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Abstract

Video large language models have not yet been widely de-
ployed, largely due to their tendency to hallucinate. Typ-
ical benchmarks for Video-LLMs rely simply on multiple
choice questions. Unfortunately, VideoLLMs hallucinate
far more aggressively on freeform text generation tasks like
video captioning than they do on multiple choice verifica-
tion tasks. To address this weakness, we propose ARGUS,
a VideoLLM benchmark that measures freeform video cap-
tioning performance. By comparing VideoLLM outputs to
human ground truth captions, ARGUS quantifies dual met-
rics. First, we measure the rate of hallucinations in the form
of incorrect statements about video content or temporal re-
lationships. Second, we measure the rate at which the model
omits important descriptive details. Together, these metrics
form a comprehensive view of video captioning.

1. Introduction
Video Large Language Models (VideoLLMs) [11, 43, 52]
have made significant strides in recent years, and improve-
ments in their capabilities have been reflected in rising
scores on benchmarks for both short video [5, 44] and long
video [18, 39, 41, 42, 48, 57]. Despite these strides, Vide-
oLLMs are not yet ready for widespread deployment. The
main challenge is their tendency to hallucinate, with the fre-
quency and severity of these hallucinations increasing along
with the size and complexity of the input video.

Recent studies [3, 28] indicate that while language
models are often effective as verifiers (providing yes/no or
multiple choice answers), they are less reliable as freeform
generators. This disparity highlights a crucial limitation: a
VideoLLM’s ability to verify the presence of an object or
the occurrence of an event does not necessarily extend to
open-ended tasks like dense video captioning. The latter
is particularly important for models assisting users with
perceptual disabilities. Hence, there is a pressing need
for a dedicated benchmark that evaluates VideoLLMs on
their freeform generative capabilities rather than solely on
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Figure 1. Relationship between Hallucination and Omis-
sion. The hallucination and omission cost metrics are correlated;
however, most models exhibit more omissions than hallucina-
tions. Marker size indicates the average caption length per model.
Gemini-2.0-Flash achieves the best performance.

question-answering.
In this work, we develop ARGUS1, a novel benchmark

that evaluates the rate of hallucination in free-form video
captions from VideoLLMs. Unfortunately, measuring hal-
lucination alone is problematic — a model can avoid false-
hoods simply by generating the empty string, and so it is
meaningless to measure freeform accuracy without a dual
metric of completeness. Hallucinations and omissions rep-
resent two sides of the same fundamental challenge — en-
suring both the accuracy and completeness of video under-
standing. To the best of our knowledge, no benchmarks cur-
rently exist that systematically evaluate hallucinations and
omissions in a freeform setting for VideoLLMs.

Specifically, to address this gap, the ARGUS framework
compares the sentences from the VideoLLM generated cap-
tion to the human sentences, and an entailment analysis is
used to quantify the rate hallucinations in the form of (i)

1Named after Argus, the hundred-eyed giant of Greek mythology
renowned for his vigilance and ability to monitor every detail.
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Figure 2. An example annotation (see here) of a video by the
Gemini-2-Flash model. Using our framework ARGUS, we iden-
tify both hallucinations and omissions in this dense caption. We
present the full human and model-captions in Appendix J.

inaccurate summarization, (ii) incorrect visual descriptions,
and (iii) incorrect depiction of temporal relationships. At
the same time, the VideoLLM caption is analyzed to ensure
that it contains all the important statements extracted from
the human caption, and the rate of omissions is quantified.

Our goal with ARGUS is to provide a fair platform for
benchmarking and comparing models in a freeform setting,
as depicted in Fig. 1. We posit that enhancing the accuracy
and comprehensiveness of dense captioning will naturally
bolster other downstream tasks such as VideoQA and rea-
soning, as a more holistic understanding of video content
is inherently acquired. Dataset and artifacts are available at
https://ruchitrawal.github.io/argus.

