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Figure 1. Representative results comparing baselines (LCM-LoRA [29], SDXL-Lightning [21], DMD?2 [47]) and the proposed framework.
Results of each baseline are generated with 4 step sampling. We improve the visual fidelity and textual alignment of student models by
conducting a inference-time diffusion distillation with the guidance of teacher model, e.g. SDXL [34], in early sampling stages (first 1 step).

Abstract a proximal optimization problem with a score distillation
sampling loss (SDS). To this end, we integrate distillation
Diffusion distillation models effectively accelerate reverse optimization during reverse sampling, which can be viewed
sampling by compressing the process into fewer steps. How- as teacher guidance that drives student sampling trajectory
ever, these models still exhibit a performance gap compared towards the clean manifold using pre-trained diffusion mod-
to their pre-trained diffusion model counterparts, exacer- els. Thus, Distillation++ improves the denoising process
bated by distribution shifts and accumulated errors during in real-time without additional source data or fine-tuning.
multi-step sampling. To address this, we introduce Distilla- Distillation++ demonstrates substantial improvements over
tion++, a novel inference-time distillation framework that state-of-the-art distillation baselines, particularly in early
reduces this gap by incorporating teacher-guided refinement sampling stages, positioning itself as a robust guided sam-
during sampling. Inspired by recent advances in conditional pling process crafted for diffusion distillation models.

sampling, our approach recasts student model sampling as
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1. Introduction

Diffusion models have significantly advanced image genera-
tion by producing high-quality samples through an iterative
refinement process that gradually denoises an initial noise
vector. This refinement can be viewed as solving the re-
verse generative Stochastic Differential Equation (SDE) or
Ordinary Differential Equations (ODE), a counterpart to a
prescribed forward SDE/ODE.

Despite achieving unprecedented realism and diversity,
diffusion models face a critical challenge: slow sampling
speed. The progressive denoising process is computationally
expensive because solving the reverse SDE/ODE requires
fine discretization of time steps to minimize discretization
errors considering the curvature of the diffusion sampling
trajectory [15]. This leads to an increased number of func-
tion evaluations (NFE), where typical diffusion sampling
necessitates tens to hundreds of NFE, limiting its use in
user-interactive creative tools.

To address these limitations, various works have proposed
to accelerate diffusion sampling. One promising avenue is
distillation models, which distill the pre-trained diffusion
models (teacher model) by directly estimating the integral
along the Probability Flow ODE (PF-ODE) trajectory [41].
This effectively amortizes the computational cost of sam-
pling into the training phase. Recent advances in distillation
methods have led to the emergence of a one-step image
generator; however, few-step distillation models (student
models) are also often preferred in terms of image quality.

Despite progress, distillation models still face challenges,
particularly in bridging the performance gap between the
teacher model and its distilled student counterpart. The pri-
mary issues include potential suffer from accumulated errors
in multi-step sampling or iterative training. For example,
[16] identifies potential issues of multi-step sampling with
models estimating the zero-time endpoint of PF-ODE. As an
empirical demonstration, they show that the generation qual-
ity of consistency models does not improve as NFE increases.
Similarly, [9] shows that consistency errors can accumulate
across time intervals, leading to unstable training. [8, 47]
warn the general training/inference mismatch observed in the
multi-step sampling of student models. While prior works
aim to mitigate this gap by introducing real training datasets
[38, 47], it may face a potential distribution shift between
datasets of teacher and student, leading to suboptimal perfor-
mance on out-of-distribution (OOD) prompts.

