
Accelerating Diffusion Transformer via Gradient-Optimized Cache

Junxiang Qiu1, Lin Liu1, Shuo Wang1*, Jinda Lu1, Kezhou Chen1, Yanbin Hao2

1University of Science and Technology of China; 2Hefei University of Technology.

{qiujx, liulin0725, lujd, chenkezhou}@mail.ustc.edu.cn, shuowang.edu@gmail.com, haoyanbin@hotmail.com

Abstract

Feature caching has emerged as an effective strategy to ac-
celerate diffusion transformer (DiT) sampling through tem-
poral feature reuse. It is a challenging problem since (1)
Progressive error accumulation from cached blocks sig-
nificantly degrades generation quality, particularly when
over 50% of blocks are cached; (2) Current error com-
pensation approaches neglect dynamic perturbation pat-
terns during the caching process, leading to suboptimal
error correction. To solve these problems, we propose
the Gradient-Optimized Cache (GOC) with two key inno-
vations: (1) Cached Gradient Propagation: A gradient
queue dynamically computes the gradient differences be-
tween cached and recomputed features. These gradients
are weighted and propagated to subsequent steps, directly
compensating for the approximation errors introduced by
caching. (2) Inflection-Aware Optimization: Through sta-
tistical analysis of feature variation patterns, we iden-
tify critical inflection points where the denoising trajec-
tory changes direction. By aligning gradient updates with
these detected phases, we prevent conflicting gradient di-
rections during error correction. Extensive evaluations on
ImageNet demonstrate GOC’s superior trade-off between
efficiency and quality. With 50% cached blocks, GOC
achieves IS 216.28 (26.3%↑) and FID 3.907 (43%↓) com-
pared to baseline DiT, while maintaining identical compu-
tational costs. These improvements persist across various
cache ratios, demonstrating robust adaptability to different
acceleration requirements. Code is available at https:
//github.com/qiujx0520/GOC_ICCV2025.git.

1. Introduction

Diffusion Transformers (DiT) [7, 19, 26, 28, 38] have
shown a powerful ability in content generation in synthesiz-
ing multimodal content spanning textual[20, 44], visual[35,
42, 43], and temporal[8, 27, 34] domains. It is widely ap-

*Shuo Wang is the corresponding author

Attention

MLP

Projection

Projection

2D Cross-section

2D Cross-section

(A)

(B)

t-1 (Reused 1)

t (Reused 2)

t+1 (Skipped)

Regression Line

Figure 1. Outputs of the two most recently reused steps t−1, t (red
triangles and green circles) and the step t + 1 (blue squares) that
will be skipped in the DiT sample process for the (A) attention
layer and the (B) MLP layer. Meanwhile, to better observe the
direction of these points, we also provide the fitting curves of these
points (in red, green, and blue dotted lines).

plied in numerous fields, including intelligent creation as-
sistance, information processing, and digital entertainment
content generation. However, it is time-consuming to sam-
ple during their forward and reverse processes [10, 30]. This
significantly hinders the technology’s rapid deployment and
flexible application in the real world. Therefore, accelerat-
ing the content generation process and improving its infer-
ence efficiency have become an important issue [22].

Recent studies usually use pruning [17] or caching [30]
strategies to accelerate the generation process. In con-
trast to pruning techniques that achieve acceleration through
structural simplification by removing redundant parame-
ters or deactivating non-critical neurons, caching-based ap-
proaches leverage the temporal coherence in sequential gen-
eration processes to reuse intermediate computational states
across multiple sampling steps. This paradigm shift pre-
serves the model’s original expressive capacity and style
characteristics while significantly enhancing sampling ef-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17608

ficiency through computational reuse. However, current
caching implementations exhibit a critical limitation: The
prevalent practice of direct state reuse in consecutive steps
lacks rigorous error analysis of cached computations [22,
30, 36]. Specifically, the recursive application of cached
features introduces error propagation in multi-step gener-
ation processes, where approximation errors accumulate
through successive caching operations.

Smoothcache[16] uses numerical gradients at different
time steps in the sampling process to locate modules suit-
able for caching, without discussing how to reduce the er-
rors that have already occurred. Knowledge editing[23] af-
fects generated content by introducing perturbations. These
works provide us with inspiration for reducing caching er-
rors. We believe that these caching errors can be offset by
incorporating these gradients into the caching process.

To intuitively illustrate this, we visualized the outputs
of the Attention and MLP layers during the DiT compu-
tation process in Figure 1(A) and (B), respectively, where
the red triangles, green circles, and blue squares respec-
tively represent: the outputs from the two most recently
reused computational steps, and the output of the step to be
skipped in subsequent calculations. Previous caching meth-
ods typically employ the green circles (recently reused out-
puts) to directly substitute the blue squares (computations to
be skipped). However, we identify a persistent yet system-
atic positional deviation between these geometrically simi-
lar patterns. Our visualization analysis reveals that incorpo-
rating the temporal dimension of the red triangles (historical
reused states) exposes a critical directional relationship: the
compensation error manifests as a vector space displace-
ment where adjusting the green circle’s position along the
inverse gradient direction of the red triangle can effectively
minimize its deviation from the target blue square. Thus, we
leverage the gradient compensation mechanism to strategi-
cally integrate gradients from the two most recent reused
computations to adaptively adjust cached content, thereby
addressing the positional drift in next-step cache generation.