2. Related Work
Hallucination Evaluations in Vision. Many benchmarks
such as CHAIR [49] and others [24, 27, 55] are object-
centric, employing heuristics to determine the presence
or absence of specific objects. Other approaches, like
POPE [33], use Yes/No questions to assess how well a
model understands a video, while others [36, 51] have
integrated large language models into their pipelines for
end-to-end annotations. These strategies often encounter
challenges related to scalability, incomplete evaluations,
or the introduction of additional errors stemming from the
limitations of using LLMs as end-to-end evaluators. For a
more comprehensive discussion see [37].

While understanding hallucinations is a bit mature
research topic in Image captioning models, doing the same
for videos is still very new. VideoHallucer [58], one of the
first works, evaluates hallucinations in Video-LLMs using
an adversarial binary question-answering approach, where
a model is considered to be hallucinating if it answers
either a basic or a carefully designed hallucinated question
incorrectly. EventHallusion [22] follows a similar question-
answering-based strategy but extends it to both binary and
open-ended questions, focusing primarily on short, single-
event videos averaging 11 seconds in length. VIDHAL [12]
takes a different approach, proposing a caption reordering
task to assess whether Video-LLMs can verify whether a
caption contains more hallucinated content than another.

Existing benchmarks measure a model’s ability to verify the
presence of content, we focus on the more challenging task
of generating open-ended captions. Additionally, unlike
prior works, we measure both hallucination and omission.
We compare our benchmark with other works in Tab. 1,
demonstrating that we are the only dedicated benchmark
for dense captioning. Moreover, we do not lose out on the
number of videos or video length while providing more
fine-grained evaluations than other benchmarks.

Dataset # Vid. Avg.
Sec

Eval.
Strategy

Evals
Video

HallusionBench [22] 20 →4 QA 8
VideoHallucer [58] 948 85.6 QA 1.89
VIDHAL [12] 1000 15.8 Capt. Order 1
Event-Hallu. [65] 397 11.2 QA 1.77

ARGUS (Ours) 500 26.3 Dense-Cap 19

Table 1. Comparison of various video-hallucination bench-
marks. “Evals Video” refers to the number of evaluations done
on average per video, task could be different depending on the
benchmark. Refer to Sec. 2 for the exact tasks.

Limitations of Current QA Approaches. Existing bench-
marks rely on a question-answering (QA) paradigm, where
the model is tested with two types of questions: one ba-
sic type that expects a “Yes” (confirming the presence of
entities) and another that expects a “No” (flagging potential
hallucinations). Although this setup simplifies evaluation, it
suffers from the following limitations - (1) Lack of Depen-
dence on Visual Understanding: Many binary QA-based
evaluations [34, 68] contain questions that can be answered
without processing the visual input. To illustrate this, in
our experiment with GPT-4o on a subset of VideoHalluCer
[58], the text-only model correctly answered 32.52% of ba-
sic hallucination-related question pairs (with 61.33% accu-
racy in the external nonfactual instruct subcat-
egory), despite a 25% chance performance. (2) Verification
Ability Does Not Equate to Strong Generation: Video
LLMs can verify facts in a QA setting yet fail in open-ended
generation; for instance, while LLaVa-OV-7B [30] verified
that there is one chameleon in a clip, it mistakenly generated
a caption describing two [28] (see Fig. 3 for a qualitative
example and Appendix A for quantitative results). (3) Re-
stricted Error Coverage Due to Predefined Scope: The
QA-based approach is limited by its predefined set of ques-
tions, covering only a narrow range of errors and leaving
many hallucinations undetected until free-form captions are
generated. (4) Inability to Capture Multi-Event Hallu-
cinations: QA-based methods, often focusing on isolated
short events, do not account for complex interactions and
temporal dependencies in videos with multiple interrelated
events (e.g., four sequential events with a 50% chance of
guessing correctly in a binary setting), unlike free-form gen-
eration strategies. Please refer to Appendix A for expanded
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discussion on this topic and Appendix B for related work on
Natural Language Inference and Dense Video Captioning.

3. ARGUS: Freeform Captioning Benchmark
We propose ARGUS, a novel evaluation framework to
quantify both hallucinations and omissions in VideoLLM
captions that addresses the drawbacks of previous bench-
marks. We introduce a metric ArgusCost-H that quanti-
fies a model’s average rate of hallucination, and a metric
ArgusCost-O that reflects the rate of omissions in Vide-
oLLM. In the remainder of this section, we detail the com-
putation of the hallucination metric, ArgusCost-H. We use
a similar methodology to compute ArgusCost-O.

