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Abstract

Multimodal large language models (MLLMs) have revolu-
tionized cross-modal understanding but continue to strug-
gle with hallucinations - fabricated content contradicting
visual inputs. Existing hallucination mitigation methods
either incur prohibitive computational costs or introduce
distribution mismatches between training data and model
outputs. We identify a critical insight: hallucinations pre-
dominantly emerge at the early stages of text generation
and propagate through subsequent outputs. To address this,
we propose SENTINEL (Sentence-level Early iNtervention
Through IN-domain prEference Learning), a framework
that eliminates dependency on human annotations. Specif-
ically, we first bootstrap high-quality in-domain prefer-
ence pairs by iteratively sampling model outputs, vali-
dating object existence through cross-checking with two
open-vocabulary detectors, and classifying sentences into
hallucinated/non-hallucinated categories. Subsequently,
we use context-coherent positive samples and hallucinated
negative samples to build context-aware preference data it-
eratively. Finally, we train models using a context-aware
preference loss (C-DPO) that emphasizes discriminative
learning at the sentence level where hallucinations initially
manifest. Experimental results show that SENTINEL can
reduce hallucinations by over 90% compared to the original
model and outperforms the previous state-of-the-art method
on both hallucination benchmarks and general capabilities
benchmarks, demonstrating its superiority and generaliza-
tion ability. The models, datasets, and code are available at
https://github.com/pspdada/SENTINEL.

1. Introduction

Recent advancements in multimodal large language mod-
els (MLLMs) have demonstrated significant progress in
aligning visual and textual representations through cross-
modal feature integration, marking a pivotal step toward
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Figure 1. Comparative analysis of data construction strategies
for hallucination mitigation in MLLLMs. Our proposed approach
demonstrates superior efficiency and effectiveness in generating
high-quality, domain-specific preference learning datasets, offer-
ing a robust solution for reducing hallucination in MLLM:s.

the development of general-purpose Al systems [2, 9, 33—
35, 44, 65, 87]. However, a critical challenge persists in
multimodal settings: the phenomenon of hallucinations [4,
36, 53], wherein models generate factually inconsistent or
fabricated information that deviates from the image content
provided by users. This issue not only degrades user trust
and experience but also poses substantial risks in real-world
applications of MLLMs, thereby impeding the realization
of trustworthy general Al systems [5, 18, 68].

To address this challenge, recent work has explored en-
hanced decoding strategies [8, 19, 27] as a means to miti-
gate hallucinations. While these approaches show promise,
they often introduce trade-offs, including increased compu-
tational overhead during inference, higher latency, and re-


https://github.com/pspdada/SENTINEL

liance on specific dependencies, which may limit their scal-
ability and practicality in resource-constrained scenarios.

On the other hand, preference alignment methods [31,
51, 60] avoid additional inference costs but face other chal-
lenges. As shown in Fig. la, many of them rely on large
proprietary models (e.g., GPT [1]) [21, 69, 75, 80, 82, 86] or
human annotators [13, 76], incurring high costs. Addition-
ally, Fig. 1b highlights that output rewriting [69, 82, 86] can
create distributional discrepancies, while Lai et al. [25] and
our experiments in Tab. 2 show that out-of-domain training
data harms generalization. Therefore, the high costs and the
distribution disparities inherent in the curated training data
may compromise hallucination mitigation efforts.

Key observations. To address hallucination with greater
efficacy and efficiency, we investigate the dynamics of hal-
lucination within the model’s output. Our analysis reveals
that hallucination intensity escalates with the length of gen-
erated text, while mitigating hallucinations at specific sen-
tences significantly reduces their prevalence in subsequent
outputs, as detailed in Figs. 2a and 2b. These findings
suggest that early intervention—targeting hallucinations at
their initial occurrence—is crucial to preventing their prop-
agation in later generations. This raises a key question:
How can we effectively implement an early intervention
strategy to address hallucinations of MLLMs as they arise?

