11, 32,
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Figure 2. The example of purification on the clean images. The top
row exhibits the ground truth images. The second and third rows
depict purified images obtained using diffusion and our proposed
PuriFlow. The fourth row visualizes Grad-CAM [44] as repre-
sented by ResNet-50. Compared to Diffpure, PuriFlow enhances
visual fidelity and accuracy by preserving DNN’s activation.

38, 60]: how to lower the upper bound of differences be-
tween purified and original data, which can exceed those
caused by adversarial attacks. This concern also arises
when clean data is input, as shown in Figure 2. However,
resolving it solely within the diffusion model is not straight-
forward. The noise predictor in off-the-shelf diffusion mod-
els is optimized to predict only the mean under isotropic
covariance [26], limiting its ability to fully restore subtle
features tied to true data covariates. To improve the restora-
tion of details, diffusion models may require retraining with
a proper objective [37], which may not align well with test-
time defenses. Recently, guidance during noise removal has
been proposed for test-time defenses [5]; however, this ap-
proach, despite allowing extensive processing time, is lim-
ited to large-scale datasets, impacting its generality.

To improve purification without retraining, we note that
adversarial attacks are designed to maximize changes in
model output with minimal alterations to the input. This

results in alterations in the feature map that can be substan-
tial, while changes in the image might be minor. Diffusion-
based purification processes, which lack prior knowledge
of the original image, risk deviating in the wrong direction
during the noise addition and recovery phases, especially if
the starting image contains feature information significantly
distorted by adversarial noises. Therefore, it is crucial to
eliminate as much distorted information as possible before
applying the diffusion process.

We hypothesize that using Super-Resolution (SR) to up-
sample and then downsample an image could help reduce
noise. Our tests confirm that while SR does reduce adver-
sarial noise, it is not as effective as diffusion models. How-
ever, an in-depth experiment reveals that SR performs bet-
ter than diffusion models in restoring features to the early
layers of a network. This insight suggests that initially, us-
ing SR to reduce adversarial noise before applying diffusion
could enhance overall performance by restoring the features
the diffusion process alone cannot recover.

This paper proposes PuriFlow, an enhanced purification
flow that leverages the synergy of SR and the diffusion pro-
cess. As shown in Figure 1, PuriFlow integrates SR be-
fore the forward diffusion process to restore distorted fea-
tures of adversarial images early on. By boosting content
similarity [28], SR generates enhanced samples with fea-
tures closer to the originals, even when mapped into a high-
dimensional space. Our findings show that content proxim-
ity increases when SR images are resized back to their orig-
inal dimensions, positioning resized SR images in regions
with a higher probability for correct labels. In other words,
resizing SR effectively reduces the initial cross-entropy on
adversarial examples, allowing better diffusion. Our theo-
retical analysis and comprehensive evaluations demonstrate
that this initialization aids in restoring features by diffusion,
further reduces cross-entropy, and improves accuracy.

Our contributions can be summarized as three-fold:
• We find the purification effectiveness of the SR process.

While SR alone is less effective in fully eliminating ad-
versarial noises, it excels at preserving original features
in the early layers of the network.

• Our approach, PuriFlow, finds a synergistic effect by in-
tegrating SR with diffusion. Our insight into geometrical
analysis and empirical study finds that this integration can
reduce cross-entropy in adversarial examples.

• Our pipeline utilizes only off-the-shelf SR and diffusion
models. With negligible execution time required for SR,
this plug-and-play method demonstrates improved accu-
racy and robustness in comprehensive evaluations.

2. Related Work
Denoising defenses. Traditional test-time adversarial de-
fenses often apply denoising techniques to input images.
JPEG compression has been employed to remove high-
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frequency noise [14, 16], but Guo et al. [22] found it in-
sufficient, proposing total variance minimization with im-
age quilting as an alternative. Likewise, Prakash et al. [40]
use wavelet denoising combined with BayesShrink to mit-
igate artifacts leading to misclassification, which surpasses
total variance minimization and Wiener filtering in adver-
sarial defenses [54]. Xie et al. [55] denoise feature maps
through non-local means, supporting adversarial training.
While practical, these methods often distort image details
and face a core challenge: the inverse problem, which re-
sults in non-unique solutions.

