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Abstract

Although deep neural networks are well-known for their
outstanding performance in tackling complex tasks, their
hunger for computational resources remains a significant
hurdle, posing energy-consumption issues and restricting
their deployment on resource-constrained devices, prevent-
ing their widespread adoption.

In this paper, we present an optimal transport-based method
to reduce the depth of over-parametrized deep neural net-
works, alleviating their computational burden. More specif-
ically, we propose a new regularization strategy based on
the Max-Sliced Wasserstein distance to minimize the dis-
tance between the intermediate feature distributions in the
neural network. We show that minimizing this distance en-
ables the complete removal of intermediate layers in the
network, achieving better performance/depth trade-off com-
pared to existing techniques. We assess the effectiveness of
our method on traditional image classification setups and
extend it to generative image models. Our code is available
at https://github.com/VGCQ/LaCoOT.

1. Introduction

Over the last few years, the field of deep learning has under-
gone a significant transformation with the advent of foun-
dation models. These are large-scale, pre-trained models
capable of performing a wide range of tasks across differ-
ent domains, including computer vision. As exemplars we
can mention CLIP [52] and ALIGN [26] for image classi-
fication, DiT [47], Stable Diffusion [54] and DALL-E [53]
for image generation, or SAM [29] for semantic segmenta-
tion. The effectiveness of these foundation models is pri-
marily driven by empirical patterns observed through scal-
ing laws [23]: the improvements achieved by these mod-
els correlate with the exponential increase in computational
requirements due to the growth of both their size and the
number of training data [10, 55].

However, the progress enabled by these new models
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Figure 1. With LaCoOT, we finetune existing networks with an
OT-inspired regularization R augmenting the loss £, reducing in-
termediate feature distribution discrepancy. This enables the com-
plete removal of layers.

(consisting of billions of parameters) comes at the price of
higher computational costs, consuming more energy, thus
contributing to carbon emissions [62]. For instance, training
a generative model is comparable to driving a car for 10km,
while generating 10k samples is estimated to be equivalent
to driving 160 km [56]. Although training costs are expen-
sive, the open-sourcing of these foundation models multi-
plies inference costs across multiple users and contributes
to carbon emissions in a significant manner. The need to re-
duce the environmental impact of these models at inference
by proposing computational reduction is therefore apparent.
Consequently, the rise of complexity-reduction approaches
such as pruning [21], quantization [18], and knowledge dis-
tillation [25] is motivated by the need for more efficient ar-
chitectures to alleviate their resource demands. Reducing
deep neural network (DNN) complexity is not an easy task:
generalization and model complexity are inextricably re-
lated [23], but since pre-trained models are often employed
for downstream tasks, they tend to be over-parameterized.
This gives us hope: in principle, it is possible to compress
these models without any (or only little) performance degra-
dation [59]. This observation is further supported by the
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collapse phenomenon in neural networks, which has been
observed at both the neuron [65] and layer levels [19]. On
the one hand, individual neurons stop learning, leading to
constant or trivial outputs, while on the other hand, entire
layers fail to learn and become redundant or inactive. Con-
sequently, these layers could, in principle, be removed.

Nevertheless, few methods are capable of removing en-
tire layers from a neural network. Some of them have been
designed to mitigate the depth of DNNs while maintaining
performance, exploiting the deletion of several layers [34]
or ad-hoc architectural search [2]. However, these methods
are computationally challenging since they either require re-
training or rely on huge search spaces, leading to significant
search costs. Moreover, the focus of previous works is of-
ten more on removing non-linearities, leaving the fusion of
the remaining consecutive linear layers to further research,
which shows that this is not straightforward in many com-
mon cases [49].

Driven by the motivation of reducing the depth of DNNss,
we leverage optimal transport (OT) [48, 61] to develop a
framework allowing post-training the complete removal of
layers from the architecture. Compared to existing OT-
based frameworks incorporating it into neural architecture
search [27, 44, 63] or knowledge distillation pipelines [7,
38], our strategy does not involve training more than one
network but rather operates inside the model. In our case,
we use OT to minimize the distributional changes between
layers inside the same model, allowing us to strategically
and efficiently remove layers (as showcased in Fig. 1).
Overall, our contributions can be summarized as follows.