Our solution. In this work, we propose SENTINEL
(Sentence-level Early iNtervention Through IN-domain
prEference Learning), which provides early intervention for
the initial occurrence of hallucinations during generation.
Unlike existing methods, SENTINEL operates without re-
lying on external large language models for rewriting, en-
suring that the learning targets remain strictly within the
domain of the model’s original outputs. This approach pre-
serves the model’s intrinsic distribution and expression pat-
terns while effectively curbing hallucination propagation.
Specifically, SENTINEL first employs an in-domain
candidate bootstrapping strategy, which performs multi-
ple sampling rounds on the current model, extracts objects
from the outputs, and applies consistency cross-checking
to classify objects as hallucinated, uncertain, or factual.
This is followed by a context-aware preference data gen-
eration process, which constructs preference pairs using
non-hallucinated positive samples and hallucinated nega-
tive ones, enhanced by iterative contextual bootstrapping.
Finally, context-aware preference learning is performed us-
ing the modified context-aware DPO loss, maximizing the
likelihood of generating context-coherent positive samples
while minimizing hallucinated negative ones. By focusing
on captions where hallucinations first emerge, SENTINEL
effectively halts their propagation in subsequent outputs.
Experimental results across various benchmarks demon-
strate that SENTINEL effectively mitigates object halluci-
nation while preserving the generalization capabilities of

MLLMs. Specifically, on Object Halbench [55] and AM-

BER [63], hallucinations are reduced by about 92% and

65%, respectively, with consistent improvements on Hallu-

sionBench [12]. Furthermore, SENTINEL preserves its per-

formance on VQAV2 [10] and TextVQA [59], and achieving

decent gains on both ScienceQA [41] and MM-Vet [78].
To summarize, our contributions are as follows:

* We demonstrate that early intervention at the first occur-
rence of hallucination is crucial for preventing its propa-
gation in subsequent model outputs of MLLMs.

* We propose SENTINEL, which effectively and efficiently
mitigates hallucinations without requiring extensive ex-
ternal resources or manual effort.

* The model-agnostic SENTINEL achieves state-of-the-art
performance on hallucination benchmarks without com-
promising MLLMs’ general capabilities.

2. Background and Motivation

In this section, we briefly introduce the foundational con-
cepts and methods relevant to this study in Sec. 2.1, es-
tablishing the necessary background. Following this, in
Sec. 2.2, we outline our key insights and elucidate the mo-
tivations behind our proposed designs.

2.1. Related Work and Preliminaries

Object Hallucination (OH) in Multimodal Large Language
Models (MLLMs) is characterized by the generation of text
that is semantically coherent yet inconsistent with the visual
content of the provided image [4, 53]. To mitigate this issue,
recent advancements have focused on innovative decoding
strategies, which aim to reduce the prevalence of OH by
refining the generation process of MLLMs [6, 8, 19, 27].
Concurrently, preference learning has emerged as an al-
ternative approach for addressing OH, leveraging its capac-
ity to align MLLMs with human expectations for truthful-
ness and traceability [13, 28, 32]. Notably, the Proximal
Policy Optimization algorithm (PPO) [57] enhances model
reliability by training an auxiliary reward model to assess
response quality and then guide the model in optimizing
its outputs based on the reward signals. Moreover, Direct
Preference Optimization (DPO) [51] has emerged as a sim-
pler alternative, learning directly from pre-collected feed-
back without requiring a reward model. The DPO loss is:
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where x =|v, q|.

Here, D represents the preference dataset for learning,
o denotes the sigmoid function, 7y indicates the policy
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Figure 2. Object position distribution in MLLM hallucination
analysis. (a) illustrates the progressive deterioration of halluci-
nation effects in Multimodal Large Language Models (MLLMs)
with increasing description length in the image captioning task,
while (b) demonstrates the effectiveness of early-stage interven-
tion in mitigating the propagation of hallucination.

model under training, m.s represents the unchanged refer-
ence model, y,, stands for the positive sample, and y, repre-
sents the negative sample, both based on the input &, which
includes the image v and prompt gq. The hyperparameter
[ governs the separation between the policy model and the
reference model. Many recent methods [16, 69, 77, 82, 86]
leverage DPO to mitigate hallucinations by curating prefer-
ence data to guide the models. More related works of this
study are discussed in Sec. F.

2.2. Motivation

This section outlines the motivations behind this work. The
implementation details of related experiments are provided
in Sec. A.