SR defenses. Modern SR models have gained attention
to enhance perceptual quality in adversarial examples [36].
Recently, Bhardwaj et al. [7] raised concerns about the com-
putational demands of the SR models, which can limit real-
time applicability. They demonstrate the effectiveness of a
highly efficient SR model [8], showing robust performance
even on compact neural processing units. PuriFlow shares
a similar purpose on rapid SR applications but adds weight
to its synergistic use for restoring refined features with min-
imal overhead, assisting diffusion to enhance defense.

Adversarial purification. Purifying adversarial noise us-
ing generative models has shown promise in strengthen-
ing classifier robustness as a test-time defense. PixelDe-
fend [47] utilizes an autoregressive generative model, while
Defense-GAN [43] relies on GANs. Langevin Dynamics
(LD) sampling has also been effective for defenses through
energy-based models [15, 21, 25]. Yoon et al. [58] introduce
a denoising score-based model with an LD variant for de-
noising processes. DiffPure [38] and Lee and Kim [32] em-
ploy forward and reverse-time Stochastic Differential Equa-
tions (SDEs) [26, 46] for purification, but the loss of class
information remains a risk due to the dependence on dif-
fusion time steps. Bai et al. [5] mitigate this problem with
contrastive guidance, while ScoreOpt [60] uses a one-shot
denoiser. This work attempts to tackle losing crucial infor-
mation in purified images by combining SR with diffusion.

3. Background for Diffusion Models
The score-based diffusion model is widely accepted in ad-
versarial purification. It performs with bidirectional pro-
cesses: forward and reverse time transition of xt ∈ Rd

over the time interval t ∈ [0, T ]. Starting from an origi-
nal sample x0 ∼ p0(x) where p0(x) is the unknown, true
data distribution, the diffusion model progressively trans-
forms p0(x) into a nearly spherical Gaussian distribution
pT (x) ≈ N (0, Id). This converted distribution pT (x) re-
tains no information about p0(x).

This forward process of {xt}Tt=0, as defined by Itô SDE,
is given with the positive increment of t:

dx = f(x, t)dt+ g(t)dw, (1)

where the initial data x0 ∼ p0(x), f(·, t) : Rd 7→ Rd is
the drift coefficient of xt and g(·) : R 7→ R is the diffu-
sion coefficient tied with Brownian motion w ∈ Rd. Here,
when f(x, t) is affine, the transition kernel always becomes
a Gaussian distribution pt′t(xt|xt′) where 0 ≤ t′ < t ≤
T [49]. Thus, the forward diffusion process allows for a di-
rect transition with a closed form using the Gaussian kernel
p0t(xt|x0) from t = 0 to a certain t, which prevents the
need for neural network estimations.

Given a perturbed sample xT ∼ pT (x), the reverse-time
SDE defines that it drifts backward in the time steps:

dx = [f(x, t)− g2(t)∇xlogpt(x)]dt+ g(t)dw̄, (2)

where w̄ represents a standard Wiener process and the in-
finitesimal time step dt is negative. A key component in
Eq. 2 is the score function ∇xlogpt(x), which offers how
the density pt(x) changes with respect to x. Instead of di-
rectly knowing this function, one approach is to train a neu-
ral network, sθ(x, t), to estimate it. This training is achieved
by solving a denoising score-matching [51] problem:

ℓ(θ) =
∑T

t=1
λ(t)Ex,x̃|x[sθ(x̃, t)−∇x̃logp0t(x̃|x)||22].

(3)
Here, Gaussian kernel p0t(x̃|x) depicts the transition from
x̃ = xt to x = x0 and λ(t) is weighting function ensur-
ing that the contributions at different times are appropriately
balanced. This optimized model serves as sθ∗(x, t) where
θ∗ = argminθℓ(θ) to replace the elusive score function, en-
abling an effective reverse diffusion process.

4. Methodology
In this section, we introduce our motivation, design method-
ology, and geometrical analysis of the proposed approach,
PuriFlow. To begin, we briefly review adversarial attacks.

Adversarial attack. Given a clean image x0 with label y,
adversarial attacks generally seek perturbations to mislead
a classifier Fϕ(·) : Rd 7→ RK into incorrectly classifying
x0. This manipulated image xa0 is generated by maximizing
cross-entropy loss within a tiny region around x0:

xa
0 = lim

i→N

∏
B(xi0,ϵ)

(xi0 + µsign(∇xi0ℓce(ϕ; xi
0, y))), (4)

where x00 is the initial clean image x0 and N is the number
of attack iterations. B(xi

0, ϵ) is the ℓp-norm ball around xi
0

within a radius of ϵ, Π(·) is the projection to the norm ball,
and µ denotes the step size. The gradient can be obtained
from surrogate networks when Fϕ(·) is unknown.