* We propose a novel OT-based and block collapse induc-
tive regularization (Sec. 4), seamlessly integrated into the
main training pipeline of neural networks. Our approach
consists of minimizing a block-wise OT discrepancy mea-
sure, specifically the Max-Sliced Wasserstein distance,
between the input and output features’ probability distri-
butions of the blocks of the network (Sec. 4.2).

* We motivate our strategy (Sec. 4.1 and Sec. 4.3) by show-
ing how it allows, post-training, the complete removal of
several blocks from the architecture at once.

* Our proposed regularization strategy demonstrates its ef-
fectiveness in reducing the depth of over-parameterized
DNNs with marginal performance loss with respect to
competing state-of-the-art techniques (Sec. 5.2).

2. Related Works

Neural network pruning. In the last decades, neural net-
work pruning has risen as the one privileged approach to
compress deep neural networks: complimentary to other
popular approaches like quantization, it leads to heavy
parameter reduction through the proper cut of groups of
parameters (or filters in convolutional architectures) that
are less important for the specific downstream task under

exam. Its effectiveness is empirically certified by several
works [4, 8, 22] and justified by the known overparametriza-
tion of such models [36]. Among these, we historically
distinguish between unstructured pruning approaches that
eliminate parameters without considering the neural net-
work’s structure [21, 59] and structured pruning, where en-
tire channels, neurons, or filters are removed [22, 58].

Unstructured pruning methods are grouped into two
main categories based on the nature of the importance score
used to prune weights: gradient-based methods rank the pa-
rameters according to the gradient magnitude [32, 59] (or
higher-order derivatives), while magnitude-based ones [21,
39, 64] use the weights’ magnitude as a significance score to
prune them. In a famous study, [4] compared the effective-
ness of these two approaches, concluding that magnitude-
based techniques are often more accurate than gradient-
based ones while offering a better trade-off between com-
plexity and competitiveness. Following up on this work,
[17] even showcased that simple magnitude pruning meth-
ods can achieve results that are comparable to more com-
plex ones, establishing a solid comparison baseline. Al-
though some studies suggest that unstructured pruning may
actually harbor structured effects [35], in general, they pro-
vide few practical benefits when deploying the neural net-
work on generic computing resources [6].

Unlike unstructured pruning, structured pruning brings
immediate advantages for both memory and computation,
despite resulting in lower overall sparsity [6]. Despite
this, when employing recent computing resources, remov-
ing entire filters on recent computing resources has only a
marginal effect on the improved latency, given the avail-
ability of resources in parallel. The real bottleneck in
parallel computation resides in the computational critical
path' [41], which can be mitigated by reducing the model’s
depth. Although some existing approaches, like knowledge
distillation to shallow student models [25] already tackle
this issue, maintaining the performance cannot be guaran-
teed, as the optimal architecture of the target model is not
known a priori, which may lead to significant performance
loss.

Neural network depth reduction. Several recent works
have proposed approaches to reduce the depth of DNNs.
The most common practice is to remove non-linearities be-
tween layers: this (in principle) enables two successive
layers to be merged together. Among these approaches,
Layer Folding [14] is one of the earlier attempts: it eval-
uates whether non-linear activations can be discarded, re-
placing ReLUs with PReLU (having a trainable slope for
the negative part). More recently, Entropy-Guided Pruning

'We refer to the critical path as the longest path, in terms of time or
computational cost, through the computational graph that must be exe-
cuted sequentially during inference, thus determining the model’s mini-
mum achievable latency.
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(EGP) [34] proposes to reduce the depth of DNNs by prior-
itizing the pruning of connections in layers with little use of
the non-linearity (estimated through an entropic measure).
On the same trend, NEPENTHE [35] improved EGP’s en-
tropy estimator and introduced a budget for the number of
parameters to prune. Taking a more global approach, EAS-
IER [51] was designed to determine the effect of removing a
non-linearity, considering the introduced error at the output
of the model, estimated through a validation set.