In this work, we aim to overcome this fundamental gap
between teacher and student by proposing a novel inference-
time distillation framework called Distillation++. Distil-
lation++ is a novel symbiotic distillation framework that
distills the teacher model to a student model throughout
the sampling process, in contrast to prior works which dis-
till only during fraining process. In particular, inspired by
the recent advances in text-conditional sampling [4, 5, 17],
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we first recast the diffusion sampling of student models to
the proximal optimization problem and regularize its sam-
pling path with a score distillation sampling loss (SDS, [36])
which opens an important opportunity for external guidance.
Based on this insight, we develop a teacher-guided sampling
process that inherently minimizes the SDS loss by leverag-
ing the pre-trained diffusion model as a teacher evaluating
student’s denoised estimates during sampling. Specifically,
intermediate estimates of student models are refined towards
the clean manifold by minimizing the SDS loss, computed
using the teacher model.

This inference-time distillation fosters a life-long part-
nership between teacher and student, allowing continuous
teacher guidance beyond the training phase. Our empirical
results demonstrate that this data-free distillation approach
significantly improves student model performance, particu-
larly in the early stages of sampling with minimal compu-
tational costs. We believe this approach introduces a new
opportunity for inference-time distillation, a concept that has
not been previously explored.

Our contributions can be summarized as follows:

* We introduce Distillation++, a novel inference-time distil-
lation framework where teacher guides sampling process
so that it closes the gap between student and teacher during
sampling with affordable computational costs.

The proposed framework is generally compatible with var-
ious student models, ranging from ones directly predicting
the PF-ODE endpoint [28, 43, 48] to the progressive distil-
lation branches [21, 37]. We also demonstrate its general
applicability with various solvers, including Euler and
DPM++ 2S Ancestral [26].

To the best of our knowledge, Distillation++ is a first
tuning-free and data-free inference-time distillation frame-
work that serves as a viable post-training option for im-
proving distillation model sampling.

2. Background

Diffusion models. Diffusion models aim to generate sam-
ples by learning the reversal of a prescribed diffusion forward
process. In discrete setting with a total of N noise scales,
define the fixed forward diffusion kernel as follows:

p(]ai—1) = N (2| fri—1, (1 — Bi)I),
po(x|) = N (2 |[V Ao, (1 — a)l),

(D
2

where o € R? ~ po(x) is given as a clean sample, j3;
denotes a noise schedule discretized from 5(t) : R — R >
0, a; :=1— By and &; := I'_, ;. Then as N — oo, the
underlying forward noising process can be expressed as the
forward 1td SDE [42] given z(t) € R%:

dx = —@azdt + VB(t)dw, 3)
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Figure 2. Overview. (a) Diffusion models (in blue) sample by solving the PF-ODE, requiring a computationally expensive integral from
time 7" to 0. Student models (in black) accelerate sampling by approximating this integral, but their (initial) estimates are often suboptimal.
(b) To bridge this gap post-training, we propose an inference-time distillation. Specifically, we refine the student models’ initial estimates by
refining them towards teacher estimates, obtained by consecutive renoising and denoising, as in (9). (¢) This process steers the sampling
trajectory closer to the teacher model’s distribution, thereby (d) improving the sampling path.

where w is the d-dimensional standard Wiener process. Then
the counterpart reverse SDE is defined as follows [1]:

B(t)

2

dx =

— B(t)Vz logp(x }dt—l—\/ t)dw,

where w is the d-dimensional standard backward Wiener
process. The deterministic counterpart PF-ODE [42] can be
similarly defined. Then the goal of diffusion model training
is to approximate a score function V4 log p; () by denoising
score matching (DSM):

IIgH Ezt),20,t [ ||39(a:(t), t) — V) logpt(ac(t)|w0)|| ],

where xy ~ po(x) denotes a clean sample. It can be shown
that this score matching is equivalent to the epsilon matching
with different parameterization of residual denoiser €y:

IneinEa:(t),wo,evN(O,I) [leo(x(t), 1) — €l ], “4)

and s+ (2(1), 1) ~ — 2V — ——L_e. (2(1),1).