4.1. PuriFlow: Enhanced Purification Flow
Given an adversarial example, xa0 , VP-SDE [48] is widely
accepted approach for purification. VP-SDE controls noise
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Figure 3. Top: visualization of different image types. AE denotes
the adversarial example generated by a PGD attack on ResNet-50
using an ImageNet-1k image. SR indicates the downsampled high-
resolution image. Diffusion and PuriFlow use the same diffusion
method, VP-SDE [38]. Bottom: corresponding feature maps from
the Conv2 2 layer of VGG-19, as described in [18].

addition through drift coefficients f(x, t) = − 1
2βtx and

g(t) =
√
βt, where βt =

1
tβmax + (1− 1

t )βmin [38]. This
model then diffuses the data by solving the forward-time
SDE in Eq. 1 with a closed form:

xat =
√
ᾱtxa

0 +
√
1− ᾱtzt, (5)

where zt ∼ N (0, Id) and ᾱt = e−
∫ t
0
βt(s)ds.

The corresponding diffusion process is then performed
by solving the reverse-time SDE in Eq. 2:

dx = [f(xa
t , t)− g2(t)∇xat logpt(xa

t )]dt+ g(t)dw̄, (6)

where the drift coefficients, f(·, t) and g2(t), follows [5, 48].
During this reverse process, the crucial step is computing

the score, defined as ∇xat logpt(xa
t ). Here, we raise a key

question: Can the neural network sθ∗(·, t), trained for score
estimation, precisely predict x0 from xa

t ? Even if sθ∗(·, t)
is well-trained, accurately estimating the direction toward
x0 is not straightforward when dealing with the noised data
xat that has been perturbed from xa0 , since sθ∗(·, t) has not
been exposed to such perturbed data during training with
Eq. 3. In other words, the trained neural network lacks prior
knowledge of guiding xat , risking deviations in the wrong
direction during the noise addition and recovery phases.

This concern is seemingly explicit. Figure 3 shows that
the perturbations introduced by Eq. 4 appear subtle in pixel
values but cause significant damage to the underlying fea-
tures of x0. These observations indicate that diffusion alone
struggles to fully reconstruct the original features. To ad-
dress this, we seek an existing method that positions the per-
turbed data closer to its ground-truth image, aiming to re-
duce feature discrepancies early on and thus ensure a more
precise projection of the score function.

To this end, we focus on a model that can effectively re-
duce content distance [18, 28] to capture feature proximity.
Reducing feature-level shifts that lead to increased cross-
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(b) Synergistic effect in feature restoration of SR combined with diffusion.
Diffusion and SR+Diffusion use the same diffusion time t′ = 90.

Figure 4. Normalized content distance from the ground truth for
each image type, measured across specific CONV layers of VGG-
19 as shown in Figure 5. Real values are provided in the Appendix.

entropy aligns with the goal of purification, ultimately im-
proving classification accuracy. This approach also benefits
clean data in preserving features. In this context, the SR
model suits this purpose. The SR model, Hω∗(·) : Rd 7→
RD such that D > d, is designed to upsample and in-
terpolate low-resolution images into high-resolution coun-
terparts. To optimize its parameters ω, various SR meth-
ods [1, 28, 31, 45, 52] minimize both pixel distance and
VGG loss [31], which captures mutual similarity in feature
maps across different layers of the VGG model:

ω∗ = minω
1

W lH l

( W l∑
u=1

Hl∑
v=1

[Φl(X)u,v −Φl(Hω(x))u,v]2
)
,

(7)
where X ∈ RD and x ∈ Rd, with W l and H l denoting
the dimensions of extracted features Φl(·) in the l-th con-
volution layer. Thus, SR models can naturally reduce the
content distance by enhancing feature similarity while esti-
mating unknown pixels and their covariates in RD.

Our findings, as illustrated in Figure 4, show that SR im-
ages downsampled from RD to Rd can also reduce the con-
tent distance. This reduction covers all layers of the VGG
network, demonstrating that even a one-shot application can
effectively mitigate feature discrepancies present in adver-
sarial examples. Notably, as observed in Figure 4a, increas-
ing t′ when applying diffusion alone cannot sufficiently aid
in restoring features tied to the early layers of the CNN.
This observation suggests that a single application of SR
can be more effective than diffusion in recovering detailed
features [59] captured by the early layers.