Specifically, we first propose a gradient caching method
to reduce caching errors. Concurrently, we leverage statis-
tical information from the model to guide gradient caching
implementation, avoiding inverse gradient optimization pit-
falls while ensuring high-quality generation. To achieve
this, we integrate a queue mechanism into the caching pro-
cess. By calculating gradients between the two most re-
cently cached contents and incorporating them into subse-
quent cached content, we align reused features more closely
with skipped features, thereby minimizing caching errors.
Additionally, we observe that a subset of skipped features
exhibit gradient direction misalignment with cached gradi-
ents. Applying gradient optimization to these blocks in-
troduces noise. Notably, perturbations introduced in early
sampling steps allow partial error correction through subse-

quent mappings, resulting in limited sampling side effects.
In contrast, late-step perturbations propagate errors directly
to the final generated image.

To further enhance Gradient Cache’s error elimination
capability, we calculate inverse-gradient block proportions
per step using model statistics. Combining these propor-
tions with step positions in the sampling process, we de-
vise a gradient cache optimization decision strategy. This
approach prevents major error introduction while confin-
ing residual minor errors to later sampling stages, thereby
maximizing gradient optimization benefits. We call the en-
tire cache calculation process Gradient-Optimized Cache
(GOC). In summary, the contributions are threefold:
• We design a new basic model caching strategy that lever-

ages the unique gradients in the caching process to reduce
errors in future caching.

• We propose a method to determine when gradient cache
optimization needs to be applied, aiming to reduce the
errors associated with gradient cache optimization.

• Our method reduces caching errors and optimizes the
generation quality. It can increase the upper limit of the
image generation speed without sacrificing quality or in-
troducing additional computational costs.

2. Related Work
In this section, we first review existing diffusion accelera-
tion methods and then outline the differences between our
proposed GOC and these related methods.

2.1. Traditional Sampling Acceleration Method
Common approaches for accelerating sampling in diffu-
sion models fall into three categories: pruning, quantiza-
tion, and efficient sampling methods. Pruning reduces
model complexity by removing less critical components
while maintaining performance. Methods are broadly cat-
egorized into unstructured pruning [6, 11], which masks
individual parameters, and structured pruning [17], which
eliminates larger structures like layers or filters. DiP-GO
[41] introduces a plugin pruner that optimizes pruning con-
straints to maximize synthesis capability. DaTo [39] dy-
namically prunes tokens with low activation variance, re-
taining only high-variance tokens for self-attention com-
putation, thereby enhancing temporal feature dynamics.
Quantization compresses models by representing weights
and activations in lower-bit formats. Key strategies include
Quantization-Aware Training (QAT) [1], which embeds
quantization into training, and Post-Training Quantization
(PTQ) [14, 25], which directly quantizes pre-trained models
without retraining. For diffusion models, Q-Diffusion [13]
improves calibration through time step-aware data sampling
and introduces a specialized noise-prediction network quan-
tizer. PTQ4DiT [37] achieves 8-bit (W8A8) quantization
for Diffusion Transformers (DiTs) with minimal quality

17609

loss and pioneers 4-bit weight quantization (W4A8). Ef-
ficient Sampling seeks to minimize computational over-
head while preserving generation quality in diffusion mod-
els. This is primarily through two paradigms: retraining-
based optimization and sampling-algorithm enhancement.
Retraining approaches like knowledge distillation [2, 29]
modify model architectures to enable fewer-step genera-
tion, albeit at the cost of additional training resources.
Conversely, training-free methods focus on refining sam-
pling dynamics. Notably, DDIM [32] accelerates inference
via non-Markovian deterministic trajectories, while DPM-
Solver [18] employs high-order differential equation solvers
to reduce step counts theoretically. Meanwhile, consistency
models [33] enable single-step sampling through learned
transition mappings. Parallel frameworks like DSNO [40]
and ParaDiGMS [31] exploit temporal dependencies be-
tween denoising steps for hardware-accelerated throughput.

2.2. Model Caching

In addition to the aforementioned methods, model caching
provides a low-cost, efficient, and versatile approach for ac-
celerating diffusion generation. Common caching strate-
gies are primarily divided into two categories: rule-based
[22, 28, 30, 36] methods, which reuse or skip specific
steps/blocks by analyzing sampling-induced feature varia-
tions, and training-based [21] methods, where models learn
to skip non-critical modules through training. These strate-
gies are widely integrated into DiT architectures due to their
strong learning capabilities, and their effectiveness is fur-
ther facilitated by the unchanged data dimensionality during
sampling. Initially, U-Net-based methods like DeepCache
[22] and Faster Diffusion [12] achieved low-loss compu-
tation skipping through feature reuse, while Cache-Me-if-
You-Can [36] reduced caching errors via teacher-student
mimicry. However, such techniques are challenging to
adapt directly to DiT. To extend caching to DiT-based mod-
els, Fora [30] stores and reuses attention/MLP layer out-
puts across denoising steps, ∆-DiT [4] accelerates specific
blocks via dedicated caching. Additionally, Learning-to-
Cache [21] employs a trainable router to dynamically skip
layers, achieving higher acceleration ratios but incurring
significant computational costs.
Differences: Based on the analysis of related work, our
approach falls under the branch of model caching that fo-
cuses on optimizing cache errors. The method most closely
related to ours is Fora [30]. The key differences between
our method and the aforementioned methods are threefold:
Firstly, the existing caching methods primarily aim to accel-
erate sampling by locating and skipping weakly correlated
layers. In contrast, our method builds upon their caching
mechanisms and leverages gradients to reduce cache errors.
Secondly, in GOC, we conduct statistical analysis on the
output of each block in the model. Combined with step

positions, this approach reduces gradient errors and max-
imizes the benefits brought by gradient caching. Thirdly,
our method can be applied to various existing rule-based
and training-based methods, and it can enhance the perfor-
mance of these methods.