Hallucination grows with text length. To better under-
stand the causes of Object Hallucination (OH), we analyze
the distributions of hallucinated and factual objects in im-
age captions generated by MLLMs. Specifically, as shown
in Fig. 2a, where the horizontal axis represents the nor-
malized position of an object in the caption (as a percent-
age), while the vertical axis denotes the normalized fre-
quency (probability density), the blue curve represents hal-
lucinated objects, and the corresponds to ob-
jects present in the image. The comparison reveals that as
caption length increases, the model becomes more prone
to hallucinations, with fewer factual objects described and
more hallucinated ones introduced. This trend is further
corroborated by sentence-level analysis in Fig. 2b. These
findings lead us to hypothesize that intervening at the initial
occurrence of hallucination could be critical in reducing its
recurrence in subsequent model outputs.

Early intervention mitigates hallucinations. To evaluate
the effectiveness of early intervention in curbing hallucina-
tion propagation, we analyze the impact of addressing hal-
lucinations at the sentence level in image captioning tasks.

Specifically, as illustrated in Fig. 2b, eliminating halluci-
nated objects in the second sentence—compared to vanilla
greedy decoding—significantly reduces the likelihood of
hallucinated objects in subsequent sentences while increas-
ing the probability of factual objects present in the image.
Similar results are observed when addressing hallucinations
in the third sentence, as shown in Sec. A.2. These findings
underscore the necessity of early intervention to mitigate
hallucinations effectively.

To enable early intervention, an open-vocabulary ob-
ject detector [7, 37] could be employed during inference
to verify the presence of the objects generated by the
model within the image. While this method effectively re-
duces hallucinations without sacrificing caption diversity, as
demonstrated in Sec. A.2, it is time-consuming; despite the
object detector being efficient, the model’s sampling pro-
cess incurs significant computational overhead.

Consequently, we opt for a preference learning strategy
during model training, which mitigates hallucinations with-
out compromising the original inference efficiency.

3. Method

3.1. Overview

Existing preference learning methods may use an external
model to rewrite sentences or rely on model-generated re-
sponses as training data. However, these methods may in-
troduce discrepancies in distribution and expression pat-
terns between the training data and the model’s original
output. Hence, we propose SENTINEL, which performs
sentence-level early intervention to mitigate object hallu-
cinations through preference learning with in-domain data,
without manual effort or dependence on extensive LLMs.

As shown in Fig. 3, the proposed SENTINEL method
takes six essential steps. Specifically, Sec. 3.2 presents the
process of generating the in-domain candidates containing
the factual and hallucinated objects. Subsequently, Sec. 3.3
introduces the construction of preference data pairs derived
from these in-domain candidates. These two steps can be
integrated into the In-domain Preference Data Construction
phase (shown in Algorithm 1). Finally, in Sec. 3.4 we elab-
orate on how SENTINEL leverages the curated preference
data to achieve preference learning.

3.2. In-domain Candidate Bootstrapping

To construct positive and negative preference data pairs
without relying on external models for rewriting, we per-
form multiple sampling rounds on the current model and
extract objects from the outputs. We then apply a consis-
tency cross-checking method to classify the model’s output
objects into three categories: hallucinated, uncertain, and
factual, which are used to construct preference data in sub-
sequent steps. This process is termed In-domain Candidate
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Figure 3. The overview of SENTINEL. The proposed SENTINEL takes six essential steps: (1) Generate multiple in-domain responses
conditioned on the input image, prompt, and context c. (2) Identify and extract all mentioned objects from each generated sentence. (3)
Utilizing two object detectors to validate the existence of extracted objects through cross-referencing. (4) Categorize generated sentences
into hallucinated and non-hallucinated groups based on detection results. (5) Extend the generation context with verified non-hallucinated
sentences to guide subsequent outputs. (6) Fine-tune the model using the context-aware DPO (C-DPO) loss with the in-domain, style-

consistent, and context-varying preference data.

3 (1)-(3).

In-domain candidate sampling. In our approach, we use
sampling-based decoding to obtain n candidate samples.
This ensures that the positive (y,,) and negative (y;) sam-
ples are drawn from the same distribution as the current
model, preserving consistency in textual styles and linguis-
tic structures. The generation halts upon sentence comple-
tion (e.g., detection of a period), at which point sentences
are automatically segmented for subsequent discrimination.

Booststrapping, as illustrated in Fig.

Object extraction. After generating candidate sentences,
we extract the mentioned objects from the text for hallu-
cination detection. To achieve this, we utilize the Scene-
GraphParser [30] model to transform the textual descrip-
tions into a series of triplet-based scene graphs. By parsing
these scene graphs, we identify specific noun entities from
the subjects and objects, which are subsequently used as
candidate objects for existence verification.