We analyze VideoLLMs captions by matching selected
sentences to a corresponding sentence in a ground-truth hu-
man caption. Using this matching, we identify two types of
hallucinations. First, we consider hallucinations where the
model incorrectly recognizes false content in the video. We
identify such errors by using Natural Language Entailment
(with an LLM as a judge) between the VideoLLM sentence
and its matched ground truth. Second, we penalize halluci-
nations in which the sentences are correct on their own, but
the model misrepresents the order of events. It is important
to score these errors, as time is the key difference between
image and video understanding. We check whether the or-
der of sentences that make temporal claims in the Vide-
oLLM caption matches the order of their corresponding
sentences in the human caption, and assign a penalty to each
sentence that is proportional to its level of anachronism.

If the model fabricates an event that did not happen, this
should be considered a content error and not a temporal
error, and therefore left out of the temporal matching.
However, if such a fabrication gets mistakenly matched to a
similar but faraway sentences in the ground truth, this will
disrupt the matching between otherwise correct temporal
statements and cause artificially large error scores. To
prevent hallucinated events from disrupting the temporal
matching, we use a dynamic program that assigns each
event to either the content or temporal error category in
order to minimize the overall temporal matching penalty.

3.1. Sentence-Level Entailment
For a given video, we assume access to a set of m
source sentences annotated by human annotators, i.e.,
S = {s1, s2, . . . , sm}, describing the video in detail.
Similarly, we also assume access to n target sentences
generated by a VideoLLM, i.e., T = {t1, t2, . . . , tn}. Our
goal is to determine whether any of these target sentences
contain hallucinated content that has no grounding in S. If
a target sentence ti is entailed by the source set S, then it
is considered valid; otherwise, it is hallucinated. LLMs and
reasoning models now match human performance on com-
plex logical reasoning tasks [23, 38] and are increasingly

used as “judges” in dynamic evaluation pipelines [31, 66].
We, hence use a strong model, GPT-4o, as the entailment
judge. We tested alternatives like DeepSeek-V3 and the
reasoner DeepSeek-R1 in Sec. 4.3, finding similar results.
We input both S and T to an LLM-judge, which evaluates
each target sentence ti ↑ T along three key dimensions:
• A type ωi ↑ {SUM, VD, DA}, categorizing ti as either a

summary (SUM), a visual description (VD), or a dynamic
action (DA).

• A verdict vi ↑ {EN, CON, UD}, indicating whether ti
is entailed (EN), contradictory (CON), or undetermined
(UD) with respect to S.

• An evidence line ei ↑ {1, 2, . . . , m}↓{null}, correspond-
ing to the location of a supporting sentence in S or marked
as null if no supporting evidence exists.

Why do we need type and verdict categorization? AR-
GUS scores sentences differently depending on their type.
Dynamic actions have an inherent temporal structure, re-
quiring a penalty when their order described in the target
caption deviates from the human caption. In contrast, sum-
marization and visual-descriptions do not follow a strict
temporal order, but should still be checked for entailment.

3.2. Calculating Total Cost
We first separately define for two key components of the
hallucination cost: (1) the base cost, which captures the
penalty for sentences that violate entailment, and (2) the
order penalty, which accounts for temporal misalignment
in dynamic actions. We then unify these costs using a dy-
namic programming formulation that computes the optimal
alignment between the source S and generated caption T .

3.2.1. Base Cost Matrix
We define a cost matrix C ↑ Rn→m, where each entry rep-
resents the hallucination cost for a target sentence ti given
its evidence in the source sentence sj :

Cij =






1, if vi ↔= EN,

0, if vi = EN and ωi ↑ {SUM, VD},
{
0, if j = ei,

1, otherwise,
if vi = EN and ωi = DA.