Although in principle effective in reducing the critical
path length of DNNs, these methods do not provide sig-
nificant gains in all cases, due to some impossibilities in
merging consecutive linear layers. One example is the prob-
lem associated with ResNet-type architectures: if we have
padding in the second convolutional layer, then there is
no analytical solution for merging the two consecutive lay-
ers [49]. Moreover, if an activation is removed where there
is a residual connection, no fusion can be applied. A major
architectural change is necessary to observe a real impact in
practice.

Unlike those works, our method does not rely on lin-
earizing activations and merging two consecutive layers. In-
stead, LaCoOT minimizes the Max-Sliced Wasserstein dis-
tance between the input and output features’ distributions of
the blocks of the network. Post-training, layers having the
lowest Max-Sliced Wasserstein distance are removed. De-
veloped to be model-agnostic, we compare our method with
these works and show its effectiveness in Sec. 5.

3. Preliminaries

3.1. Background on Optimal Transport

In this subsection, we present a succinct overview of OT
and the Wasserstein distance for discrete distributions [48].

Given two metric spaces X and ) and a cost function
c defined over X x )/, the goal of the OT problem is to
determine the most efficient manner to transport mass from
one distribution, defined over X to another supported over
Y, where the transportation cost is dictated by the chosen
function c.

For X = ) = R?, we consider two discrete probability
measures and we recall the Monge Formulation of the OT
problem:

OT(:U’7V7 C) = mjinzaic[th(wi)]’ ey

where p and v defined as:

N M
p= e, v=1 Bidy, @)
i=1 i=1

where §, refers to the Dirac (unit mass) distribution at
point . The weights o and [ reside in the probabil-
ity simplex {a € R|> a; = 1}, and T is defined as

T:{x1,...,xn} — {yq,...,Y,} and verifying:
Bi= > o Vje[M], 3)
(@)=,

or more compactly Tyu = v.

In the following, we will consider only the case of
uniform weights and the same support size, taking
M = N and «; = f3; = 3;. We also take as the cost func-
tion c(z,y) = ||z —ylh for z€ X, ye, peRs,.
In this case, OT establishes a measure of distance be-
tween the probability distributions. Such a distance, known
as the p-Wasserstein distance, is in general defined as
W, =0T (p, v, c)% When we have the dimension of the
ground space being d = 1, the p-Wasserstein distance takes
on a closed form, given by:

N ;
1
W, = (N >l - yilp> : “
=1

where we assume 1 < --- < xy and y; < --- < yn such
that x; — y,, Vi.

Given the closed-form expression in one dimension, sliced
variants of the p-Wasserstein distance have been introduced.
These variants transform sample assignment and distance
calculation by sorting the one-dimensional projection of the
samples. This process yields a sufficient approximation of
the high-dimensional p-Wasserstein distance, which is im-
mune to the curse of dimensionality [57]. Specifically, our
focus lies on the p-Max-Sliced Wasserstein distance, in-
troduced in [12], and defined as follows:

max Wy(u,v) = max W, (3u, 03v), Q)

oeu(Sd-1)

where 0y stands for the pushforwards of the projection
X : R = (0,X), () for the dot product operator
and U (S%~1) for the uniform distribution on the unit hyper-
sphere of dimension d — 1.

Essentially, the Max-Sliced Wasserstein distance repre-
sents a version of the sliced Wasserstein distance where
we select the optimal direction to project the probability
measures, i.e., the direction along which the projected dis-
tance is maximized, also possessing valid metric proper-
ties [5, 42, 43]. In our work, we will consider the Max-
Sliced Wasserstein distance, for its previously discussed
convenience, specifically computed for p = 2, to quantify
the distance between intermediate probability distributions
between blocks inside a neural network model, as it will be
presented in the next section.