Based on this, generative sampling can be performed by
solving the PF-ODE, equivalent to computing the integral
from time 7" to 0, approximated by various off-the-shelf
ODE solvers. For instance, a single iteration of DDIM sam-
pling [40] reads:

20(1) = (&, — VT —aseq (@i, 1)) /[V/ar (5)
L1 = \/O_ét_lifjg(t) + 1-— O_ét_leg(.’llt,t)), (6)

where x; € M, with noisy manifold M;, and &¢(t)
E[xo|x:] is the denoised estimate, which can be equivalently
derived using Tweedie’s formula [6].

For a text-conditional sampling with text embedding c,
the classifier-free guidance (CFG, [12]) is widely leveraged:

€ (x4, t,c) = €g(x4, t, D) + w(eg(xy, t, €) — €g(xe, t, D)),
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where ¢ = o refers to the null text embedding.
For notational simplicity, we will interchangably
use  €g(xs,t, D), €9(xt, ), €g(t) and  similarly

eg(xy,t, c), €g(xy, c) unless ambiguity arises.
Diffusion acceleration. While diffusion models generate
high-quality samples with a relatively stable training proce-
dure of (4), the numerical integration of the PF-ODE is com-
putationally expensive. Two primary strategies have been
developed to accelerate this process. The first strategy corre-
sponds to the fast diffusion samplers which improves time-
discretized numerical integration methods [14, 15, 25, 40].
Despite its interesting progress, further reducing NFE can
significantly degrade performance in practice.
Alternatively, diffusion distillation has emerged as a
promising approach to accelerate the sampling by indirectly
estimating the entire integral of PF-ODE. For instance, [27]
trains the denoising student that predicts the endpoint of the
PF-ODE given an initial noise vector. Similarly, [48] trains
a one-step generator by matching the pre-compute diffusion
outputs with using the distribution matching training objec-
tive. [2, 10, 43] further learn to map a different point on
the ODE trajectory to its endpoint or to the boundaries of
sub-intervals. In a related yet distinct approach, progressive
distillation methods have been developed considering the ex-
pensive computational cost of simulating the full denoising
trajectory for each loss function evaluation. These methods
often iteratively train a series of student models, each halv-
ing the number of sampling steps required by the previous
model.

3. Main Contribution: Distillation++

While both improved sampling and distillation methods have
made significant progress in addressing the speed-quality
trade-off, there has been limited advances in integrating
these methods through the design of specialized solvers for
improving multi-step distillation models. This can be at-
tributed to two primary reasons. First, off-the-shelf ODE



solvers typically require the estimation of the tangent gra-
dient direction along the solution trajectory. In contrast,
many distillation models [28, 43, 47, 48] directly predict the
endpoint of the trajectory on the side of data distribution at
any given time point, avoiding the need for direct trajectory
estimation. Consequently, the multi-step sampling proce-
dures of these student models are reduced to simple iterative
processes involving random noise injection and subsequent
denoising steps [43]. Furthermore, distillation models often
sample only 2-8 steps, which may restrict the design space
for solvers, including higher-order ones.

These constraints limit post-training options for improv-
ing distillation model sampling, despite the performance gap
between multi-step student and teacher models. To address
this, we propose Distillation++, a novel inference-time dis-
tillation framework. Specifically, Distillation++ leverages
large-scale pre-trained diffusion models as a teacher signal
during the early-stage sampling process (e.g. first 1-2 steps),
which substantially improves the overall sampling trajectory
as shown in Fig. 2.

3.1. Derivations of Distillation++

For a better multi-step sampling of student models, we de-
rive a novel data-free distillation process by integrating the
teacher guidance as an optimization problem within the re-
verse sampling process. Let ¢ € R” and » € R” parame-
terize the residual denoiser of student and teacher diffusion
models, respectively. Then, our objective is to define a
guidance loss function l4;s that, when minimized under
the symbiotic guidance of the teacher model, progressively
aligns the student’s intermediate estimates ) (¢) with the
teacher model’s distribution. We present such guidance loss
function /g as a score distillation sampling loss (SDS)
with respect to the teacher model (1) as follow:

2

(Vasz ++1— age,2) —€

Ts

Laigin (3 1), 5)