In this paper, we propose an enhanced purification flow,

4608



-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 2.5 5 7.5 10 12.5 15 17.5 20

lo
g(

C
ro

ss
-E

nt
ro

py
)

Content distance

GT AE
t'=90 t'=80
t'=70 t'=60
t'=50 t'=40
t'=30 t'=20
t'=10 t'=0
SR

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 2.5 5 7.5 10 12.5 15 17.5 20

lo
g(

C
ro

ss
-E

nt
ro

py
)

Content distance

GT AE
t'=90 t'=80
t'=70 t'=60
t'=50 t'=40
t'=30 t'=20
t'=10 t'=0

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 2.5 5 7.5 10 12.5 15 17.5 20

lo
g(

C
ro

ss
-E

nt
ro

py
)

Content distance

GT AE
t'=90 t'=80
t'=70 t'=60
t'=50 t'=40
t'=30 t'=20
t'=10 t'=0
SR

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

0 2.5 5 7.5 10 12.5 15 17.5 20

lo
g(

C
ro

ss
-E

nt
ro

py
)

Content distance

GT AE
t'=90 t'=80
t'=70 t'=60
t'=50 t'=40
t'=30 t'=20
t'=10 t'=0

Conv2_2Conv2_2 Conv5_4 Conv5_4

Direction to reduce CEDirection to reduce CE

lo
g
(ℓ

𝑐
𝑒
(𝜙

))

lo
g
(ℓ

𝑐
𝑒
(𝜙

))

lo
g
(ℓ

𝑐
𝑒
(𝜙

))

lo
g
(ℓ

𝑐
𝑒
(𝜙

))

Figure 5. Transition of diffusion only and SR-integrated diffusion with the same diffusion time of t′ = 90 under a PGD attack (ϵ = 8/255,
N = 100) on ResNet-50 using ImageNet-1k. “SR” represents downsampled high-dimensional images, while “AE” denotes adversarial
examples. Content distance [18] from the ground truth is measured in two convolutional layers of VGG-19 and plotted with cross-entropy.

PuriFlow, where SR works before the start of the forward-
time SDE. As shown in Figure 4b, this approach demon-
strates the effectiveness of using SR early before solving
both SDEs. By correcting feature distortions that diffusion
alone struggles to recover, SR allows for a synergistic effect,
enhancing feature restoration across all layers through dif-
fusion. As observed in Figure 5, the early reduction in con-
tent distance leads to a notable decrease in cross-entropy.
Thus, the subsequent diffusion aligns the data more closely
with the ground truth. To delve into this synergistic effect,
we provide a theoretical study from a manifold perspective.
We examine how SR influences data positioning and allows
for more precise use of the score function within diffusion.

4.2. Geometrical Analysis on PuriFlow
Suppose M ⊂ Rd is the set of all data points, i.e., ∀x ∈ M,
defining M as the data manifold. That is, the data distribu-
tion p0 is uniform on the data manifold M. Then, within a
local neighborhood, the manifold coincides with its tangent
space of dimension k ≪ d, expressed as follows:

M∩B(x0, dr) = Tx0M∩B(x0, dr), Tx0M ≃ Rk, (8)

where Tx0M denotes the tangent space to the manifold M
at x0 and dr is an infinitesimal radius within which the
manifold can be locally approximated by its tangent space.
Here, we take note of a property of the trained score func-
tion in diffusion models [12].

Remark 1. The noisy data become increasingly concen-
trated on spherical manifolds as diffusion time t increases.
The score function is trained via denoising score matching
(Eq. 3), using data on M. Let Pt(·) denote a mapping from
noisy data xt to its estimated clean counterpart x̂0:

Pt(·) : xt 7→ x̂0 = −1

2
(1− αt)(xt + 2sθ∗(xt, t)), (9)

where Pt(xt) ∈ M and it satisfies J2Pt
= JPt = JT

Pt
:

Rd → TPt(xt)M. That is, Pt(·) acts as an orthonormal
projection onto M.

Remark 2. The score function is trained solely on the data
concentrated on both the noisy and data manifolds. There-
fore, applying it to data outside these manifolds may lead to
inaccurate inference.