3.2. Learning Framework

In this subsection, we introduce our learning framework.
Letus define 7 = T o---0T} as the DNN we wish to train
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on the dataset D, where each T}, is an elementary module
(which can be defined as single or multiple layers). Given a
loss function £ we aim at minimizing, the objective entails
minimizing the problem:

|D|

(T, F) € arg 171,11{};5 (FoT)(x1:) vi], (6)

s

where I is a classifier layer, @« ; the i-th input sample for
the DNN, and y; the associated ground-truth label and |D|
the number of samples in the dataset. For each module T,
we define the input probability distribution iy, as:
|D|
1 1 1
= —0. = —0g, p = = Oy .
HE ‘D| Yr_1,D |'D‘ k,D |D| ; ki

which is also the output of the preceding module T} _;.
Similarly, the output probability distribution vy, is defined

as:
|D|

1 1
= by = Y Oy,
Vg |D| Yi,D |'D‘ — Yk,i

According to our notation, v, = fi+1, given that y, ; =
Tk+1,iVe, k. Furthermore, we assume that x;; and Yk
possess identical dimensions, and consequently (i, and vy
to live in the same dimensional space, allowing for the com-
putation of the distance between them. In the following, our
goal would be to control these distances during training to
allow for the isolation and removal of certain blocks post-
training, with almost no loss of performance.

4. LaCoOT

In this section, we detail our method, LaCoOT, for reduc-
ing neural network depth using optimal transport (Sec. 4.1):
we propose a regularization strategy based on the Max-
Sliced Wasserstein distance to minimize the distance be-
tween intermediate feature distributions in the neural net-
work. Fig. | provides a general overview of our method. We
also present some insights into this strategy and how it en-
ables the removal of intermediate layers in the network after
training, with, in principle, minimal performance degrada-
tion (Sec. 4.3).

4.1. Proposed Regularization

Our objective is to reduce the depth of the neural network.
To achieve such a goal, we will incorporate a penalization of
the distance between two consecutive blocks during train-
ing. This is to assist the DNN in learning a target input-
output function 7~ while following the shortest path. This
yields, after training, to identifying blocks that can be re-
moved from the architecture without impacting the perfor-
mance. Specifically, these blocks introduce marginal statis-
tical modification on their corresponding input features. We

Algorithm 1 Our proposed method LaCoOT.

1: function LaCoOT(w™T, D, A\, §)

2 w «Train(w™7T, Dyain, A)

3 dense_acc <—Evaluate(w, Dyy)

4 current_acc < dense_acc

5: while (dense_acc - current_acc) > 4 do
6

7

8

9

R = [Rl,RgA,...,RK}
l < argmin(R)
T} = Identity()
: current_acc <— Evaluate(w, Dyy))
10: end while
11: return w
12: end function

include this constraint in the learning translates into mini-
mizing, besides the loss £, in the form of a regularizer:

K
R max Wa(fix, D), (7)

=1

K
k

where the probability distributions ji; and 7 are the em-
pirical counterparts of the previously defined distributions
wr and v, They are constructed over uniformly-weighted
samples of a N-sized minibatch, and so defined by i, =
% Zi\; 0, ;» Where xy ; is taken as the flattened input
vector of the block corresponding to the ¢-th element of the
minibatch. R

Post-training, if the distance Rj, := max W5 (fu, k)
falls below a fixed threshold ¢, the corresponding block T},
can be pruned from the architecture. Namely, this threshold
is related to a tolerated performance drop budget 4.

4.2. Overview on the Procedure

Depicted in Alg. 1, we present here LaCoOT to remove the
layers having the lowest Max-Sliced Wasserstein distances.
Indeed, the layer having the lowest Max-Sliced Wasserstein
distance is likely to have a function close to the identity
function. Therefore, this layer can be linearized, as keeping
it is unnecessary, as illustrated in Tab. 2 in Supp. Mat. Aim-
ing at this, we first train the neural network, represented by
its weights at initialization w™'T on the training set Dyqin
with our regularization set by A (line 2) and evaluate it on
the validation set Dy, (line 3)A We then calculate the Max-
Sliced Wasserstein distance Ry, for each considered layer
k for all the K considered layers, collected in the vector
R (line 6), following Eq. 7. We then find the layer having
the lowest Max-Sliced Wasserstein distance, represented by
its index [ (line 7) and replace it with the Identity (line 8).
In the following steps, this layer is, obviously, no longer
taken into consideration. The performance of the model is
re-evaluated on the validation set Dy, (line 9). Once the
performance on the validation set drops below the threshold

20500



4, the final model is obtained.