Object presence validation. Following object extraction,
we apply cross-checking to validate the presence of candi-
date objects in the image. Specifically, we utilize two open-
vocabulary object detectors, GroundingDINO [37] and Yolo
World [7], for cross-validation. This approach demonstrates
superior performance compared to using a single detector,
as shown in Fig. 8§ of the ablation study.

The cross-checking results are categorized into three
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types: (1) hallucinated (both models confirm absence), (2)
factual (both models confirm presence), and (3) uncertain
(conflicting results). Sentences containing hallucinated ob-
jects are tagged as “hallucinated”, whereas those only con-
taining factual objects are tagged as “non-hallucinated”,
forming positive-negative sample pairs for preference learn-
ing. To ensure data quality and minimize detector bias, we
ignore uncertain objects.

Algorithm 1 In-domain Preference Data Construction

Input: Image v, prompt g, context ¢ (initially empty)
Output: Training samples (v, q, ¢, ¥, y;)

while Model M does not generate </ s> do
Sample n in-domain candidates s; using v, g, and ¢
for each sample s; do
Extract entities from the sample
Validate the presence of entities using object detectors
Select yf, as context-coherent non-hallucinated sample
Select y, as hallucinated sample
Construct preference samples (v, q, ¢, Y, y;)
Append a non-hallucinated sample y} to the context ¢

3.3. Context-aware Preference Data Generation

With sentences labeled as ‘“hallucinated” or
hallucinated” from Sec. 3.2, this section introduces context-
aware preference data generation. As illustrated in Fig. 3

“non-
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Figure 4. Categories of in-domain candidates. The in-domain
candidates fall into three types. Employing non-hallucinated,
context-coherent descriptions (y;) as positive samples, paired
with hallucinated descriptions (y,), enhances the model’s gener-
alization performance and robustness.

(4)-(5), this process extracts contextually relevant data, en-
suring the training data better represents the model’s output
distribution. The specifics are elaborated below.

Preference data construction. The preference data is typi-
cally composed of the image, the corresponding prompt, the
positive sample, the negative sample, and the context (i.e.,
all generated sentences excluding the current one). In the
construction of sample pairs, positive samples y,, are se-
lected from the non-hallucinated sentences, while negative
samples y; are derived from the hallucinated sentences.

Subsequently, we partition the positive samples y,, into
two categories: (1) the context-coherent positive sample
y, wherein some of the described objects are explicitly
referenced in the context, and (2) the context-agnostic pos-
itive sample y,,, where none of the objects are mentioned
in the context. In essence, the objects described in ij ex-
hibit a strong correlation with the context, while those in
y,, display a weaker or negligible correlation. Illustrative
examples are provided in Figs. 3 and 4.

We observe that the context-coherent sample y! can ef-
fectively mitigate hallucinations without compromising the
model’s generalization capabilities, and incorporating ¥y,
as the positive samples results in performance reduction, as
shown in Tab. 3. This observation underscores the impor-
tance of contextual signals in guiding the model’s genera-
tion process. Specifically, the richer contextual information
in y samples appears to enhance the model’s ability to
preserve contextual coherence and prioritize salient content,
resulting in performance improvements [15].

Iterative Contextual Bootstrapping (ICB). The proposed
SENTINEL framework is designed to enable early inter-
vention for mitigating hallucinations in generative models.
Given the context ¢, which represents the hallucination-free
content preceding the current output, the model is trained to
distinguish between a non-hallucinated positive sample y;
and a hallucinated negative sample y;. To enhance robust-
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Figure 5. Visualization of the Iterative Contextual Bootstrap-
ping (ICB) framework. Given an input image and correspond-
ing question, this pipeline iteratively generates diverse contextual
samples, enabling robust hallucination mitigation across varying
contexts and significantly improving model generalization.

ness across diverse contexts, we introduce the Iterative Con-
textual Bootstrapping (ICB) strategy, as depicted in Fig. 5.

Specifically, given the query g, the input image v, and
the current context ¢;, we generate multiple candidate out-
puts by repeatedly sampling from the MLLM. These candi-
dates are then processed through a structured pipeline con-
sisting of (2) object extraction, (3) object presence vali-
dation, and (4) preference data construction, as illustrated
in Fig. 3. This pipeline is designed to identify a non-
hallucinated positive sample y;, and a hallucinated nega-
tive sample y,. By aggregating v, q, ¢;, y;, and y;, we con-
struct a preference data pair (v, g, ¢;, 7, y; ), which is sub-
sequently appended to the dataset for preference learning.