(1)

Visualized in Fig. 4, the Base Cost Matrix primarily cap-
tures the cost associated with hallucinations based on en-
tailment labels. If ti is not entailed (vi ↔= EN), we assign
a maximum penalty of 1. Conversely, if ti is entailed and
belongs to the summary (SUM) or visual description (VD)
category, we assign a cost of 0. This is because summary
sentences often do not correspond to a specific source sen-
tence but rather capture the overall essence of the video,
while visual descriptions provide general scene details that
do not adhere to a strict temporal structure.

For dynamic actions (DA), however, temporal alignment
matters. If ti is entailed, we check whether its supporting
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Figure 3. A Video LLM can correctly answer targeted questions about a video (left; see here) but still generate hallucinated content
when describing the video (right), highlighting the disconnect between verification and open-ended generation. Our approach evaluates
hallucinations at the sentence level from the generated caption, providing a more precise and comprehensive assessment. Refer to Sec. 3.1
to see how we ground each sentence using an LLM judge to compute a hallucination score. Example LLaVa-OV-7B caption and response
on a video from ArgusBench. We present the full human and model-captions in Appendix J

evidence ei is the same as the source index j. If j = ei, we
assign a cost of 0, indicating a correct match. Otherwise,
we impose a penalty of 1, reflecting a misalignment in the
order in which events are described.

3.2.2. Dynamic Programming Formulation
DP State: We define a DP table D ↑ R(n+1)→m where
each entry D(i, j) represents the minimum cost of align-
ing the first i target sentences with the source sentences,
such that the i-th target is matched with source sentence
sj . In addition to tracking the cost, we also need to main-
tain information about the matching structure—specifically,
which source sentences were matched with previous target
sentences. This alignment history is necessary for comput-
ing ordering penalties accurately.
Alignment History: Let Ai,j denote the sequence of
source indices (a1, a2, . . . , ai↑1, j) that represents the op-
timal alignment of the first i target sentences, with the i-th
target aligned to source sj . This alignment history enables
us to evaluate temporal consistency in the sequence of de-
scribed actions.
Ordering Penalty: The ordering penalty function quanti-
fies temporal inconsistencies in the alignment. Given an
alignment history Ai,k, we define:

ε(Ai,k, j) = ϑ ·
∑

r↓i

1
[
ar > j

]

s.t. ωr = ωj = DA and vr = vj = EN,

(2)

where 0 → ϑ → 1 is a penalty factor, and 1[·] is the
indicator function. This function counts ordering violations
between pairs of dynamic actions. A violation occurs when
an earlier action in the target sequence is aligned with a later

action in the source sequence, relative to another action pair.
The severity of these violations increases with the number
of pairs that appear out of order, making sequences with
multiple ordering inversions more heavily penalized than
those with fewer inversions.

Intuitively, as ϑ increases, ARGUS becomes less tolerant
of temporal inconsistencies; sentences placed significantly
out of their correct order may effectively be treated as hal-
lucinations during the DP-recurrence minimization. In our
setup, we use ϑ = 0.1.
Recurrence Relation: Intuitively, D(i, j) equals the total
cost of aligning the previous i ↗ 1 sentences (D(i ↗ 1, .))
plus the base cost of aligning the ith with the jth source
sentence, and an ordering penalty if misalignment occurs.
Formally, the recurrence relation for each i ↑ 1, 2, . . . , n
and j ↑ 1, 2, . . . , m:

D(i, j) = Ci,j + min
k↔{1,...,m}

{D(i ↗ 1, k) + ε(Ai↑1,k, j})}

(3)
When computing D(i, j), we consider all possible align-

ments for the previous target sentence and choose the one
that minimizes the sum of the previous cost, the base cost
for the current alignment, and the ordering penalty based on
the full alignment history. Note, that the base-case here is
D(0, j) = 0 for all j ↑ {1, 2, . . . , m}.
Total Cost: The minimal total hallucination cost is given by
minj↔{1,...,m} D(n, j), and the optimal matching between
the source and target sentences is denoted by An,j→ , where
j↗ is the source index that achieves the minimum cumula-
tive hallucination cost.