3. Method
In this section, we first briefly revisit the preliminaries of
the diffusion method. Second, we illustrate our Gradient-
Optimized Cache (GOC) in three parts: (1) Gradient Cache
(GC), (2) Model Information Extraction and Statistics, and
(3) Gradient Optimization Determination (GOD).

3.1. Preliminaries
Diffusion Models. Diffusion models [10, 32] learn denois-
ing methods to restore random noise xt back to the original
image x0. To achieve this step-by-step, the model needs to
learn the reverse process of adding noise. Using Markov
chains N , the reverse process pθ(xt−1 | xt) can be mod-
eled as follows:

N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

))
, (1)

where t represents the denoising step, βt denotes the noise
variance schedule, αt = 1− βt, ᾱt =

∏T
i=1 αi, and T rep-

resents the total number of denoising steps. ϵθ is a deep
network parameterized by θ. It takes xt as input and out-
puts the prediction of the noise required for the denoising
process. The aforementioned repeated inference is the pri-
mary source of computational cost in diffusion models.
Diffusion Transformer. Diffusion Transformer (DiT) [26]
typically consists of stacked self-attention layers S, cross-
attention layers C, and multilayer perceptrons (MLP) M ,
all with identical dimensionality. It can be described by the
following formulation:

H = G1 ◦ G2 ◦ · · · ◦ Gl ◦ · · · ◦ GT , where

Gt = g1
t ◦ g2

t ◦ · · · ◦ gl
t ◦ · · · ◦ gL

t , where

gl
t = Sl

t ◦Cl
t ◦M l

t ,

(2)

where H represents the entire DiT process, Gt denotes the
process at the t-th step, and L represents the depth of the
DiT model at each step. ◦ is the elements-wise product. gl

t

refers to the l-th module in the DiT architecture at the t-th
step, while Sl

t, C
l
t and M l

t represent the self-attention layer,
cross-attention layer, and MLP in a single DiT block, re-
spectively. Subsequently, the general computation between
Sl
t, C

l
t, M

l
t and xl

t can be written as:

Sl
t = xl

t + AdaLN ◦ slt(xl
t),

Cl
t = Sl

t + AdaLN ◦ clt(Sl
t),

xl
t+1 = M l

t = Cl
t + AdaLN ◦ml

t(C
l
t),

(3)

17610

[, ,…,]

Self-A
ttention

C
orss-A

ttention

M
L

P

��−2
1 ��−2

2 ��−2
�Noise ��

Dog

C

C Concat
Subtraction
Addition

��
1 ��

2 ��
�

Cache Error GOC Error

Normal Cache
GOC

OutputInput

Model
Statistic

N(t)

Step
Position

t/T

Order

InverseB(t)>ΓSign

Gradient Cache

t-1 Feature t Feature

��−1
1 ��−1

2 ��−1
� ��+1

1 ��+1
2 ��+1

�

��−2
1 ��−2

2 ��−2
�

n+1 Feature t+1 GOC Feature Gradient

Multiply

Gt-2 Gt-1 Gt Gt+1
�0

Gradient Optimization Determination

��−1
� ��

� ��+1
� ��+1

�

��−2
1 ��−2

2 ��−2
� [, ,…,]��

1 ��
2 ��

�

��+1
1[, ,…,]��+1

2 ��+1
�

Figure 2. Pipeline of GOC. The input of GOC includes four parts: features gl
t−1, gl

t from the most recent two Step Caches, model statistical
information N(t), and step position t/T . Gradient Cache: the most recent two features are used to calculate the gradient, which is then
multiplied by a coefficient and added back to the most recent feature, replacing the feature of the next step that will be skipped. Gradient
Optimization Determination: By calculating the weighted sum of the model’s statistical information and the step position, and comparing
it with a pre-set threshold, it determines whether to use the gradient values computed by GC in the next step.

where xl
t represents the residual connection, and slt, c

l
t, m

l
t

denote the computation of the self-attention layer, cross-
attention layer, and MLP layer, respectively. AdaLN [9]
is applied after the computations of slt(x

l
t), clt(x

l
t) and

ml
t(x

l
t), which helps stabilize the training process and en-

hances the overall performance of the DiT model in han-
dling complex data patterns.
Feature Caching and Reuse. Feature caching [22] aims to
reuse time-consuming computation results from past steps
to skip and replace future step computations. In our method,
if the feature is fully computed at step t, then the compu-
tation required at step t + 1 will be skipped and directly
replaced by the computation from step t. Taking the l-th
block as an example, the caching process can be expressed
as U [l] := [slt(x

l
t), c

l
t(x

l
t),m

l
t(x

l
t)], where “:=” denotes

the assignment operation. U [l] caches the computation out-
puts of the attention layer and the MLP layer from the l-th
block at step t. Subsequently, the computation at step t+1 is
skipped by reusing the cached features, which can be repre-
sented as [slt+1(x

l
t+1), c

l
t+1(x

l
t+1),m

l
t+1(x

l
t+1)] := U [l].

3.2. Gradient-Optimized Cache

The overview of our framework is depicted in Figure 2. To
minimize the error introduced by caching, we compute the
gradients of the features from the two most recent steps,
gl
t−1 and gl

t, multiply them by a coefficient θ, and add them
to the features of gl

t. These modified features are then used
to replace the features of the next skipped step t+ 1. Addi-
tionally, we determine whether to apply normal caching or
GOC to a skipped step by comprehensively analyzing the
model’s statistical information and the position of the step.