Both premises suggest that when the score function is ap-
plied to off-manifold data, such as adversarial examples [7],
its inaccurate inference may lead to misaligned orthonormal
projections onto an unintended tangent space. Thus, the off-
manifold data should be corrected to better align with its un-
derlying manifold. Now, we show that the applying SR fol-
lowed by downsampling can typically position off-manifold
data, degraded from x0, closer to the local manifold, which
is the tangent space of x0.

Proposition 1. Suppose Hω∗ is an ideal SR and smooth
continuity, and let R be a linear downsampler. Given an off-
manifold data D(x0) degraded from x0, the processed data
RHω∗(D(x0)) is projected near the tangent space Tx0M
of the data manifold M at x0 with a tiny δ > 0:

∥RHω∗(D(x0))−ΠTx0M(D(x0))∥F < δ. (10)

In Section 5, we evaluate the effectiveness of using the
score function more accurately, supported by Proposition 1,
against various adversarial attacks.

5. Experiment
We evaluate the performance of PuriFlow in two configura-
tions: integrating SR with solving SDEs [38] and combin-
ing SR with a recent alternative, iterative One-Shot Denois-
ing (OSD) [60]. OSD is defined by Tweedie’s formula [50],
expressed as E[x|x̃] = x̃ + σ2∇x̃logpσ(x̃), where x̃ denotes
perturbed data and pσ(x̃) represents marginal Gaussian per-
turbation of p(x). This formulation avoids repeated noise
removal steps for varying time t.

In this context, the denoising score-matching problem
defined by Eq. 3 optimizes the neural network sθ∗(·, t),
given xt, to predict a fully denoised x0 per a specific time t.
Thus, Tweedie’s formula can be represented as:

E[x0|xt′ ] = xt′ + σ2∇xt′ logpσ(xt′). (11)
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Method Criterion Standard (%) Robust (%)
Yang et al. [56] Gibbs Update 94.80 40.80
Song et al. [47] Mask+Recon. 95.00 9.00
Hill et al. [24] EBM+LD 84.12 54.90
Yoon et al. [58] DSM+LD* 86.14 70.01
Nie et al. [38] SDEs 89.02 81.40
Bai et al. [5] Guide+SDEs 92.61 81.94
PuriFlow([38]) SR+SDEs 90.06 83.00
Zhang et al. [60] iOSD 93.75 88.08
PuriFlow([60]) SR+iOSD 94.14 91.01

Table 1. Comparison of different adversarial purification methods
against BPDA+EOT attacks with ℓ∞ perturbations. Our evalua-
tions uses WRN-28-10 on CIFAR-10, with consistent experimen-
tal settings as outlined in [38, 60] for ϵ = 8/255. (* This purifica-
tion utilizes a variant of the LD sampling.)

The alternative proposed by [60] involves iteratively ap-
plying OSD using Eq. 11 during noise removal. Therefore,
it can serve as a suitable baseline to confirm synergies with
SR. We assess these configurations, detailed as algorithms
in the Appendix, across key test-time defense scenarios, in-
cluding adaptive white-box, preprocessor-blind [58], and
black-box attacks. This section also includes an ablation
study to demonstrate the impact of incorporating SR. De-
tailed experimental settings and additional evaluations for
certified robustness are provided in the Appendix. For adap-
tive attacks, we adopt MDSR [33] for efficiency and ESR-
GAN [52] otherwise. We denote t′ on a discrete scale [26]
from 1 to 1000 to represent the continuous interval [0, 1].

5.1. Defense on Adaptive Attacks
In this section, we evaluate the performance of PuriFlow
against four strong adaptive attacks: BPDA+EOT [3, 4],
an adaptive ensemble white-box attack; AutoAttack [13],
an adaptive white-box attack; PGD+EOT [32], and Dif-
fAttack [29], a diffusion-based purification targeted attack.
Here, the evaluations focus on projections within an ℓ∞-
norm ball, as the projection in ℓ2-norm ball is less effective.

BPDA+EOT. Backward Pass Differentiable Approxima-
tion (BPDA) combined with Expectation over Transforma-
tion (EOT) is used to evaluate randomized adversarial pu-
rification methods. Table 1 demonstrates that PuriFlow out-
performs standalone diffusion on CIFAR-10 with WRN-28-
10, achieving a more balanced standard and robust accuracy
than the guiding method. In addition, integrating SR with
iterative OSD further enhances performance, emphasizing
its critical role in diffusion-based purification.