)

where ©; = /asx + /1 — aze with a perturbation time
s> 0,e~ N(€0,I),z € M with a clean data manifold
M, and ) (s) follows the Tweedie’s formula in (5) which is
denoised by the teacher model . For simplicity, we consider
the text-unconditional version with the null-text embedding
@ € R in this subsection. This loss represents an ideal
condition that high-quality denoised estimates should satisfy:
the ideal student samples should be well reconstructed from
random perturbations followed by denoising using large-
scale pre-trained teacher diffusion models. Variants of the
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SDS framework [30, 32, 48] have thus frequently been em-
ployed as key components in recent diffusion distillation
training procedure.

Then, we can now integrate the optimization step of
Lgisin in terms of denoised student estimates /) (¢), resulting
DDIM sampling process (5). A potential concern includes
the feasibility of gradient descent due to the intractable Ja-

. . d . .
cobian computation: 4 = dd—‘] - To circumvent this, by
T

dx
following the prior work on Decomposed Diffusion Sam-
pling (DDS) [4], which bypasses direct computation of the

score Jacobian, we have

Ti—1 = /A1 (Tf)l(t) — YtV g g1y Laisin (20 (£); 9, 8))

—+ 1-— O_ét_lﬁ()(xtvt)a (8)

where ¢ > 0 refers to the step size. [3, 5] supports that
this update allows precise transition to the subsequent noisy
manifold M;_; under some manifold assumption. This
gives us a simple single DDIM sampling iterate as follows:

(t) = 20(t) = A(@4(t) — 4 (5))
=(1- )\):i:ﬁ(t) + Az (s),
L1 = ar_120, (1) + /1 — au_1eo(e, ),

0

~ 0
L hew

Lo

(€))

%

new

= 2yV/Gr : P
where \ = o Note that the updated estimate

T (t)
can be obtained by the interpolation between initial student
estimate 7 (¢) and the revised teacher estimate ) (s). Thus,
by taking the gradient step of guidance loss, we can up-
date ) (t) towards the clean manifold well-aligned with the
teacher model distribution.

Renoising strategy. We empirically observed that the
time step schedule of s plays a crucial role in performance,
consistent with recent score distillation frameworks. Consid-
ering that the teacher model is well-trained on fine level of
timesteps, it is compatible with a broad range of renoising
timestep s. That said, as our approach recasts distillation
more as a guided sampling rather than a mere training pro-
cess, we adopt a decreasing time step schedule for s as
s =t — 1 following the sampling process (Fig. 2b), remi-
niscent of schedules used in [17, 45, 50]. This is in contrast
to conventional random timestep s scheduling [36]. Intu-
itively, as the student model often learns to leap towards the
end-point of each sub-interval (Fig. 2a), refining this large-
step update direction at the terminal of each sub-interval
with teacher model may better guide the sampling trajectory
(Fig. 2¢,d). Empirical evidences and more discussions are
provided in Table 4.

Teacher guidance. For a intuitive understanding of Dis-
tillation++, we provide reparameterization of (9), by inten-
tionally assuming ay = &. This leads to the formulation of
teacher guidance, drawing parallels to the CFG denoising



mechanism:

N it*\/lfo_ét(E()(mt,t)+)\( (58575)*6()(:3,5

1))

€T

“new

t =
g T
Tt—1 = v O_[t—lii:gcv\ (t) + 1= 6[15_16()($t,t),

where A > 0 serves as a guidance scale, and x; (1-
A)ax; + Axs. We conduct experiments using (9) in practice
as (10) serves primarily as an approximation for intuition;
however, (9) and (10) reproduce empirically similar genera-
tions with negligible differences, particularly with sampling
steps > 4 (empirical comparisons in Fig. 7). This reframe-
work suggests that the inference-time distillation serves as a
directional guidance (e, (x5, s) — €y (@4, t)) , which steers
the sampling trajectory closer to the teacher model.
Remarks. We find that applying inference-time distillation
at only a small number of initial sampling steps (e.g., 1-2
steps) already enhances the overall sampling procedure. This
is because each student sampling step compresses hundreds
of steps of the teacher model, maximizing the guidance ef-
fects with minimal extra computations. Moreover, since
students typically reuses the teacher’s VAE, it further min-
imizes additional memory overhead. Attributed to these
considerations, the peak memory of our framework remains
< 24GB on a standard GPU as in Table 3.