Below, we introduce the three steps involved in GOC.
Gradient Cache (GC). Storing features in two steps is
necessary to obtain gradients and enable gradient caching.
Therefore, we introduce a queue to simultaneously store the
features from the two most recent steps, gl

t−1 and gl
t. In the

early stages of the sampling process when gradients have
not yet formed, as indicated by the brown arrow in Figure
2, we employ normal caching as:

gl
1 := gl

0. (4)

This involves reusing the results of gl
0 and skipping the

computation of gl
1. When t > 3, we use the cached fea-

tures from the two steps preceding the skipped step to com-
pute the final reused feature. The computation method of
Gradient Cache (GC) is as follows:

gl
t+1 := ĝl

t+1 := gl
t + η ∗ (gl

t − gl
t−1), (5)

where ĝl
t+1 is the feature computed from gl

t+1 that will be
reused, and η is a positive parameter used to adjust the mag-
nitude of the gradient.
Model Information Extraction and Statistics. However,
excessive application of GC introduces additional gradient
noise during error mitigation, ultimately degrading image
generation quality. The fundamental source of this gradient
noise stems from directional conflicts in gradient vectors -
specifically, the expected input vector gl

t+1 (represented by
the blue square in Figure 2) deviates in the opposite direc-
tion from the gradient path connecting gl

t−1 (red triangle)
to gl

t (green circle). As illustrated in Figure 2, the com-
puted GC feature ĝl

t+1 (light blue square) exhibits a dis-
placement from the ideal gl

t+1 position, quantified by two

17611

distinct error metrics: the mint green arrow represents the
GC approximation error, while the red arrow indicates the
inherent caching error in normal operations. This geomet-
ric relationship reveals that GC achieves optimal caching
fidelity when gradient directions remain consistent, but in-
troduces progressively larger approximation errors as direc-
tional conflicts between successive gradients intensify.

To avoid introducing errors, we need to analyze the data
gl
t for each block of the DiT model to identify steps where

inverse gradients are likely to occur. We achieve this by
repeatedly performing the sampling process with different
prompts and recording the outputs of the self-attention lay-
ers, cross-attention layers (if present), and MLP layers, de-
noted as fsAttn(x), fcAttn(x), and fMLP(x). We collec-
tively refer to these matrices as F l

t (k) ∈ Rm×n, where k
represents different prompts, and m×n denotes the dimen-
sionality of the feature. Next, we calculate the average Al

t

for each block’s F l
t (k) as follows:

Al
t =

1

K

K∑
k=1

F l
t (k), (6)

where K represents the total number of prompts. If there
exists η, it can satisfy:

J(Al
t+1−Al

t) > J(Al
t+1−(Al

t+η∗(Al
t−Al

t−1))), (7)

and we believe that gl
t−1, gl

t, and gl
t+1 form a positive gra-

dient if they align in the expected direction; otherwise, they
form an inverse gradient. J is defined as the sum of the ab-
solute values of each element s in the m×n matrix, where a
larger result indicates a greater error. Finally, we record the
number of blocks N(t) exhibiting inverse gradients at each
step t. Steps with a higher count of such blocks are more
likely to introduce gradient errors.
Gradient Optimization Determination (GOD). Deter-
mining whether a step will introduce gradient errors is not
sufficient by merely calculating inverse gradients. Previous
studies [23, 24] have shown that perturbations introduced
closer to the end of the sampling process have a more sig-
nificant impact on the generated results. From another per-
spective, even if errors are introduced in the early stages of
the sampling process, they can be mapped to correct pat-
terns through subsequent steps. However, errors introduced
in the later stages of the sampling process are difficult to
eliminate and may lead to artifacts. Therefore, we compre-
hensively consider the number of inverse gradients and the
position of the step to measure the negative impact B(t) of
introducing gradient errors at a specific step t:

B(t) = γ ∗ (1− t

T
) + (1− γ) ∗N(t), (8)

where γ is a parameter used to adjust the balance between
the step position and N(t). We set a threshold Γ, and only
when B(t) < Γ do we perform GC at step t.

4. Experiment

In this section, we evaluate the proposed GOC method
and compare it with rule-based and training-based caching
methods. We also use ablation experiments to verify the ef-
fectiveness of the method proposed in this paper. We aim to
address the following research questions (RQ):
RQ1: Is Gradient Caching (GC) effective?
RQ2: Is Gradient Optimization Determination (GOD) ef-
fective?
RQ3: What hyperparameter should be selected?
RQ4: What are the advantages and general applicability of
GOC?

4.1. Experiment Settings
Datasets. To comprehensively evaluate the performance of
diffusion models, we conduct experiments on two bench-
mark datasets: ImageNet [5] (1,000 classes) for class-
conditional generation and MS-COCO [15] (30,000 text
prompts) for text-to-image synthesis. Unless explicitly
stated otherwise, the ablation experiments default to using
the ImageNet dataset.
Model Configuration. We used two models to verify the
effectiveness of our method: DiT [22] and Pixart [3]. For
the DiT architecture, we adopt DDIM sampler [32] with
20 denoising steps throughout all experiments, while Pixart
models use the DPM-Solver [18] under the same 20-steps.
To ensure fair comparison across different caching strate-
gies, we generate 50,000 samples for DiT and 30,000 sam-
ples for Pixart respectively, matching each model’s native
output characteristics. The experiments are conducted on
an NVIDIA A40 GPU.
Evaluation Metrics. We employ a comprehensive set of
quantitative metrics: such as Inception Score(IS↑), Fréchet
Inception Distance(FID↓), Sliced Fréchet Inception Dis-
tance(sFID↓), Precision(↑), and Recall(↑). All metrics are
computed at 256×256 resolution using randomly generated
samples to ensure statistical significance.