AutoAttack. Tables 2 demonstrates the effectiveness of
PuriFlow against AutoAttack, on ImageNet-1k. PuriFlow
outperforms adversarial training methods and a diffusion-
only approach across ResNet-50 and DeiT-S. Compared to
diffusion only, it achieves notable robust accuracy improve-

Type Method Standard (%) Robust (%)
ResNet-50 76.13 0.00

AT

Engstrom et al. [17] 62.56 31.06
Wong et al. [53] 55.62 26.95
Salman et al. [42] 64.02 37.89
Bai et al. [6] 67.38 35.51

AP Nie et al. [38] 67.79 40.93
PuriFlow([38]) 71.68 52.92

DeiT-S 79.90 0.00
AT Bai et al. [6] 66.50 35.50

AP Nie et al. [38] 73.63 43.18
PuriFlow([38]) 75.69 53.12

Table 2. Evaluation comparing adversarial training (AT) and pu-
rification (AP) methods against AutoAttack with ℓ∞ perturbations
at ϵ = 4/255 on ImageNet-1k. Diffusion time is set to t′ = 150
for [38] as specified its study and t′ = 130 for PuriFlow.

Type Method Standard (%) Robust (%)
WRN-28-10 95.63 0.00

AT
Pang et al. [39] 88.62 64.95
Gowal et al. [19] 88.54 65.93
Gowal et al. [20] 87.51 66.01

AP
Yoon et al. [58] 85.66 33.48
Zhang et al. [60]* 93.75 59.37
PuriFlow([60])* 94.14 60.76

WRN-70-16 95.79 0.00

AT
Gowal et al. [19] 91.10 68.66
Gowal et al. [20] 88.74 69.03
Rebuffi et al. [41] 92.22 69.97

AP
Yoon et al. [58] 86.76 37.11
Zhang et al. [60]* 95.11 63.28
PuriFlow([60])* 95.31 64.86

Table 3. Evaluation comparing adversarial training (AT) and pu-
rification (AP) methods against PGD+EOT within an ℓ∞-norm
ball of radius ϵ = 8/255 on CIFAR-10. Results are sourced from
[32]. (* For a fair comparison, PuriFlow and [60] are directly eval-
uated on the same settings with t′ = 250, as stated in [60].)

ments, including 11.99% (ResNet-50) and 9.94% (DeiT-S),
and standard accuracy. PuriFlow also shows efficiency with
reduced diffusion time t′ on this large-scale dataset.

PGD+EOT. Motivated by [32], we assess PuriFlow’s ro-
bustness against PGD+EOT that utilizes gradient signs
within the entire randomized defense framework. Table 3
shows PuriFlow’s strength on CIFAR-10, achieving the
highest standard accuracy for WRN-28-10 and WRN-70-
16. Despite the substantial impact of PGD+EOT on ran-
domized purification, PuriFlow achieves superior robust ac-
curacy among purification methods, demonstrating a syner-
gistic effect in which SR effectively acts as the initialization
before starting the iterative one-shot denoising process.
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Type Method Standard (%) Robust (%)
WRN-70-16 95.79 0.00

AP Nie et al. [38] 90.07 45.31
PuriFlow([38]) 90.21 59.47

ResNet-50 76.13 0.00

AP Nie et al. [38] 67.79 28.13
PuriFlow([38]) 71.68 43.75

Table 4. Evaluation against DiffAttack, targeting WRN-70-16 on
CIFAR-10 and ResNet-50 on ImageNet-1k. Each diffusion time t′

is the same as those used for other attacks on PuriFlow.

Type Method Standard (%) Robust (%)
ResNet-50 76.13 0.00

AT

Engstrom et al. [17] 62.56 38.97
Wong et al. [53] 55.62 29.15
Salman et al. [42] 64.02 38.01
Bai et al. [6] 67.38 40.27

AP Nie et al. [38] 74.52 38.87
PuriFlow([38]) 74.05 49.92

DeiT-S 79.90 0.00
AT Bai et al. [6] 66.50 40.32

AP Nie et al. [38] 78.94 34.59
PuriFlow([38]) 78.44 49.85

Table 5. Comparison under a preprocessor-blind PGD attack tar-
geting only the classifier, within an ℓ∞ perturbations at ϵ = 4/255
on ImageNet-1k. The time t′ for both AP methods is set as 10.