Importantly, Distillation++ integrates seamlessly with var-
ious distillation models, especially those directly predicting
the PF-ODE endpoint, such as consistency models [43] ,
which are not amenable to ODE solvers like DDIM in Sec.
3.1. While Sec. 3.1 simplifies by focusing on a specific
solver, Distillation++ is generalizable, even with simple iter-
ative processes involving denoising followed by stochastic
renoising steps, as in multi-step consistency models.

(10)

3.2. Text-conditional sampling and other solvers

Section 3.1 focused on the text-unconditional setting for
simplicity. Here we incorporate the teacher guidance with
widespread classifier-free guidance (CFG, [12]) for text-
conditional sampling. Let &/ (¢) denote the text-conditioned
clean estimate defined as:

:f:t — 1= Oiété;;v(ﬂft, C)
Vay ’
where we will interchangeably use #’ (z;) and similarly de-
fine ! (t). Then, based on (9), the resulting text-conditional
version of 2. (t) in (9) is derived as follows: z. .(t)

(1 (s). Here, 2., .(t) can be sirhilarly

xr

0
c

(t)

(11)

—Nzl(t) + A
derived in the form of teacher guidance as in (10) with the
same assumption on & :

& — T — (e (zr,€) + A€ (s, €) — € (w4, €))
N :

The overall pipeline is outlined in algorithm 1.
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While Section 3.1 is delineated with DDIM or equiva-
lently Euler solvers, the underlying principle can be shared
with other conventional solvers, e.g. Karras [15], PNDM
[22], etc. Please refer to the appendix for derivations.

4. Experimental results

4.1. Implementation details

In our experiments, we demonstrate the impacts of distilla-
tion++ using SDXL backbone [34] and its open-sourced
weights. All experiments are conducted using a single
NVIDIA GeForce RTX 4090. All quantitative results are ob-
tained with one-step teacher-guided distillation at the initial
sampling step of the student models (i.e., ¢ = T"), minimizing
additional computational costs, though more frequent guid-
ance could further enhance quality. Detailed implementation
settings are provided in the appendix and the following.
Baselines. Distillation++ can be applied to various state-of-
the-art T2I distillation baselines which are widely used with
open-sourced weights. LCM [28] is a consistency model
that operates in the image latent space of a pretrained au-
toencoder, solving an augmented PF-ODE in this space.
LCM-LoRA [29] extends LCM by distilling pre-trained la-
tent diffusion models into LORA parameters, significantly
reducing memory requirements while maintaining high gen-
eration quality. DMD2 [47] improves distribution-matching
distillation (DMD, [48]) by enabling multi-step sampling
and eliminating the needs for expensive regression loss.
SDXL-Turbo [38] integrates both adversarial loss and score-
distillation sampling loss. Building on similar adversarial
training regime, SDXL-Lightning [21] inherits progressive
distillation [37], relaxing mode coverage and also includes a
LoRA variant (SDXL-Lightning LoRA).

Setup. For visual fidelity, we evaluate Fréchet Inception Dis-
tance (FID, [11]) of images generated from the random 10K
prompts of MS-COCO validation set. For text-alignment
and user-preference, we additionally measure ImageReward
[46] and PickScore [18] which are more reliable compared
to the existing text-image scoring metrics, such as CLIP sim-
ilarity. For Table 1, we use 4 step Euler sampling for SDXL-
Lightning and its LoRA variant, 4 step iterative random
sampling for DMD2, LCM, and LCM-LoRA (incompatible
with conventional solvers), and 6 step DPM++ 2S Ancestral
sampling [26] for SDXL-Turbo, utilizing DreamShaper [31],
an open-source customized model from the community.