In our experiment, each cache is reused at most once.
For convenience, we provide the abbreviations of Gradient
Cache (GC), Gradient Optimization Determination (GOD),
and Gradient-Optimized Cache (GOC). In addition, the data
of L2C is completely reproduced using the open-source
code provided by the authors of Learning-to-Cache[21].
And the data of FORA is implemented by summarizing the
experience from previous work [30], where 25% and 50%
of the blocks are cached.

4.2. Gradient Cache
Effect of GC (RQ1). To evaluate the performance charac-
teristics of Gradient Caching (GC), Figure 3 presents three
comparative elements: single-step GC metrics (blue trajec-
tory), multi-step cumulative GC metrics (orange trajectory),

17612

No Cache 50% FORA 50% FORA + Gradient Cache（From step 3 to step 19, cumulative） 50% FORA + GOC
≤3 ≤19≤5 ≤7 ≤9 ≤11 ≤13 ≤15 ≤17

Figure 3. The line chart above shows the metrics generated by single-step GC (solid blue line) and cumulative GC (dashed orange line).
And the beetle generated images below include those from No Cache, 50% rule-based caching (FORA[30]), 50% rule-based caching
(FORA) with varying strengths of GC, and 50% FORA + GOC.

Cache Strategy Caching Level IS↑ FID↓ sFID↓ Precision↑ Recall↑

No Cache[26] 0% 223.490 3.484 4.892 0.788 0.571

FORA[30]
50%

190.056 6.857 8.757 0.739 0.524
FORA+GC 212.691 3.964 4.923 0.766 0.593

FORA+GOC 216.280 3.907 4.972 0.775 0.574

Table 1. Metrics of the generated images under No Cache, as well as FORA, FORA+GC, and FORA+GOC with 50% caching level.

and corresponding beetle image generations. The blue tra-
jectory demonstrates consistent metric improvement across
all optimization steps compared to the baseline initialization
(leftmost data point). The orange trajectory reveals progres-
sive metric enhancement through successive GC layer inte-
gration until step 17, where we observe severe degradation
in both Inception Score (IS) and precision metrics, indica-
tive of accumulated gradient approximation errors. By com-
paring the beetle images generated with 50% cache + Gra-
dient Cache, 50% Cache, and No Cache, we can find that
50% cache + GC exhibit progressive quality improvements
through step 15, progressively approximating the quality of
the No Cache configuration. However, post-step 17 gener-
ations display pronounced artifacts in the cephalic region
and thoracic segments (highlighted in red boxes). There-
fore, an appropriate level of GC can overcome most errors
introduced by Normal Caching. However, excessive GC in-
troduces gradient errors and reduces image quality, making
it necessary to select for GC application.

4.3. Gradient Optimization Determination
To verify the effectiveness and rationality of GOD, we de-
sign a two-part experiment. The first part demonstrates the
improvements in metrics and images achieved by incorpo-
rating GOD, while the second part focuses on the selection
of GOD parameters.
Effect of GOD (RQ2). To systematically evaluate caching
optimization strategies, Table 1 and Figure 4 provide com-
parative analyses of four configurations: No Cache, FORA
(Reduced Caching), FORA+GC (FORA with Gradient

No Cache 50% FORA 50% FORA + GC 50% FORA + GOC

Figure 4. Comparison of generated images are compared under No
Cache, 50% FORA, 50% FORA + GC, and 50% FORA + GOC.
Here, GC is used at each caching step.

Caching), and FORA+GOD (GC-optimized FORA). Quan-
titative metrics in Table 1 reveal that the 50% FORA con-
figuration significantly degrades all image quality param-
eters. Implementing GC across all caching stages sub-
stantially enhances performance, achieving optimal sFID
(4.923) and Recall (0.593). The FORA+GOD configura-
tion further refines this approach by selectively removing
GC steps with adverse effects, attaining peak scores in IS
(216.280), FID (3.907), and Precision (0.775). By observ-
ing Figure 4, we can see that FORA, which skips half of
the computational steps, causes the balloon to deform, the

17613

Cache Strategy Caching level η IS↑ FID↓ sFID↓ Precision↑ Recall↑

FORA[30]+GOC

50%

1.4 204.760 4.432 5.623 0.752 0.599
1.3 213.479 3.940 4.862 0.767 0.588
1.2 216.280 3.907 4.972 0.775 0.574
1.1 216.941 4.015 5.262 0.776 0.571
1 216.013 4.163 5.552 0.777 0.566

25%

2.1 214.884 3.681 4.914 0.7693 0.593
2 218.581 3.526 4.635 0.776 0.587

1.9 221.082 3.480 4.613 0.780 0.585
1.8 222.210 3.498 4.694 0.783 0.580
1.7 222.805 3.524 4.805 0.784 0.581

L2C[21]+GOC 22%

1.2 235.369 3.205 4.629 0.802 0.558
1.1 236.256 3.196 4.634 0.803 0.560
1 236.748 3.192 4.644 0.803 0.559

0.9 236.653 3.202 4.652 0.805 0.558
0.8 236.469 3.211 4.656 0.804 0.555

Table 2. Metrics of the generated images under FORA+GOC with 50% and 25% caching levels, as well as L2C+GOC with 22% caching
level, under different constraint of η.