DiffAttack. DiffAttack neutralizes vanishing and explod-
ing gradients, high memory costs, and increased random-
ness—natural defensive effects from lengthy t′ of diffusion-
based purification. Table 4 demonstrates that while purifi-
cation methods using t′ = 100 for CIFAR-10 and t′ = 150
for ImageNet-1k exhibit limitations in robustness by this in-
tentional attack, integrating SR demonstrates a notable im-
provement by 14.16% and 15.62%. We hypothesize that
SR’s early enhancement of feature proximity helps mitigate
diverging feature maps from the ground truth, even under
the reconstruction-deviating impacts of DiffAttack.

5.2. Defense on Preprocessor-Blind Attack
We evaluate PuriFlow against the PGD (N = 100) attack,
targeting only the classifier on ImageNet-1k. Table 5 shows
that PuriFlow, leveraging only off-the-shelf models, sur-
passes adversarial training methods in both standard and ro-
bust accuracy for ResNet-50 and DeiT-S. Notably, PuriFlow
significantly outperforms diffusion only [38] at the same
practical diffusion time t′ = 10, achieving comparable stan-
dard accuracy while enhancing robust accuracy by 11.05%
for ResNet-50 and 15.26% for DeiT-S. This improvement
signifies the synergistic importance of SR in adversarial pu-
rification utilizing diffusion models.

Type Method Standard (%) Robust (%)
ResNet-50 76.13 9.25

AP Nie et al. [38] 67.79 62.88
PuriFlow [38] 74.00 68.36

Table 6. Evaluation of ResNet-50 under a black-box attack using
Square Attack (N = 5000) within an ℓ∞-norm ball of radius ϵ =
4/255 on ImageNet-1k. Diffusion time is set to t′ = 150 for [38]
as specified in their study and t′ = 10 for PuriFlow. Evaluation
settings follow those in [38].

Method Type Standard (%) Robust (%)
ResNet-50 76.13 0.00
Wavelet Denoising 71.15 68.63
TVM Denoising 57.80 56.96
NL-means Denoising 64.32 62.67

DRLN×2 [2] SR 71.66 68.72
EDSR×2 [33] SR 71.77 68.73
ESRGAN×2 [52] SR 72.97 68.75
MDSR×2 [33] SR 73.32 69.47

Table 7. Comparison of SR with other denoising methods as an
initialization approach for diffusion [38] (t′ = 90) under a PGD
attack on ImageNet-1k. “TVM” refers to total variance minimiza-
tion, while “NL-means” denotes the non-local means algorithm.

5.3. Defense on Black-Box Attack

Table 6 shows that PuriFlow, using t′ = 10—approximately
6.67% of the diffusion time required by diffusion-only
method [38]—achieves notable improvements in both stan-
dard and robust accuracy for ResNet-50. Specifically, it
shows enhancements of 6.21% and 5.48% in each accuracy
on ImageNet-1k. These results highlight the synergy of ini-
tialization for diffusion, indicating better performance and
greater efficiency in this black-box attack.

5.4. Ablation Study

Impact of SR compared to various candidates. Puri-
Flow can be configured by combining various initialization
methods. We test several SR models and traditional denois-
ing techniques by selectively replacing each method used
in diffusion-based purification. This evaluation, conducted
with PGD targeting the classifier on ImageNet-1k, is shown
in Table 7. While Wavelet denoising is practical for PGD, it
stands less effective than SR techniques. Among SR mod-
els tested, MDSR×2 outperforms DRLN×2, EDSR×2, and
ESRGAN×2, achieving the highest standard and robust ac-
curacies. Furthermore, we explore different upsample ratios
(×2, ×4, ×8) using ESRGAN. Table 10 indicates that ×2
represents the best balance between efficiency and perfor-
mance, making it the optimal choice for PuriFlow.
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SR Diffusion Classifier Standard (%) Robust (%) Wall time (s/img)
✓ 76.13 00.00 ≈0.00

✓ ✓ 73.68 30.70 0.01
✓ ✓ 74.52 38.37 1.08

✓ ✓ ✓ 74.00 49.92 1.09

Model Type Standard (%) Robust (%)

ResNet-50 VP-SDE 72.97 68.75
VE-SDE 73.39 66.51

DeiT-S VP-SDE 77.29 72.37
VE-SDE 77.72 69.33

Table 8. Evaluation of PuriFlow under a preprocessor-blind PGD attack on ImageNet-1k selectively employing off-the-shelf models. Left:
ResNet-50, ESRGAN×2, and VP-SDE are the classifier, SR model, and diffusion [38] model, respectively, with diffusion time t′ = 10.
Right: Impact of diffusion models within PuriFlow, evaluated at diffusion time t′ = 90 using ResNet-50 and DeiT-S on ImageNet-1k.