4.3. Properties of the proposed regularization

The regularization acts like a soft 1-Lipschitz constraint.
By looking closer into uj and v (the input and output
distributions of the k-th block), the central limit theo-
rem suggests that p; can be regarded asymptotically as a
Gaussian distribution with mean myj and covariance Y.
Then, by employing the delta method, vy can be approxi-
mated asymptotically as a Gaussian distribution with mean
Tk (my,) and covariance J. ,? Y Jx, where Jy, represents the
Jacobian matrix of the block transformation 77.

The constraint iy = v can be interpreted as an orthog-
onality constraint on the Jacobian of the block transforma-
tion, indicating that our regularization imposes a similar ef-
fect as enforcing orthogonality on the Jacobian. This im-
plies a block-wise soft Lipschitz constraint on the neural
network by preserving gradient norms that drive the net-
work to be 1-Lipschitz. This type of constraint was investi-
gated in the literature [ 1, 3, 33], and it has been particularly
shown in [3] that a 1-Lipschitz constraint does not limit the
expressiveness, i.e. the capacity and learning flexibility of
a neural network, for classification tasks. Instead, this reg-
ularization should offer a different stance on the trade-off
between generalization and accuracy. This also coincides
with the results in [28] that highlight the generalization-
enhancing effect of such a regularization. During training,
provided that a proper weight on the regularization (through
some hyperparameter \) is tuned, the neural network’s ex-
pressive power should, in principle, remain intact, while ad-
hering to the least action principle, thereby preventing ar-
bitrary amplification of small differences and big distribu-
tional changes.

Stationary point analysis. The whole optimization prob-
lem can be expressed as:
N4 oL OR

+ A ;

j =L + AR = 6wk0 - 8wk0 8’[1)}60

kO S [[K]]a
®)

where ) is a positive hyperparameter. We then characterize
the stationary point as:

8£+)\8R:O:>)\: oL 1

€))

Bwko Bwko 8wk0

Owg,,

From this equation, since A > 0, we clearly observe that
the loss and the regularizer are antagonists. Hence, while
browsing the parameter space to minimize the loss, unre-
stricted DNNs are rather biased towards increasing inter-
mediate distributional changes in the path they take. These
changes, which can be evaluated when taking the inter-
block distances in the vanilla setting, might be irrelevant:
the DNN can converge to another local minimum in the loss
landscape, with similar performance but without undergo-
ing too many distributional changes.

In the learning process, we recall that the primary objec-
tive is to traverse the gap between the input distribution and
the target output distribution. A crucial threshold is thus
reached when the network’s output converges to the ground
truth. Namely, this inherent distance between the input and
ground truth distribution defines a tight lower bound for the
regularization value, corresponding to the minimal distribu-
tional changing capacity that still has to be maintained in
the network to have a good performance and not to underfit.
This is guaranteed by applying the Triangle inequality:

K

max Wg(ul, var) < Z max Wg(uk, V)
k=1

+ max We (v, var), (10)
where vgr represents the ground truth label distribution.

S. Experiments

In this section, we empirically evaluate the effectiveness
of our proposed approach across multiple architectures and
datasets for traditional image classification setups and ex-
tend it to image generation.

5.1. Experimental setup

Networks and Datasets. On image classification setups,
we test LaCoOT on three widely used models, ResNet-
18, MobileNet-V2, and Swin-T trained on seven different
datasets: CIFAR-10 [30], Tiny-ImageNet [31], PACS and
VLCS from DomainBed [20], as well as Flowers-102 [45],
DTD [9], and Aircraft [40]. To showcase its applicabil-
ity to larger models on diverse tasks, we employ DiT-
XL/2 [47], finetuned on ImageNet [11] for image genera-
tion. For all our experiments, we use the implementation of
the Max Sliced Wasserstein distance available in the POT
toolbox [16]. LaCoOT is only applied in subsequent blocks
having the same dimensionality: this results in a subset of 4,
12, 12, and 28 blocks considered removable for ResNet-18,
Swin-T, MobileNetV2, and DiT-XL/2, respectively.
Baselines. We compare our method with leading depth-
reducing methods: Layer Folding [14], EGP [34], NE-
PENTHE [35], and EASIER [51]. The hyperparameters,
augmentation techniques, and learning policies are pre-
sented in Supp. Mat., mainly following [50] and [51].