Cache Strategy Caching level IS↑ FID↓ sFID↓ Precision↑ Recall↑ FLOPs(T)↓ Speed↑

No Cache[26] 0% 223.490 3.484 4.892 0.788 0.571 11.868 1×

FORA[30] 50% 190.046 6.857 8.757 0.739 0.524 5.934 2.0000×
25% 220.011 3.870 5.185 0.783 0.569 8.900 1.3335×

FORA+GOC 50% 216.280 3.907 4.972 0.775 0.574 5.934 1.9999×
25% 222.805 3.524 4.805 0.784 0.581 8.900 1.3334×

L2C[21] 22% 225.004 3.539 4.710 0.788 0.563 9.257 1.2821×

L2C+GOC 22% 236.748 3.192 4.644 0.803 0.559 9.257 1.2820×

Table 3. Metrics of the generated images before and after applying GOC to FORA or L2C under different caching levels.

bridge arch to disappear, and insufficient details in the turtle.
FORA+GC can restore the general shape of the image but
introduces artifacts, making the balloon blurry, the bridge
distorted, and the turtle’s eyes unclear. FORA+GOD can
avoid the artifacts of FORA+GC and generate images that
closely resemble those of No Cache. While FORA+GC re-
stores basic geometric structures, it introduces visible ar-
tifacts: blurred balloon surfaces, warped bridge geome-
tries, and undefined ocular features in the turtle. In con-
trast, FORA+GOD achieves near-equivalent visual fidelity
to the No Cache baseline, successfully resolving both the
structural degradation of FORA and the artifact interference
from FORA+GC. It demonstrates that GC implementation
effectively compensates for FORA’s quality degradation but
introduces secondary artifacts. The GOD-enhanced config-
uration achieves optimal balance by retaining GC’s correc-
tive benefits while eliminating its error-prone steps, thereby
maintaining structural coherence and metric superiority.

Selection of hyperparameter (RQ3). The parameter η
determines whether the gradient can maximally compen-
sate for the error introduced by normal caching. As shown
in Table 2, we select FORA+GOC with 50% and 25% of
blocks cached, as well as L2C+GOC with 22% of blocks
cached. We record five values around the optimal η for
each case, with a step size of 0.1. We found that when
η = 1.2, the 50% FORA+GOC achieves the most balanced
metrics. When η = 1.9, the 25% FORA+GOC achieves the
most balanced metrics. When η = 1, the 22% L2C+GOC
achieves the most balanced metrics. These different val-
ues of η reveal a phenomenon: for the case of caching the
first half of the odd steps (25% FORA+GOC), a larger η
can more effectively reduce the caching error but also intro-
duces a significant amount of gradient error. Since GOC is
applied at the earlier steps, the model has sufficient steps to
map the gradient error back to normal. For L2C+GOC, the
sampling process includes knowledge obtained from train-

17614

No Cache 25% FORA 25% FORA + GOC

Prompt: A yellow train traveling down tracks next to a green field.

No Cache 25% FORA 25% FORA + GOC

Prompt: A metallic freezer refrigerator in a kitchen next to wooden cabinets.

Figure 5. Comparison of images generated by the weight trained on the MS-COCO dataset under No Cache, 25% FORA, and 25% FORA
+ GOC conditions. We have attached the corresponding prompts below the images.

Cache Strategy Caching level FID↓

No Cache[3] 0% 21.964

FORA[30] 25% 21.984
FORA+GOC 21.971

Table 4. Metrics of the generated images generated by the weight
trained on the MS-COCO dataset under No Cache, as well as
FORA and FORA+GOC with 50% caching level.

ing, which weakens the effect of GOC. Therefore, the value
of η is lower than in the other two cases.

4.4. Comparison with Other Methods
Advantages and general applicability of GOC (RQ4).
As shown in Table 3, GOC can be applied to FORA and
L2C with different caching levels and can improve the qual-
ity of generation. Specifically, in the case of 50% FORA,
GOC can significantly increase IS from 190.046 to 216.280,
decrease FID from 6.857 to 3.907, and reduce sFID from
8.757 to 4.972. In the case of 25% FORA, GOC can in-
crease IS from 220.011 to 222.805, decrease FID from
3.870 to 3.524, and reduce sFID from 5.185 to 4.805. The
improved metrics are very close to those of No Cache, and
the sFID even exceeds it. In the case of 22% L2C, GOC
can significantly increase IS to 236.748 and decrease FID to
3.192. The improvement is greater than that of the similar
proportion FORA, indicating that GOC and training-based
caching methods can complement each other. In addition,
we use FLOPs(T) to represent the computational load in the
sampling process, and it can be seen that the computational
cost brought by GOC is negligible.

To demonstrate that GOC is adaptable to both text-to-
image and class-to-image tasks, we employ a Pixart model
trained on the MS-COCO dataset and utilized the same
strategy of caching 25% of the blocks. We then examine the
impact on images before and after incorporating GOC. As
illustrated in Figure 5, GOC significantly compensates for
the detail loss caused by 25% FORA. For instance, GOC
enhances the integrity of trains and refrigerators. In addi-
tion, Table 4 shows that the introduction of GOC improves
the FID score of FORA.