4.2. Evaluation and analysis

Quantitative Analyses. As shown in Table 1, Distillation++
consistently improves visual quality, text alignment, and user
preference across various distillation model baselines and
solvers, with only a single additional step of teacher (SDXL)
evaluation. Most multi-step distillation models offers only
a preset number of sampling steps with a fixed time-step
schedule, limiting sampling flexibility. Distillation++ ad-
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Figure 3. Qualitative comparisons against state-of-the-art distillation baselines. Baselines using 4 sampling steps: SDXL-Lightning, DMD?2,
SDXL-Turbo. Baselines using 8 sampling steps: LCM, LCM-LoRA. By conducting the inferece-time distillation in early sampling stages,
we reduce artifacts, improve the visual fidelity and textual alignment.
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(a) Baseline (LCM-LoRA)

(b) Ours

“Cat patting a crystal ball”

Figure 4. (a) Results of baseline (LCM-LoRA) with varying number of sampling steps (4, 6, 7, 8). Increasing the number of sampling steps
of student models does not guarantee improvements in textual alignment or physical feasibility. (b) Our improved results with inference-time
distillation. Teacher guidance is applied only at the first of 8 steps (total step=8+1).

Baseline
(Step=8)

(b) Ours
(Step=4+1)

(a) Baseline
(Step=4)

“A fantasy illustration of a dragon sitting on a castle against a backdrop of a stormy sky and lightning.”

Figure 5. (a) Results of baseline (LCM) with 4 and 8 sampling
steps. (b) Ours with 4 step sampling + 1 step distillation.

dresses this limitation and provide a post-training option
for sampling steps, effectively reduces artifacts, improving
fidelity and semantic alignment [33], as shown in Fig. 3.

Computational Costs and Performance. Distillation++
serves as an efficient sampling correction, though it intro-
duces additional function evaluation: (1) In diffusion models,
the spatial layout is largely determined in the early sampling
stages, suggesting that early-stage guidance is required to
rectify the physical feasibility and text adherence. (2) In-
creasing the sampling steps of the student may not guarantee
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Table 1. Quantitative evaluation on MS-COCO 10K with 4 step
baseline sampling and 1 step additional inference-time distillation.
Light refers to SDXL-Lightning.

Models FID (/) ImageReward (1) PickScore (1)
LCM [28] 20.674 0.561 0.494
LCM++ 20.149 0.597 0.505
LCM-LoRA [29]  20.300 0.494 0.490
LCM-LoRA++  19.815 0.522 0.510
Light [21] 24.506 0.787 0.496
Light++ 23.876 0.820 0.503
Light-LoRA [21]  25.304 0.750 0.482
Light-LoRA++  24.429 0.778 0.518
DMD2 [47] 21.238 0.777 0.490
DMD2++ 20.937 0.797 0.510
Turbo [38] 18.612 0.296 0.499
Turbo++ 18.481 0.310 0.501

these corrections due to the inherent gap between student
and teacher models. For instance, Fig. 4 and 5 demonstrate
that while additional steps may enhance fidelity, it may not
be sufficient to capture the intended semantics, e.g. ‘cat
patting’ or improves physical feasibility, e.g. well-structured
spaceship launcher. Distillation++ mitigates this and nudges
the sampling path towards a more feasible region.

Table 2 supports these observations where we have compared
the wall-clock time and performance of Distillation++ with
its counterpart baselines. It shows that the one-step inference-



time distillation takes comparable or even shorter wall time
compared to that of a single student sampling step, even
though the teacher model relies on CFG. This is attributed to
the parallel computing of both student and teacher models
and batch-wise prediction of conditional and unconditional
scores. That said, Distillation++ achieves consistent per-
formance improvement without compromising significant
computational costs as shown in Table 2.