However, different VideoLLMs can generate captions of
varying lengths for the same video, making direct compar-
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Figure 4. Proposed dynamic programming formulation for
sentence alignment. Given sentence-level entailment scores from
the LLM-as-a-judge, we compute the matching cost between a tar-
get sentence (ti) and a source sentence (sj) by combining the en-
tailment score with a temporal order penalty (ωij). The overall
score follows the recurrence relationship defined in Sec. 3.2.

isons of cumulative hallucination cost unfair, as longer cap-
tions face higher penalties. To address this, we normalize
the cost by computing the maximum possible hallucination
cost for a given video, VideoLLM pair. This maximum
cost is given by (n ↗ d) + ϑ · d(d↑1)

2 , where d represents
the number of dynamic-action targets with entailment. The
first term accounts for the worst-case base cost when all
non-entailed or non-dynamic targets receive the maximum
penalty. The second term represents the highest possible or-
dering penalty, which occurs when all dynamic actions are
perfectly inverted. We then define the normalized halluci-
nation metric, i.e., ArgusCost-H, defined as the ratio of the
observed cost to the maximum possible cost, as follows:

ArgusCost-H:
(minj↔{1,...,m} D(n, j)

(n ↗ d) + ϑ · d(d↑1)
2

)
· 100. (4)

Omission Cost: Omission refers to information present
in the human-annotated caption that is missing from the
model-generated caption. The normalized omission cost,
ArgusCost-O, is assigned just by reversing the roles of
the source (S) and target (T ). We then assess whether
each line in the human caption can be entailed by the
LLM-generated caption. If a human-annotated sentence
is not entailed, it indicates that the model-generated caption
has omitted that information.

4. Benchmarking Video-LLMs
We detail how we curated our evaluation dataset and de-
scribe evaluations conducted on several VLMs, along with
insights derived from the ArgusCost trends.
4.1. ArgusBench: Curation and Statistics
We collect 500 videos along with their corresponding
dense-caption pairs from three sources. First, we utilize
existing video understanding datasets [7] that already con-
tain captions. These videos are manually verified by hu-
man authors, and received well in the community. Sec-
ond, we incorporate text-to-video generation datasets [17],

which include reference videos and short prompts. Since
these prompts are insufficient for dense captioning, we man-
ually annotate 10 such videos. Lastly, the authors curate
additional videos from publicly available sources, such as
YouTube, under Creative Commons licenses. We curate
30 such videos, and also manually annotated, with cross-
validation among the authors.

In Fig. 5 we provide a statistical analysis of our dataset,
including our video length distribution, where nearly a
quarter of the videos between 15 and 20 seconds, while
12% exceed 60 seconds. Fig. 5-middle shows the distri-
bution of word counts (x-axis) in human captions from
ArgusBench, highlighting the rich density of our textual
descriptions, averaging 477 words per video and 24.4
words per second. Additionally, Fig. 5-right visualizes the
distribution of sentence lengths (x-axis) in human captions
from ArgusBench, illustrating how different sentence types
contribute to each length category. For instance, we observe
approximately 300 sentences with a length of around 20
words, which appear to be fairly evenly distributed across
the three sentence categories. Unlike some existing datasets
that over-represent one category, our benchmark maintains
a balanced distribution, with approximately equal parts
falling into each sentence type. We provide additional
details on the types of video clips in our benchmark
in Appendix F. Our sentence-level evaluation provides a
much finer-grained analysis, averaging ↘19 evaluations per
video compared to 1-2 questions per video in the baseline
benchmarks.

4.2. Evaluations & Insights
In this section, we evaluate a range of closed-source and
open-source Video-LLMs using the ARGUS framework,
and examine performance trends along with key challenges
faced by different models. In total, we evaluate 23 video
models, including 18 open-source models and 5 state-of-
the-art proprietary ones. We sample a total of 16 frames
per video (unless specified otherwise) to evaluate the mod-
els. If a model has a predefined frame sampling strategy,
we adapt it else we apply uniform sampling. Further details
on the evaluation setup, including model checkpoints, com-
putational and monetary costs, evaluation prompts, etc, are
provided in Appendix C.