5.2. Results

5.2.1. Image Classification

Fig. 2 displays the test performance (top-1) as a func-
tion of the critical path length for CIFAR-10 and Tiny-
ImageNet-200. The results achieved on other setups can
be found in Sec. F in the Supp. Mat. Moreover, Fig. 5 in
Supp. Mat. illustrates the relationship between Critical Path
Length (CPL) and practical resource consumption: as the
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Figure 2. Test performance (Top-1 [%]) in function of the Critical Path Length for ResNet-18 (a,d), Swin-T (b,e) and MobileNetv2 (c,f)
trained on CIFAR-10 (a,b,c) and Tiny-ImageNet-200 (d,e,f). For each dataset/architecture, we showcase the results achieved by LaCoOT
for different values of A, forming in dark blue the pareto frontier of our technique. Top left corner is the best.

CPL decreases, both the inference time and the number of
MACs (multiply-accumulate operation) decrease, indicat-
ing improved computational efficiency and faster inference
speeds.

Critical Path Length. First, we can observe in Fig. 2
that the baseline methods showcase longer critical path
lengths with respect to our method. Indeed, as discussed in
Sec. 2, most methods have been focusing on removing non-
linearities from the networks, leaving the fusion of subse-
quent layers as future work. However, while for Swin-T the
fusion of two linear layers in the MLP block is straightfor-
ward, it is not the case when ResNet is employed: we recall
that there is no analytical solution for merging two consec-
utive convolutional layers when padding is employed in the
second one [49]. Hence, even if multiple non-linearities are
removed from the network with these baselines, the critical
path length only slowly decreases. Unlike these methods,
LaCoOT focuses directly on full blocks divided by skip con-
nections, hence quickly lowering the critical path length.

LaCoOT effectiveness. First, in most setups, we can ob-
serve LaCoOT’s effectiveness. Indeed, for short critical
path length, LaCoOT is the method performing overall the
best, achieving a new Pareto Frontier when )\ is increas-
ing. For instance, for ResNet-18 trained on CIFAR-10
(Fig. 2a), our method reduces the critical path length even

LaCoOT (A = le — 4)

4 300 LaCoOT (\ = 5¢ — 5)
g 200 1 Original (A = 0)

= Random (3 seeds

B 100 : )

2‘5 2‘6 2‘7 28
Critical Path Length
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8 2
) 9
©

o
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=< . E
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] [a}
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b i

- Q
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Figure 3. FID-50k as a function of the critical path length achieved
by a DiT-XL/2 finetuned on ImageNet. It consistently achieves
lower FID when finetuned with LaCoOT, even halving the FID
when two DiT blocks are removed. The generated content is also
better preserved (images for critical path length 26).

further, whereas previous methods could not. Besides, for
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Approach | top-1[%] | MACs [M] | Inference time [ms] | Time

Original | 91.77 | 14019 | 7904043 | 30’
Layer Folding |  88.76 147.53 9.89 & 1.11 160’
EGP 90.64 140.19 7.62 +0.20 376°
NEPENTHE | 89.26 140.19 7.71 £ 0.40 288°
EASIER 90.35 140.19 7.07 £0.18 533
LaCoOT | 9099 | 64.69 |  478+034 | 40

Table 1. Test performance (top-1), MACs, inference time on
a NVIDIA A4500 and training time for ResNet-18 trained on
CIFAR-10. Original refers to the trained model without layer dele-
tion. The best results between Layer Folding, EGP, NEPENTHE,
EASIER, and LaCoOT are in bold.