Cache Strategy FID↓ latency(s)↓

FORA[30] (50%) 6.857 1.789 ± 0.046
FORA+GOC (50%) 3.907 1.824 ± 0.029

FORA (25%) 3.870 2.271 ± 0.032
FORA+GOC (25%) 3.524 2.305 ± 0.016

L2C[21] (22%) 3.539 1.992 ± 0.011
L2C+GOC (22%) 3.192 2.016 ± 0.004

Table 5. Comparison of the average time taken to generate eight
images under FORA and FORA+GOC with 50% and 25% caching
levels, as well as L2C and L2C+GOC with 22% caching level.

Finally, the original intention of caching is to reduce
sampling time, so we need to pay attention to the increased
computational load introduced by GOC, which may lead
to longer sampling times. As shown in Table 5, the la-
tency increases by approximately 2.0%, 1.5%, and 1.2% for
FORA+GOC (50%), FORA+GOC (25%), and L2C+GOC
(22%), respectively. Given the significant improvement in
FID, these time costs are acceptable.

5. Conclusion

In this paper, we propose Gradient-Optimized Cache
(GOC), which leverages a queue to compute cached gra-
dients during the sampling process and integrates these gra-
dients, weighted appropriately, into the original cached fea-
tures to reduce caching errors. Meanwhile, we utilize the
model’s statistical information to identify inflection points
in the sampling process and combine step positions to avoid
counter-gradient optimization, thereby further reducing gra-
dient errors. The proposed GOC can generate higher-
quality samples with almost no additional computational
cost. Through model comparisons and ablation studies, we
achieve better performance under different datasets and var-
ious caching strengths for both FORA and L2C, thereby val-
idating the effectiveness of our method.

Note that the implementation of GOC is still limited by
fixed parameters and bound steps. Thus, we plan to investi-
gate the development of a general embedding procedure for
GOC in the future.

17615

Acknowledgements
This research is supported by the National Natu-
ral Science Foundation of China (No.U24B20180,
No.62472393) and the advanced computing re-
sources provided by the Supercomputing Center of
the USTC.

References
[1] Yash Bhalgat, Jaehoon Lee, Michael Nagel, Tijmen

Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initializa-
tion. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition workshops, pages 696–
697, 2020. 2

[2] Corentin Chadebec, Omer Tasar, Elie Benaroche, et al.
Flash diffusion: Accelerating any conditional diffusion
model for few steps image generation. arXiv preprint
arXiv:2406.02347, 2024. 3

[3] Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze
Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo,
Huchuan Lu, et al. Pixart-α: Fast training of diffusion
transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023. 5, 8

[4] Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao,
Chongjun Tu, Christos-Savvas Bouganis, Yiren Zhao,
and Tao Chen. ∆− dit: A training-free acceleration
method tailored for diffusion transformers. arXiv preprint
arXiv:2406.01125, 2024. 3

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 5

[6] Xuanyi Dong, Shiyu Chen, and Sinno Jialin Pan. Learning to
prune deep neural networks via layer-wise optimal brain sur-
geon. In Advances in neural information processing systems,
2017. 2

[7] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and
Shuicheng Yan. Masked diffusion transformer is a strong
image synthesizer. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 23164–23173,
2023. 1

[8] Dan Guo, Shuo Wang, Qi Tian, and Meng Wang. Dense
temporal convolution network for sign language translation.
In IJCAI, pages 744–750, 2019. 1

[9] Yunhui Guo, Chaofeng Wang, Stella X Yu, Frank McKenna,
and Kincho H Law. Adaln: a vision transformer for multido-
main learning and predisaster building information extrac-
tion from images. Journal of Computing in Civil Engineer-
ing, 36(5):04022024, 2022. 4

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Advances in neural information
processing systems, 33:6840–6851, 2020. 1, 3

[11] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould,
and Philip H Torr. A signal propagation perspective for
pruning neural networks at initialization. arXiv preprint
arXiv:1906.06307, 2019. 2

[12] Senmao Li, Taihang Hu, Fahad Shahbaz Khan, Linxuan
Li, Shiqi Yang, Yaxing Wang, Ming-Ming Cheng, and Jian
Yang. Faster diffusion: Rethinking the role of unet encoder
in diffusion models. CoRR, 2023. 3

[13] Xiangyu Li, Yujun Liu, Li Lian, Hui Yang, Zhen Dong,
Dongdong Kang, et al. Q-diffusion: Quantizing diffusion
models. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 17535–17545, 2023. 2

[14] Yixuan Li, Rui Gong, Xiaoyu Tan, Yibo Yang, Peng Hu,
Qian Zhang, et al. Brecq: Pushing the limit of post-
training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021. 2

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
Computer vision–ECCV 2014: 13th European conference,
zurich, Switzerland, September 6-12, 2014, proceedings,
part v 13, pages 740–755. Springer, 2014. 5

[16] Joseph Liu, Joshua Geddes, Ziyu Guo, Haomiao Jiang, and
Mahesh Kumar Nandwana. Smoothcache: A universal infer-
ence acceleration technique for diffusion transformers. arXiv
preprint arXiv:2411.10510, 2024. 2

[17] Le Liu, Sheng Zhang, Zenghui Kuang, Aocheng Zhou, Jin-
hao Xue, Xiaogang Wang, et al. Group fisher pruning for
practical network compression. In International Conference
on Machine Learning, pages 7021–7032. PMLR, 2021. 1, 2

[18] Chenlin Lu, Yihao Zhou, Fan Bao, Jianfei Chen, Chongxiao
Li, and Jun Zhu. Dpm-solver: A fast ode solver for dif-
fusion probabilistic model sampling in around 10 steps. In
Advances in Neural Information Processing Systems, pages
5775–5787, 2022. 3, 5