Off-the-shelf models ESRGAN×2 EDSR×2 MDSR×2
SR (each column) 0.01 0.01 ≈0.00
Diffusion [38] 1.08 0.81 0.73
ResNet-50 ≈0.00 ≈0.00 ≈0.00
Total wall time (s/img) 1.09 0.82 0.73

Configuration Criterion Iterations Purif. time
Diffusion [38] SDEs t′ = 100 5.27
SR+Diffusion SR+SDEs t′ = 100 0.005+5.27
ScoreOpt-O [60] iOSD M = 5 0.51
SR+ScoreOpt-O SR+iOSD M = 5 0.005+0.51

Table 9. Top: Wall time for PuriFlow with different SR models.
Bottom: Examples of purification times (s/img) for configura-
tions using WRN-70-16 [38] and WRN-28-10 [60] on CIFAR-10.

Ratio Standard (%) Robust (%) FLOPs Params
×8 71.26% 66.80% 1110G 16.7M
×4 72.41% 67.32% 899G 16.7M
×2 72.97% 68.75% 224G 16.7M

Table 10. Impact of SR upsampling ratios from ESRGAN×2 com-
bined with diffusion [38] (t′ = 90) using ResNet-50 on ImageNet-
1k. FLOPs represent computational complexity [23], and Params
refer to the number of trainable parameters.

Off-the-shelf model adoption and latency analysis. Ta-
ble 8 shows the enhanced defensive capabilities achieved by
integrating off-the-shelf models into PuriFlow’s framework.
The table highlights the individual and combined effects of
SR and diffusion. When used together, SR and diffusion im-
prove robust accuracy by 19.22% and 11.55%, respectively,
illustrating their strong synergistic effect on adversarial ex-
amples. Although combining SR with diffusion slightly de-
creases standard accuracy compared to diffusion alone, the
robustness gains make this trade-off useful, with a tolerable
latency of 1.09 s/img when executed on a single NVIDIA
RTX 4090 GPU. Table 9 further confirms that integrating
SR models adds minimal latency to the overall purification
process. Specifically, SR’s execution time is 1,054× faster
than the diffusion’s, and its overhead is only 1/102 com-
pared to one-shot denoising methods. This result empha-
sizes SR’s role as an effective and efficient initialization.

Impact of diffusion types. We explore VE-SDE [46],
which can act as an alternative to diffusion. Table 8 demon-
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Figure 6. Impact of iterative SR on cross-entropy and MSEs under
a PGD (N = 100) attack targeting ResNet-50 within an ℓ∞-norm
ball (ϵ = 4/255) on ImageNet-1k. SR, SR’, and SR” indicate one,
two, and three rounds of SR using ESRGAN×2, respectively.

strates that VP-SDE slightly reduces standard accuracy (ap-
proximately 0.42% for ResNet-50 and 0.43% for DeiT-S)
but enhances robust accuracy by 2.24% and 3.04%, respec-
tively. Despite the minor drop in standard accuracy, inte-
grating VP-SDE shows overall robustness, synergizing a
balanced performance with SR.

Iterative applications of SR without diffusion. Figure 6
shows the impact of repeated SR applications for adversar-
ial examples relative to their originals, with changes in MSE
and cross-entropy and their impact on standard and robust
accuracy. Up to three rounds of SR demonstrate a trade-off:
MSE increases while cross-entropy decreases and eventu-
ally saturates. Here, robust accuracy rises but converges
while standard accuracy decreases. We conjecture that re-
peated SR may behave as seen in model inversion [35, 57]:
Images are generated to minimize cross-entropy loss, but
this steady direction moves them farther from the originals.

6. Conclusion
We introduce PuriFlow, a novel purification flow integrating
Super-Resolution (SR) with diffusion. While SR alone is
less effective at mitigating adversarial noise, its image up-
sampling and downsampling excel at restoring subtle fea-
tures captured by early layers. Diffusion alone lacks this
ability. However, their mixture synergistically reduces over-
all feature proximity and cross-entropy. PuriFlow outper-
forms leading methods in extensive evaluations, demon-
strating efficiency for minimal SR overhead.
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