Furthermore, to bootstrap the preference data with dif-
ferent hallucination-free contexts, we construct c;y; =
c;+y; for the next iteration by appending the positive sam-
ple y.! to the current context ¢;. The updated context ¢; 1
is then processed through the same procedure as described
above to generate a new preference data pair. This iterative
approach ensures that the preference data is enriched with
progressively more complex and varied contexts, enabling
the model to generalize its hallucination mitigation capa-
bilities across different scenarios. The effectiveness of this
pipeline is validated and discussed in Sec. B.2.

3.4. Context-aware Preference Learning

The preference data generated through the processes out-
lined in Sec. 3.2 and Sec. 3.3 can be formally represented as
(z,c,yt,y;), where x is the input, including the image v
and the prompt g, ¢ denotes the context, yj, is the context-



Hallucination benchmarks

General benchmarks

Model Method Object HalBench [55] AMBER [63] HallusionBench [12] | VQAv2 [10] TextVQA [59] ScienceQA [41] MM-Vet [78]
Resp. | Ment. | CHAIR| Hal.| Cog.} Question Acc. T ‘ Acc. 1 Acc.t Image Acc. Overall t

baseline 52.7 28.0 84 355 4.0 46.86 78.5 58.2 66.8 31.0
VCD [27] 51.3 259 9.1 39.8 42 - 77.0 56.1 68.7 29.8
OPERA [19] 453 229 6.5 28.5 3.1 78.2 58.2 68.2 30.3
DoLa [8] 44.0 25.1 6.2 27.7 2.9 - 76.3 56.6 67.5 30.8
EFUF [70] 393 22.6 5.8 282 3.1 47.03 78.1 572 66.4 312

LLaVA-v1.5-7B  HA-DPO [82] 37.0 20.9 6.7 309 33 47.74 77.6 56.7 69.7 30.6
POVID [86] 334 16.6 5.3 28.7 3.0 46.59 772 56.6 68.8 31.8
CLIP-DPO [45] - - 3.7 16.6 1.3 - - 56.4 67.6 -
RLAIF-V [77] 7.8 4.2 2.8 157 0.9 3543 75.2 55.1 68.2 29.9
TPO [16] 5.6 32 3.6 20.5 1.6 40.12 75.9 55.3 67.1 25.7
Ours 4.3 2.6 29 14.6 12 47.56 78.4 58.2 69.2 32.6
baseline 46.0 23.0 6.9 319 33 46.43 80.0 61.2 71.6 36.0
VCD [27] 43.7 21.6 7.8 36.2 3.7 - 78.5 59.5 720 337

LLaVA-v1.5-13B  vanilla-DPO [69] 6.7 3.6 2.8 15.5 1.6 46.41 79.2 60.4 71.8 35.0
HSA-DPO [69] 53 32 2.1 134 12 46.14 783 60.0 71.3 337
Ours 33 1.9 21 11.7 0.9 46.77 79.9 61.0 72.8 36.2

Table 1. Comparison of hallucination mitigation methods in MLLMs: effectiveness and general capabilities. This evaluation high-
lights the best and second-best results in bold and underlined, respectively. All comparisons are performed under identical model size
constraints. “Resp.” and “Ment.” denote response-level and mention-level hallucination rates, while “Hal.” and “Cog.” represent the
Hallucination Score and Cognitive Score, respectively. More evaluation details are provided in Sec. D.

coherent positive sample, and y, is the negative sample.
The learning objective is to guide the model, conditioned
on the input & and the context ¢, to maximize the likelihood
of generating the contextually coherent positive sample y.}
while minimizing the likelihood of producing the negative
sample y,;. To achieve this, we adapt the Direct Preference
Optimization (DPO) loss by incorporating the context ¢ as
part of the input. We term this modified loss as context-
aware DPO (C-DPO), which is formulated as follows:

o (Y |x)
7Tref(yq—l; |w/)

)|

2
In C-DPO, the context c is excluded from the loss com-
putation, and gradients are only derived from the discrim-
ination between ¥ and y,. This design ensures that the
model focuses on learning the contextual coherence of the
positive sample without being directly influenced by the
context during gradient updates. Further discussions and
comparisons between the proposed C-DPO and the standard
DPO are provided in Sec. C.3.