Swin-T on Tiny-ImageNet-200 (Fig. 2e), LaCoOT some-
times outperforms current methods by 10% for the same
critical path length. Additionally, looking at longer criti-
cal path lengths, we can observe that when A is decreasing,
LaCoOT achieves comparable results to other baselines.
We also report an issue faced with EGP. Indeed, by forc-
ing a layer to have zero entropy, this method could prune it
entirely, hence preventing the signal from passing through
this layer, and thus causing the algorithm to completely fail.
This is what is observed with the MobileNetv2 architec-
ture on CIFAR-10, Flowers-102, DTD, or on Aircraft: from
the first iteration, EGP prunes the last single layer before
the classifier head entirely, leading to its complete removal,
which completely cuts the information flow in the network,
since there is no skip or residual connection at this stage.
Furthermore, on parameter-efficient architectures (such
as MobileNetv2), we can observe that EASIER performs
the best (Fig. 2f), while our method achieves comparable
results (Fig. 2c). However, the advised reader will be able
to put these results into perspective with the aim of EAS-
IER, which focuses solely on removing non-linearities (as
mentioned in Sec. 2). Moreover, the iterative nature of
EASIER results in very few benefits in practice, as shown
in Sec. 5.3. For instance, to achieve a path length of 105
on MobileNetv2, EASIER needs to carry out 34 trainings,
whereas our method requires only one.
Comparison with the original model. Although in cer-
tain setups, such as ResNet-18 on CIFAR-10, LaCoOT ef-
fectively reduces model size while maintaining the original
model’s performance, it often results in some performance
degradation compared to the original model. This is likely
because the model is not re-trained after layer removal. In
contrast, traditional compression schemes typically involve
re-training the model after dropping some parameters to re-
cover performance. We show in Tab. 8 in Supp. Mat. that
the model can recover performance with a healing phase.

5.2.2. Image Generation

Unlike other baselines, which cannot scale due to their iter-
ative nature, we show the possible extension of our method

to foundation models by finetuning a pre-trained DiT-XL/2
on ImageNet with our method LaCoOT for 5k training
steps. For 50k generated samples of size 256256 with a
classifier-free guidance scale of 1.5, Fig. 3 displays the FID-
50k score depending on the critical path length, as well as
examples of generated samples from the pre-trained model,
and from models with two DiT blocks removed.

While no difference is observed when looking at the
FID-50k score for the original model (critical path length of
28), the effect of our technique is visible when DiT blocks
are removed: LaCoOT consistently achieves a lower FID-
50k compared to the pre-trained model. For instance, when
two DiT blocks are removed, we observe that the FID-50k
score is twice as low. This is reflected in the quality of the
generated images: the dog, the volcano, the bird, and the
bear are not really visible, while the last dog contains ar-
tifacts. Indeed, the removal of blocks completely destroys
generated images in the absence of the regularization, while
the generated content is better preserved with its use. There-
fore, as it required only a few fine-tuning steps, our ap-
proach LaCoQOT can be applied and is suitable for founda-
tion models.

5.3. Practical Benefits

In this subsection, we showcase the practical benefits of our
approach in terms of inference time as well as the efficiency
of LaCoOT.

Tab. 1 shows the test performance, MACs, and inference
time on an NVIDIA A4500, as well as the training time for
a ResNet-18 trained on CIFAR-10 for all the considered ap-
proaches. The same analysis for Swin-T and MobileNetv2
is conducted in Sec. D in the Supp. Mat. As anticipated
in Sec. 2, we observe that baseline methods do not reduce
MAGC:s in practice, as they simply rely on non-linearities re-
moval without providing insights on how to merge consec-
utive layers. Unlike its competitors, LaCoOT produces a
model whose inference has been reduced by 40%. More-
over, looking at the training time, LaCoOT is the most ef-
ficient. In Tab. 4 in the Supp. Mat., the same analysis is
conducted for MobileNetv2 on CIFAR-10, corresponding
to Fig. 2c. While Layer Folding, EGP, and NEPENTHE
showcase performance drop at high critical path length, we
achieve comparable performance as EASIER for the same
critical path length in 20 less time, with real practical ben-
efits since the inference time is reduced.