Video-LLMs have a hallucination problem. We present
the ArgusCost-H–the normalized hallucination costs–for
different models in Fig. 6, where we note that even the
best-in-the-market Video-LLMs generate hallucinated con-
tent frequently, with significant cost variation across models
and training strategies. While Gemini-2.0-Flash achieves
the lowest ArgusCost-H at 41%, outperforming both GPT-
4o and GPT-4o-mini (each at approximately 44%), its larger
counterpart, Gemini-2.0-Pro, performs worse at 48%. In
contrast, the difference in scale between GPT-4o and GPT-
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Figure 5. ArgusBench Statistics: video lengths (left), word-counts (middle), and sentence-length (x-axis) distribution by sentence-type
(right). Our dataset has a balanced representation across durations and sentence types, and a high word-count density.
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hallucinated content. Although summary errors are low, stronger models still fabricate visual details despite improved dynamic action
descriptions. Open-source models are ordered by size along the x-axis. Lower ArgusCost-H is better.

4o-mini has little impact on ArgusCost-H. The Gemini-2.0
series also shows a clear improvement over the 1.5 series,
with Gemini-1.5-Flash trailing behind at 58%.

Among open-source models, LLaVA-Next-Video (DPO)
achieves the best result with a ArgusCost-H of 45%, clos-
ing the gap with proprietary models. However, its non-DPO
version performs significantly worse at 59%, highlight-
ing the potential role of reinforcement learning-based post-
training strategies in reducing hallucination. Other strong
performers in the open-source category include Qwen 2.5-
VL (7B) and MiniCPM-V-2.6, both with ArgusCost-H be-
low 50%. On the other hand, the worst-performing model
is InternVL2 (4B), with a ArgusCost-H of 80%, indicating
that smaller models are not inherently more prone to hallu-
cination. In fact, some smaller models, such as SmolVLM2
(2B) and Qwen 2.5-VL (3B), perform (ArgusCost-H around
55%) substantially better than even some larger models.

Fig. 6 also breaks down ArgusCost-H by sentence type,
showing that “summary” sentences contribute minimally–
likely because each caption contains only a few, which mod-
els generally handle well. However, we observe that pro-
prietary models like Gemini-2.0-Flash and GPT-4o exhibit

slightly higher summary sentence errors than some weaker
open-source models. We qualitatively examined these er-
rors and found that these models tend to generate abstract
interpretations of motives, atmosphere, and mood, espe-
cially when such information is subjective and cannot be re-
liably grounded. Errors in visual descriptions and dynamic
actions are fairly evenly distributed among poorly perform-
ing models. However, as we go from models with high
to low ArgusCost-H, errors in dynamic actions decrease
more rapidly than in visual descriptions, suggesting that
stronger video models are more reliable at describing tem-
poral events than at avoiding fabricated visual details. We
present additional results on ArgusCost-H breakdown by
verdict-type (contradiction v/s underdetermined), and cost-
type (base-cost v/s order penalty) in Appendix G.
Do hallucination rates correlate with omission rates?
Two competing factors govern the relationship between
hallucinations and omissions. First, overall stronger models
may have lower hallucination rates and also reduced
ArgusCost-O. Alternatively, weaker models may tradeoff
hallucination and omission by being more (or less) verbose,
thus causes an inverse relationship between the two. We
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observed both of these trend types when we analyzed the
relationship between hallucination and omission across
model families, as shown in Fig. 1. We find a moderately
high Pearson correlation of 0.65, supporting the first hy-
pothesis. Most models lie above the y = x line, indicating
they omit more than they hallucinate. Notably, despite
a significant improvement in ArgusCost-H for Gemini-
2.0-Flash (41%) compared to Gemini-2.0-Pro (48%), its
ArgusCost-O remains around 60%. In contrast, GPT-4o and
GPT-4o-mini have similar ArgusCost-H (44%), but GPT-4o
exhibits a 5% lower ArgusCost-O. LLaVA-Next-Video
(DPO), which performed close to proprietary models in hal-
lucination (45%), has a much higher ArgusCost-O (85%),
suggesting the model plays it safe and avoids generating
uncertain content, often missing important details. In com-
parison, Qwen 2.5-VL (7B) and MiniCPM-V-2.6 achieve
both low ArgusCost-H and ArgusCost-O, making them
better opensource choices. In Fig. 1, marker size indicates
average number of sentences in captions generated by each
of these models; we do not see any trends corresponding to
this — longer captions do not necessarily lead to higher or
lower hallucination. When we perform a correlation analy-
sis, we find no correlation (0.09) between model-generated
(average) caption length and ArgusCost-O, while we
observe a low positive correlation (0.32) between caption
length and ArgusCost-H. We also investigate which other
characteristics of the video or the human-generated caption
may correlate with hallucination and ArgusCost-O. For
instance, we find that both ArgusCost-H and ArgusCost-O
have mild positive correlation (↘ 0.25) with the clip
duration (in seconds). We present additional results in
the Appendix G due to space constraints.