Lcppo(0) = — E(m’,y$7y1)~D [log G(ﬂ log

mo(ylz’)
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— Blog

where ' =[x, c] = v, q, c].

4. Experiments

In this section, we conduct comprehensive experiments to
evaluate the effectiveness of our SENTINEL in reducing
hallucinations while improving the general abilities of the
model. We first introduce the experimental setup in Sec. 4.1,
then present the main results in Sec. 4.2, and finally conduct
ablation studies in Sec. 4.3 to analyze our method’s effec-
tiveness. More results are in Secs. C and D.
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4.1. Experimental Setup

Training. To ensure a fair comparison, we follow the set-
tings of prior works [16, 19, 26, 27, 34, 45, 56, 66, 69,
69, 70, 77, 79, 82, 86], using LLaVA-v1.5 as the refer-
ence model across all experiments. For data collection, we
prompt the model with detailed image descriptions [76] to
generate training data, with images sourced from the Visual
Genome dataset [23]. Model training is conducted using
C-DPO (Eq. (2)) in combination with LoRA [17], and op-
timized with AdamW [40]. The 7B and 13B models are
trained for one epoch on 8.6K and 7.0K samples, respec-
tively, with learning rates of 2 x 10~ and 3 x 10~7. Addi-
tional training details are provided in Sec. C.

Evaluation benchmarks. We evaluate the hallucination
extent and general capabilities of our SENTINEL method
across multiple benchmarks. For hallucination evalua-
tion, we use widely adopted benchmarks, including Object
HalBench [55], AMBER [63], and HallusionBench [12].
To assess general capabilities, we employ VQAv2 [10],
TextVQA [59], ScienceQA [41], and MM-Vet [78]. Further
details of these benchmarks are provided in Sec. D.1.
Baselines. To show the effectiveness of our method, we
compare SENTINEL with several state-of-the-art (SOTA)
methods.  Specifically, VCD [27], OPERA [19], and
DoLa [8] focus on enhanced decoding strategies, while HA-
DPO [82], POVID [86], CLIP-DPO [45], RLAIF-V [77],
and TPO [16] leverage preference training. Additionally,
Vanilla DPO applies the original DPO objective Eq. (1) us-
ing training data from HSA-DPO, while EFUF [70] is an
unlearning-based approach. Details are in Sec. D.2.

4.2. Main Results

Comparison with recent SOTAs. As shown in Tab. 1, we
compare our method with baseline methods across several
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—— LLaVA V1.5 7B VCD —— EFUF —— SENTINEL (Ours)

Figure 6. Impact on different hallucination types. Comparison
between multiple methods shows that our method reduces halluci-
nation in all six hallucination types.

benchmarks. The results demonstrate that SENTINEL sig-
nificantly reduces the models’ hallucination rate. Specifi-
cally, for the 7B model, our method achieves a 4.3 response-
level (Resp.) and a 2.6 mention-level (Ment.) hallucination
rate. Compared to the previous SOTA method, TPO [16],
which achieves a 5.6 response-level and 3.2 mention-level
hallucination rate, our proposed SENTINEL surpasses it by
further reducing hallucinations by a total of 24% on Ob-
ject Halbench. Furthermore, even on the 13B model, com-
pared to the baseline, which achieves 6.9 CHAIR, 31.9 Hal-
lucination score (Hal), and 4.0 Cognitive score (Cog), our
proposed SENTINEL significantly improves performance,
achieving 2.7 CHAIR, 11.7 Hal score, and 0.9 Cog score,
respectively. These results demonstrate that our method is
also effective on larger models.

Comprehensive hallucination mitigation. To further eval-
uate the effect of our method on various hallucination types,
we conducted experiments on the discriminative part of the
AMBER [63] benchmark and report the F1 scores for each
hallucination type. As shown in Fig. 6, LLaVA-v1.5 with
SENTINEL outperforms the baseline across all six halluci-
nation types, demonstrating the effectiveness of our method
in mitigating various hallucination issues. Notably, for the
Existence hallucination type, our method improves the 7B
model by 6.3 and the 13B model by 7.6 compared to the
baseline. Detailed results are provided in Sec. D.4.