Table 2. Comparative study on wall time and generation perfor-
mance (MS-COCO 10K). 4+ 1 step refers to a 4 step student model
sampling and 1 step inference-time distillation. Wall-clock time is
measured per each prompt.

LCM [28] LCM-LoRA [29]

Metrics

4+1 step
20.149
0.597
1.987

5 step
20.732
0.593
1.996

5+1step 6 step
20.369  21.540
0.603 0.585
2.241 2.250

4+1 step
19.815
0.522
1.828

5 step
20.579
0.518
1.830

5+1step 6 step
20.244  21.039
0.528 0.519
2.067 2.085

FID (})
ImageReward (1)
Time (sec, })

LCM-LoRA (SD1.5)
3.55GB

+ Ours

16.10GB

+ Ours

5.30GB

SDXL-lightning
10.86GB

VRAM

Table 3. Peak GPU memory usage in sampling (SD1.5, SDXL).

Ablation study on renoising process. Table 4 highlights
the importance of decreasing (reverse-diffusion) time step
schedule in the renoising process (7) of Distillation++, where
s =t — At outperforms random timestep renoising strategy
or s = t. This is in line with empirical findings from prior
score distillation studies [17, 45, 50], which contrasts with
the random timestep sampling used as standards in prior SDS
works [19, 36]. We hypothesize this effect arises primarily
from the progressive refinement of estimates and hierarchical
minimization of KL-divergence score distillation loss, which
warrants further exploration in future SDS works.

Teacher guidance. Figure 7 compares Distillation++ with
interpolative denoising in (9) against teacher guided approx-
imation in (10). This resemblance shows that the key under-
lying principle of Distillation++ is to modulate the denoising
path under the guidance of teacher models.

Compatibility with other teacher models and multi-
step distillation. Our distillation method differs fundamen-
tally from existing self-guidance approaches by enabling
collaboration between distinct diffusion models. This open
new applications through diverse teacher—student pairings.
e.g, using diverse fine-tuned teacher variants as in Fig 6a
(Dreamshaper). Also, while we mainly verified improve-
ments with a single-step distillation due to efficiency, addi-
tional steps may further improve results as in Fig. 6b.

5. Conclusion

This paper fosters a symbiotic collaboration between two
diffusion models: fast but suboptimal student models and
slower, high-quality teacher models. Distillation++ serves as
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(a) Other teacher model
DreamShaper & LCM LoRA(SD1.5)  Ours (4+1 step)

(b) Multi-step inference-time distillation

LCM (8 step) Ours (8+1 step) Ours (8+2 step)

“stars, water, brilliantly, a little girl, dreamy realism (...)" “a photo of an old man sitting on a rocking chair in a living room, smiling”

Figure 6. (a) Inference-time distillation with fine-tuned SD1.5
(Dreamshaper) teacher model. Student: LCM-LoRA SD1.5 (4

step). (b) Example of one- and two-step inference-time distillation.
Table 4. Ablation study on renoising time schedule (MS-COCO).

Models DMD2 [47] s=randomt s=t s=t— /At
FID (]) 21.238 21.105 21.342 20.937
ImageReward (1) 0.777 0.771 0.777 0.797

Baseline (a) Ours (Interpolation) (b) Ours (Teacher guidance)

DMD2

LCM-LoRA

“Ablue jay standing on a large basket of rainbow macarons”

Figure 7. Comparison on inference-time distillation using (a) inter-
polative denoising process in (9), and (b) teacher guidance (10).

a teacher-guided sampling method, minimizing SDS loss by
leveraging a pre-trained model to evaluate student estimates
during sampling. This approach may open avenues for ex-
ploring diffusion model ensembles or combination with flow
matching models [23, 24] for synergistic sampling. Extend-
ing Distillation++ to video diffusion distillation would be
a promising direction for future work, where video-domain
distillation lags behind image-domain quality.
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