5.4. Ablation Study

In this subsection, we study the impact of A, which balances
the strength of our regularizer. Moreover, to validate the
effectiveness of our proposed importance metric for layer
removal, we compare it with two alternative methods for
selecting which layers to remove. Fig. 4 shows this com-
parison on a ResNet-18 on CIFAR-10.
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Figure 4. Comparison of LaCoOT, BI (theoretical best), and Ran-
dom for ResNet-18 on CIFAR-10. LaCoOT (A = 5) halves the

MACs with minimal performance loss. Higher A values further
reduce MACs while maintaining performance.

Impact of A\. First, in the absence of regularization dur-
ing training (i.e., with A = 0), we can observe that the
Max-Sliced Wasserstein distance is not a faithful indicator
of block importance, since it can be surpassed by random
block removal. Considering our previous theoretical anal-
ysis in Sec. 4.3, this observation is largely expected, since
without our regularization, the blocks operate changes on
the intermediate features’ distribution, which is unneces-
sary. Indeed, when our regularization is incorporated into
the training process, the unnecessary distributional changes
are minimized, and our metric becomes a reliable basis for
ranking the importance of the model blocks. Looking at
Fig. 4, the higher A, the more blocks can be removed with-
out harming performance. Indeed, we can observe that La-
CoOT (M = 5) halves the number of MACs with almost no
performance drop to the dense model. From Eq. 8, selecting
A depends on the user’s goal, since there is a trade-off be-
tween performance and complexity. In general, the higher
the lambda, the more layers can be removed, but potentially
the lower the performance.

Choice of the importance score. LaCoOT is here com-
pared with two alternative methods for selecting which lay-
ers to remove. In the first scenario that we refer to as “block
influence” (BI), we remove layers depending on their im-
pact on the performance. In other words, we remove one
layer at a time by selecting the one impacting the perfor-
mance the least. In a second scenario, referred to as “Ran-
dom”, we remove one layer at a time by selecting it ran-
domly. Based on randomness, error bars have been cal-
culated on 10 seeds. From Fig. 4, we can observe that
LaCoOT achieves a better performance/compression trade-

off compared to the two other approaches Block Influence
and Random, which validates the choice of our importance
score.

5.5. Limitations and Future Work

While effective in alleviating the computational burden of
DNNs, LaCoQT also has some limitations, highlighting op-
portunities for future improvements and research, as dis-
cussed below.

Performance degradation. Compressing existing
parameter-efficient architectures is particularly challeng-
ing, a common issue in the field of model compression.
Indeed, LaCoOT struggles to reduce the depth of an already
underfitted architecture without compromising perfor-
mance, as seen with MobileNetv2 on Tiny-ImageNet-200.
This highlights the challenges of further compressing
already efficient architectures and the need to carefully
manage the trade-off between model depth and perfor-
mance. However, LaCoOT effectively reduces the depth of
over-fitted DNNSs, especially given that only one training is
required to achieve compression.

Extension of LaCoOT with the Gromov-Wasserstein
distance. LaCoOT was primarily designed to operate on
layers where the Max-Sliced Wasserstein distance can be
computed directly. While this distance requires match-
ing dimensions between distributions, our experiments in
Sec. E in Supp. Mat. show that LaCoOT remains effective
even for layers with mismatched dimensions, such as con-
volutional layers that modify the number of filters or feature
sizes. However, we believe that a more principled treat-
ment of such cases—potentially leveraging the Gromov-
Wasserstein distance [60], which allows for comparing dis-
tributions whose supports do not necessarily lie in the same
metric space—remains an avenue for future research.

6. Conclusion

In this work, we have proposed LaCoOT, a new optimal
transport-based regularization strategy. Specifically, we use
the Max-Sliced Wasserstein distance to minimize the dis-
tances between the intermediate feature distributions in the
neural network. This regularization enables, post-training,
the complete removal of layers from the architecture with a
minor impact on performance. Experiments conducted on
three widely used architectures across seven image classifi-
cation datasets have demonstrated LaCoOT’s capability and
effectiveness in reducing the number of layers in the neural
network. Unlike other approaches that rely on an iterative
scheme, we have shown that extending LaCoOT to founda-
tion models is possible since our approach requires only a
few fine-tuning steps. Concerned about the increasing en-
vironmental impact of Al, we hope this work will inspire
future optimization techniques and new approaches for net-
work compression.
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