Improved general capabilities. As shown in Tab. 1, SEN-
TINEL enhances the general capabilities of the model on
multiple benchmarks. Specifically, SENTINEL demon-
strates stable performance on VQAv2 and TextVQA,
whereas previous methods designed for hallucination mit-
igation suffer from significant performance degradation.
Moreover, on ScienceQA and MM-Vet, our method not
only surpasses previous hallucination mitigation methods
but also outperforms the vanilla LLaVA-v1.5. These results
show that SENTINEL not only significantly mitigates hal-
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@ LLaVA-v1.5-7B

Yes, the persons in the image are likely to be living in the house, as they
are walking through the hallway and interacting with each other. The
presence of chairs, a dining table, and other furniture in the room

4 suggests that it is a living space. The people in the image are dressed in
B period clothing, which indicates that they might be attending a special

§  event or gathering in the house. The fact that they are walking together
and engaging in conversation further supports the idea that they are
residents of the house.

LLaVA-v1.5-7B + SENTINEL (Ours)

No, the persons in the image do not live in the house. They are
dressed in period costumes and are walking through the
hallway of a large, ornate mansion. This suggests that they are
likely actors or performers participating in a historical
reenactment, a theatrical performance, or a film set. The
presence of the costumes and the grand setting indicate that
the scene is staged and not a typical everyday living situation.

Figure 7. Qualitative results of SENTINEL. Our method can
effectively eliminate hallucinations in MLLMs while enhancing
the model’s general capabilities.

. Dothe persons live in this house?
i Answer it and give the rationale. |

Required capabilities:
Recognition, Knowledge
i and Language generation

Object HalBench AMBER MM-Vet
Method

Resp. | Ment. | Acct FI11 Overall ?
LLaVA-v1.5-7B 52.7 27.9 715 741 31.1
Ours (8.6K (v, v;)) 4.3 2.6 761 79.3 32.6
Ours (86K Rewrited (yj;, yl)) 4.810,5 2.9m_3 75.0V1_1 78.0V1_3 31.3V1_3

Table 2. Effects of rewritten samples. Rewriting the preference
training samples (y", y,) results in performance reduction.

lucinations but also improves general capability.

Qualitative results. To further demonstrate the effective-
ness of our method, we conduct case studies. As shown
in Fig. 7, the baseline model misinterprets the image con-
tent, leading to an incorrect conclusion. In contrast, our
model effectively understands image content and provides a
more detailed and precise description. This example high-
lights how our approach effectively reduces hallucinations
while simultaneously enhancing the model’s overall capa-
bility. We conduct more case studies in Sec. G.

4.3. Ablation Studies

In this section, we conduct a series of ablation experiments
to further analyze the effectiveness of SENTINEL. More
discussions can be found in Sec. D.5.

Effectiveness of data style consistency. To analyze the
effect of preference data style, we train the model using
rewritten data for comparison. Specifically, we instructed
GPT-4 [1] to rewrite (y;, y;) while ensuring coherence
with the context c. As shown in Tab. 2, the rewriting re-
sults show performance degradation in reducing hallucina-
tions and general ability. This highlights the advantage of
our approach in preserving data style consistency. Further-
more, we conduct a detailed analysis in Sec. D.5, which
shows that models trained on in-domain data converge to a
lower preference optimization loss and achieve better differ-
entiation between positive and negative samples, whereas
training with rewritten data provides less improvements.

Effectiveness of cross-checking. To validate the effective-
ness of cross-checking for object presence, we conduct ex-
periments using only the Grounding DINO or YOLO World
for detection. In this setting, if the model determines that an



Method Data Object HalBench TextVQA  ScienceQA MM-Vet
Scale  Resp. | Ment. | Acc I-Acct Overall T
LLaVA-v1.5-7B - 52.7 27.9 58.2 66.8 31.1
y5 100% 8.6K 4.3 2.6 58.2 69.2 32.6
Yy 50% +y, 50%  10.0Ki14x 48105 29703 58.1501 69.010.2 32.0,0.6
Y,y 100% 14.0K 54k 46103 3.0704  58.1501 68.7 05 31.6,10

Table 3. Comparison between context-coherent samples y’
and context-agnostic samples y_ . This table reveals that incor-
porating context-coherent samples y;; yields better performance.