[19] Jinda Lu, Shuo Wang, Xinyu Zhang, Yanbin Hao, and Xi-
angnan He. Semantic-based selection, synthesis, and super-
vision for few-shot learning. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 3569–3578,
2023. 1

[20] Jinda Lu, Junkang Wu, Jinghan Li, Xiaojun Jia, Shuo Wang,
YiFan Zhang, Junfeng Fang, Xiang Wang, and Xiangnan
He. Damo: Data-and model-aware alignment of multi-modal
llms. arXiv preprint arXiv:2502.01943, 2025. 1

[21] Xinyin Ma, Gongfan Fang, Michael Bi Mi, and Xinchao
Wang. Learning-to-cache: Accelerating diffusion trans-
former via layer caching. arXiv preprint arXiv:2406.01733,
2024. 3, 5, 7, 8

[22] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Deepcache:
Accelerating diffusion models for free. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 15762–15772, 2024. 1, 2, 3, 4, 5

[23] Kevin Meng, David Bau, Alex Andonian, and Yonatan Be-
linkov. Locating and editing factual associations in gpt.
Advances in Neural Information Processing Systems, 35:
17359–17372, 2022. 2, 5

[24] Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan
Belinkov, and David Bau. Mass editing memory in a trans-
former. arXiv preprint arXiv:2210.07229, 2022. 5

[25] Michael Nagel, Rehan A Amjad, Max Van Baalen, Chris-
tos Louizos, and Tijmen Blankevoort. Up or down? adap-
tive rounding for post-training quantization. In International

17616

Conference on Machine Learning, pages 7197–7206. PMLR,
2020. 2

[26] William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4195–4205,
2023. 1, 3, 6, 7

[27] Junxiang Qiu, Jinda Lu, and Shuo Wang. Multimodal gener-
ation with consistency transferring. In Findings of the Asso-
ciation for Computational Linguistics: NAACL 2025, pages
504–513, 2025. 1

[28] Junxiang Qiu, Shuo Wang, Jinda Lu, Lin Liu, Houcheng
Jiang, Xingyu Zhu, and Yanbin Hao. Accelerating diffu-
sion transformer via error-optimized cache. arXiv preprint
arXiv:2501.19243, 2025. 1, 3

[29] Tim Salimans and Jonathan Ho. Progressive distillation
for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022. 3

[30] Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov,
and Luming Liang. Fora: Fast-forward caching in diffusion
transformer acceleration. arXiv preprint arXiv:2407.01425,
2024. 1, 2, 3, 5, 6, 7, 8

[31] Andrew Shih, Shashank Belkhale, Stefano Ermon, Dorsa
Sadigh, and Nima Anari. Parallel sampling of diffusion mod-
els. In Advances in Neural Information Processing Systems,
2024. 3

[32] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 3, 5

[33] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya
Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023. 3

[34] Shuo Wang, Dan Guo, Wen gang Zhou, Zheng jun Zha, and
Meng Wang. Connectionist temporal fusion for sign lan-
guage translation. In Proceedings of the 26th ACM interna-
tional conference on Multimedia, pages 1483–1491, 2018.
1

[35] Yuan Wang, Ouxiang Li, Tingting Mu, Yanbin Hao, Kuien
Liu, Xiang Wang, and Xiangnan He. Precise, fast, and low-
cost concept erasure in value space: Orthogonal complement
matters. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pages 28759–28768, 2025. 1

[36] Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang
Dai, Ji Hou, Zijian He, Artsiom Sanakoyeu, Peizhao Zhang,
Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accel-
erating diffusion models through block caching. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6211–6220, 2024. 2, 3

[37] Jiajun Wu, Haoyu Wang, Yilun Shang, Mubarak Shah, and
Yan Yan. Ptq4dit: Post-training quantization for diffusion
transformers. arXiv preprint arXiv:2405.16005, 2024. 2

[38] Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu
Huang, Jiazheng Xu, Yuanming Yang, Wenyi Hong, Xiao-
han Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video
diffusion models with an expert transformer. arXiv preprint
arXiv:2408.06072, 2024. 1

[39] En Zhang, Bing Xiao, Jie Tang, et al. Token pruning for
caching better: 9 times acceleration on stable diffusion for
free. arXiv preprint arXiv:2501.00375, 2024. 2

[40] Hengrui Zheng, Weijia Nie, Arash Vahdat, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. Fast sampling of dif-
fusion models via operator learning. In International con-
ference on machine learning, pages 42390–42402. PMLR,
2023. 3

[41] Heng Zhu, Di Tang, Jie Liu, et al. Dip-go: A diffusion pruner
via few-step gradient optimization. Advances in Neural In-
formation Processing Systems, 37:92581–92604, 2025. 2

[42] Xingyu Zhu, Shuo Wang, Jinda Lu, Yanbin Hao, Haifeng
Liu, and Xiangnan He. Boosting few-shot learning via atten-
tive feature regularization. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pages 7793–7801, 2024. 1

[43] Xingyu Zhu, Beier Zhu, Yi Tan, Shuo Wang, Yanbin Hao,
and Hanwang Zhang. Enhancing zero-shot vision models
by label-free prompt distribution learning and bias correct-
ing. Advances in Neural Information Processing Systems,
37:2001–2025, 2024. 1

[44] Xingyu Zhu, Beier Zhu, Yi Tan, Shuo Wang, Yanbin Hao,
and Hanwang Zhang. Selective vision-language subspace
projection for few-shot clip. In Proceedings of the 32nd ACM
International Conference on Multimedia, pages 3848–3857,
2024. 1

17617