Does scale help reduce hallucinations and omissions?
In our discussion of Fig. 6, we showed that smaller
Video-LLMs do not necessarily hallucinate more and
can sometimes even outperform larger models. How-
ever, that analysis grouped all models together, meaning
factors like architecture, training data, and other differ-

ences would have influenced the results—not just scale.
To better isolate the effect of the model scale, we ana-
lyze ArgusCost-H and ArgusCost-O within 4 model fam-
ilies: SmolVLM2 [1], mPLUG [63], Qwen [62], and In-
ternVL2 [10] with sizes ranging from sub-billion to 8 bil-
lion parameters in Fig. 7 (Left, Middle). We find that
for most model families, increasing scale improves perfor-
mance—both ArgusCost-H and ArgusCost-O decrease. For
example, in the SmolVLM2 family, scaling from 256 mil-
lion to 2 billion parameters improves hallucination perfor-
mance by over 15% and omission performance by 5%. Sim-
ilarly, Qwen 2.5-L improves by 10% for hallucination and
8% for omission. However, this trend does not hold for
the InternVL2 family, where ArgusCost-H and ArgusCost-
O initially increase from 1B to 4B parameters before de-
creasing at 8B, ultimately returning to the level of the 1B-
parameter model. It remains an open question what ex-
act components in the InterVL2 training pipeline led to the
emergence of such behavior since the smallest InternVL2
(1B) is on par with other smaller 256M and 500M models.
We leave this investigation for future work.

Effect of frame sampling rate Previously, we sampled
16 frames per video for each model since the smallest max-
imum frame limit among the models in our pool was 16.
However, some models can handle up to 64 frames or more,
so we now investigate how increasing the total number of
frames affects ArgusCost-H and ArgusCost-O. We perform
this ablation on a subset of 50 randomly sampled videos
from our benchmark. We present the results in Fig. 7. We
find that Gemini models and SmolVLM2 consistently im-
prove in both ArgusCost-H and ArgusCost-O as the num-
ber of frames increases, suggesting that these models ef-
fectively leverage additional frame information to generate
more reliable captions—reducing both fabricated and omit-
ted information. For example, the ArgusCost-H for Gemini-
2.0-Flash improves by 10.02% when increasing from 2 to
64 frames, while SmolVLM2 improves by 12.38%. How-
ever, for some open-source models, such as MiniCPM-V-

20286



Model ArgusCost-H

Intra-Prompt Inter-Prompt

SmolVLM2 72.7 ± 2.9 73.0 ± 3.0
InternVL2 83.4 ± 1.6 83.4 ± 1.6
MiniCPM-V-2.6 69.2 ± 2.4 67.0 ± 2.4
Qwen2.5-VL 62.1 ± 2.8 62.9 ± 2.9

Table 2. Sensitivity to the Prompt. We sample multiple dense
captions by varying prompt parameters and compute ArgusCost-
H. The low standard deviation of ArgusCost-H across many
Video-LLMs demonstrates its robustness.

DeepSeek-R1

DeepSeek-V3
GPT-4o

LLaMA-3.3
Qwen-2.5

DeepSeek-R1

DeepSeek-V3
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LLaMA-3.3

Qwen-2.5

1.00 0.98 0.96 0.93 0.86
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Figure 8. Sensitivity to different LLMs-as-judge. High Pear-
son ranking correlations across different LLMs-as-judge indicate
strong agreement in evaluations and robustness in ranking trends.