Object HalBench[55] AMBER[63]
Method

Resp. | Ment. | CHAIR| Hal| Cogl
LLaVA-v1.5-7B 52.7 27.9 8.4 355 4.0
Non-hallucinated context 4.3 2.6 2.9 14.6 1.2
Natural context 8.6 4.7 33 15.6 1.5
Hallucinated context 14.3 7.1 39 18.6 1.8

Table 4. Comparison between different new context forma-
tion strategies during the iterative contextual bootstrapping
pipeline. Appending non-hallucinated sample v} to the existing
context ¢; yields superior performance compared to incorporating
hallucinated samples y, or greedy decoding contexts, highlighting
the effectiveness of our proposed approach.

object is absent, it is directly classified as hallucinated. As
shown in Fig. 8, leveraging two object detectors for cross-
validation significantly outperforms using a single model,
effectively reducing the hallucination rate.

Effect of different y,, types on model performance. As
shown in Tab. 3, we conduct a detailed study on the im-
pact of different types and proportions of the positive data
y,, on model performance. The results show that y,;, sam-
ples, which contain richer contextual information, enhance
the model’s generalization ability while achieving similar
hallucination reduction with less data.

Effect of non-hallucinated sentences as context c. To
analyze the impact of using non-hallucinated sentences as
context ¢, we evaluate three different settings for gener-
ating new context: selecting a hallucinated sentence, se-
lecting a non-hallucinated sentence, or directly using a
model-generated sentence from greedy decoding. As shown
in Tab. 4, using a non-hallucinated sentence as context im-
proves the model’s ability to distinguish hallucinations and
significantly reduces their occurrence in the output. This
further demonstrates that intervening at the first instance of
hallucination is critical for minimizing its recurrence.

Effect of data scale. To analyze the impact of the training
data scale on our method, we train the model using different
dataset sizes (1k/2k/4k/6k/8k) and evaluate its performance
on Object Halbench. As shown in Fig. 8, our method fur-
ther mitigates model hallucinations as data scale up. This
demonstrates the potential and scalability of SENTINEL.
Furthermore, since our method does not rely on ultra-large
proprietary models or human annotators for dataset con-
struction, it can efficiently collect more training data.

Integrating with existing preference learning methods.
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Figure 8. Impact of training data quantity on hallucination
rate in Object Halbench [55]. The results show that SENTINEL
demonstrates better efficiency, effectiveness, and scalability, while
effectively reducing hallucination rates across varying data scales.

Method Object HalBench [55] AMBER [63] HallusionBench [12] TextVQA [59] MM-Vet [78]
etho

Resp.)  Ment.|  Acct FIt Question Acc? Acct Overall
LLaVA-v1.5-7B 527 28.0 715 741 46.86 582 31.0
HA-DPO [82] 37002080 2092545 742127 780139 4774085 567,15 30.6,0.4
HA-DPO + Ours (6K) 8.0 7549 46,7500 76.6:24 84.2:6> 48.7210.08 571404 335129

Table 5. Effectiveness of combining the proposed SENTINEL
with HA-DPO. Only a subset of our training data is needed to
reduce hallucinations while enhancing generalization effectively.

To further demonstrate SENTINEL’s generalization, we ex-
plore integrating with previous hallucination mitigation ap-
proaches. As shown in Tab. 5, incorporating a subset of
our data into the GPT-generated dataset collected by HA-
DPO [82] effectively mitigates hallucinations while signif-
icantly enhancing the model’s generalization. This high-
lights SENTINEL’s complementarity with other preference
learning methods and its potential for broader applicability.

5. Concluding Remarks

Summary. In this work, we address the critical chal-
lenge of hallucinations in multimodal large language mod-
els (MLLMs). While prior methods have shown promise,
they often introduce significant computational overhead,
rely on costly resources, or create distributional discrep-
ancies. To tackle these issues, we propose SENTINEL,
a framework that intervenes early at the onset of hal-
lucinations by leveraging in-domain preference learning.
SENTINEL employs an in-domain candidate bootstrapping
strategy, context-aware preference data generation, and a
context-aware DPO (C-DPO) loss to effectively curb the
propagation of hallucinations while preserving the model’s
intrinsic distribution. Experimental results across multiple
benchmarks demonstrate the superiority of SENTINEL, es-
tablishing it as a scalable, efficient, and model-agnostic so-
lution for enhancing the reliability of MLLMs.
Limitation. Currently, as SENTINEL lacks the capability
to incorporate spatiotemporal information, it might not be
able to effectively address the hallucination issues that re-
quire long-term reasoning in video MLLMs. This limitation
highlights the need for further research in this area.
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