2.6 and Qwen2.5-VL, the effect on ArgusCost-H is less
clear. MiniCPM-V-2.6 initially worsens as the number of
frames increases but then drops back to a similar level as
with 2 frames at 64 frames. Qwen2.5-VL follows an inverse
pattern, where hallucination first improves but then worsens
at 64 frames. For omission (Appendix G), all models show
consistent improvement as the number of frames increases.
This suggests that while using more frames can help mod-
els capture more information and reduce omissions, models
may also struggle to balance relevant and irrelevant details,
leading to greater reliance on learned patterns, abstraction,
or speculative inferences rather than staying grounded in the
actual video content. Additionally, attention and memory
limitations can force models to summarize or interpolate
details inaccurately, further increasing the risk of halluci-
nations.

4.3. ARGUS Sensitivity Analysis
Since one of the important steps of our evaluation pro-
cess involves inherent stochasticity—such as the choice of
prompt for generating captions—one concern is whether the
observed trends generalize. To address this, we conduct
a sensitivity analysis on a subset of 50 randomly sampled
clips, evaluating intra-prompt variation, inter-prompt varia-
tion, and the choice of LLM-as-judge.

For intra-prompt analyses, we sample three captions
for each model using our default prompt (“Describe the
video in great detail.”) at the default decoding temperature
and analyze the variation in ArgusCost-H. For inter-
prompt analyses, we run experiments with three additional
prompts: “Explain the content of this clip thoroughly.”,
“Can you summarize all the key elements and events of
this video?”, and “Walk me through this video scene by
scene.”, and analyze the variation in ArgusCost-H. Tab. 2
shows low standard errors in the range of 1–3 for all
model settings. As expected, the error is slightly higher in
inter-prompt setting compared to the intra-prompt setting.

Another potential source of variation is the choice of
LLM used as the judge for generating NLI judgments, as the
entire evaluation process depends on it. By default, we use
GPT-4o. However, since GPT-4o is also one of the models
being evaluated, there is a possibility of self-bias. To inves-
tigate this, we conducted experiments using four additional
LLM-as-judge models from different families and sizes, all
of which are strong in NLI evaluation: DeepSeek-R1 [23],
DeepSeek-V3 [35], LLaMa-3.3 [20], and Qwen-2.5 [62].
Fig. 8 presents the Pearson ranking correlations r between
rankings produced by different judge models. We find
that these correlations are very high (r ≃ 0.92), indicating
strong agreement across judge models. Notably, GPT-4o
(our default judge) has a ranking correlation of r = 0.96
with DeepSeek-R1, r = 0.97 with DeepSeek-V3, r = 0.93
with LLaMa-3.3, and r = 0.92 with Qwen-2.5, suggesting
that our evaluation remains robust when a frontier judge
model is used. A detailed discussion and additional sensi-
tivity analyses are provided in Appendix D. Additionally,
we conducted a human study to assess the reliability of our
LLM-based evaluation, where we observed a high average
agreement rate of 91.26%, with most disagreements arising
from fine-grained visual details. Further methodology and
analysis are provided in Appendix E.

5. Discussion & Conclusion

In this work, we present ARGUS, a first-of-its-kind eval-
uation framework for quantifying hallucinations and omis-
sions in dense video captioning, addressing key limitations
of previous QA-based approaches. We propose dual met-
rics, ArgusCost-H and ArgusCost-O, to assess the accuracy
and completeness of generated captions. Our experiments
show that even top VideoLLMs, such as Gemini-2.0-Flash,
produce a significant amount of hallucinated content, high-
lighting the gap between targeted verification and open-
ended generation. Moreover, these trends are consistent
across multiple samplings, varied input prompts, and dif-
ferent LLMs-as-judges. These findings emphasize the need
for future research to mitigate hallucinations and improve
the overall accuracy of dense video captions.
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David Jacobs, Gowthami Somepalli, and Tom Goldstein.

20289



Cinepile: A long video question answering dataset and
benchmark. arXiv preprint arXiv:2405.08813, 2024. 1

[49] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor
Darrell, and Kate Saenko. Object hallucination in image cap-
tioning. arXiv preprint arXiv:1809.02156, 2018. 2
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