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Abstract

Neural video codecs (NVCs) have seen fast-paced advance-
ment in recent years and already perform close to state-
of-the-art traditional video codecs like H.266/VVC. How-
ever, NVC investigations have so far focused on improving
performance for classical perspective video leaving the in-
creasingly important 360-degree video format unexplored.
In this paper, we address this issue and present how existing
NVCs can be optimized for 360-degree video while also im-
proving performance on perspective video. As no suitable
datasets for neural 360-degree video compression exist, we
publish a large-scale 360-degree video dataset consisting
of more than 6000 user generated 9-frame sequences with
resolutions ranging from 0.5K to 8K. We propose a novel
method for training data augmentation exploiting the spher-
ical characteristics of 360-degree video that shows to be
crucial for achieving maximum compression performance.
An additional positional feature encoding further supports
the NVC in dynamic bitrate allocation notably improving
the performance for both 360-degree and perspective video.
Overall, we achieve rate savings of almost 8% for 360-
degree video and more than 3% for perspective video with
minimal complexity overhead. The dataset is available
at: https://huggingface.co/datasets/FAU-
LMS /UGC360. Source code and pre-trained model weights
are available at: https://github.com/FAU-LMS/
NVC360.

1. Introduction

360-degree video allows to provide a feeling of presence
and immersion that is unprecedented in traditional perspec-
tive video technologies. This feeling of presence has shown
to support focus, emotional attachment, and motivation in
diverse application areas including education, communica-
tion, and entertainment [5, 25, 46]. However, 360-degree
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Figure 1. 360-degree image in (a) spherical domain representation
and (b) equirectangular projection format. Bjgntegaard Delta rate
savings (c) of our proposed framework for optimizing neural video
codecs for 360-degree video. Tested with DCVC-HEM [29] using
the JVET360 [19], HEVC [7], and UVG [37] datasets. The anchor
is DCVC-HEM trained on perspective video.

video requires immense resolutions in order to match the
human visual systems’ angular resolution such that indi-
vidual pixels are indistinguishable. While this effect is
reached with 8K video for conventional planar perspective
video [15], resolutions of up to 21K are required in or-
der to reach the same effect with 360-degree video [12].
This leads to major challenges in storing and transmitting
360-degree videos and highlights the importance of efficient
360-degree video compression technologies.

As 360-degree video provides image information for an
all-around field of view, its natural representation lies on
the surface of a sphere in 3D space as shown in Fig. 1(a).
Most state-of-the-art image and video processing tech-
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niques, however, have been specifically designed for planar
2D image and video formats. 360-degree video is thus typi-
cally stored and processed in a projected 2D format such as
the popular equirectangular projection format (ERP) shown
in Fig. 1(b). The mapping from the spherical domain to the
projection plane is defined by the projection function &,.
With the inverse projection function &, !, the content can
be projected back to the spherical domain, allowing, e.g., to
render viewports aligned with a user’s head orientation.

In their projected 2D representation, 360-degree videos
can readily be compressed by existing state-of-the-art video
compression techniques like the hybrid video coding stan-
dards H.265/HEVC [52] or H.266/VVC [9], or recent neu-
ral video codecs like the DCVC series [28-31, 50]. For
hybrid video codecs, various coding tools have been in-
vestigated that improve the compression efficiency of 360-
degree video by taking their special characteristics into ac-
count. This includes, among others, alternative projection
formats [64], adjusted bit allocation schemes [20, 66], and
360-degree specific motion models [14, 32, 43, 58].

For NVCs, there are two general approaches that can be
followed. First, provide specialized NVCs for every content
category. Second, provide a versatile NVC that addresses
a variety of content categories. The first approach would
allow highly specialized adjustments for 360-degree video
even if they break compatibility with perspective video. The
second approach would simplify standardization and indus-
try adoption, as only one codec would have to be developed
and maintained. The question, which of these approaches
will be favorable, cannot be answered yet.

We contribute to this field of research and show that it
is possible to optimize an NVC on a new content cate-
gory (360-degree) while maintaining and even improving
the performance for an existing content category (perspec-
tive). This mutual benefit is possible, because there is a
significant overlap of both content domains. Both represent
frame-by-frame image data. Though high-level features like
spatial distortions in 360-degree videos differ from perspec-
tive video, low-level features like edges, textures or gradi-
ents are similar. However, as Fig. 1(c) shows, a naive op-
timization on 360-degree video or 360-degree and perspec-
tive video lacks considerably behind the possibilities of our
proposed 360-degree optimization framework. The frame-
work we propose is applicable to any NVC and is based on
three key contributions:

e We publish a large-scale 360-degree training dataset
(UGC360) consisting of more than 6000 full-frame user-
generated 360-degree video sequences with 9 frames per
sequence and resolutions ranging from 0.5K to 8K, elim-
inating the lack of 360-degree video training data.

* We propose flow-guided reprojection, a novel data aug-
mentation method for 360-degree video that shows to be
essential to reach the highest possible compression per-

formance for both 360-degree and perspective video.

* We introduce a positional feature encoding into the en-
tropy model that supports the model in dynamic bi-
trate allocation and further improves compression perfor-
mance for both 360-degree and perspective video. It is a
lightweight extension that requires only minimal finetun-
ing for integration into an existing NVC

As shown in Fig. 1(c), we reach average rate savings of al-

most 8% for 360-degree video and more than 3% for per-

spective video by employing our proposed 360-degree op-
timization framework with the DCVC-HEM [29] compres-
sion model.

2. Related Work

Since the first pioneering investigations on end-to-end
learned neural image codecs (NICs) in 2017 [3, 55], they
have evolved significantly [4, 11, 26, 39] and already out-
perform state-of-the-art image codecs like VVC intra [9].
Motivated by this, JPEG started the standardization process
for an Al-based image codec called JPEG Al [1, 2], which
is expected to be released in early 2025 [1, 22].

As an extension to NICs, neural video codecs (NVCs)
exploit temporal correlations during coding to further im-
prove compression efficiency. Common concepts for in-
corporating temporal correlations are residual coding and
conditional coding. The early DVC and DVCPro [34, 35]
follow a residual coding concept which is inspired by tradi-
tional hybrid video codecs. A motion compensated predic-
tion is formed based on estimated optical flow, subtracted
from the current frame, and only the residual is coded. The
state-of-the-art DCVC series [28-31, 41, 50] follows a con-
ditional coding concept [8], where context for coding the
current frame is provided as side information to the encoder,
decoder and entropy model. This context is generated from
the last decoded frame or feature space using a context gen-
eration network. Similar to residual coding, it incorporates
an optical flow-based motion compensation.

While considerable efforts have gone into investigating
improved 360-degree video compression in hybrid video
codecs [43-45, 47, 48, 57, 64], NVCs have not yet been
optimized and aligned for 360-degree video. One of the
main obstacles for investigating NVCs for 360-degree video
compression is the lack of suitable training datasets. While
some 360-degree video datasets exist [10, 27, 54, 59, 62],
none provide sufficient unique and high-quality 360-degree
video clips suitable for training competitive NVCs.

However, several related approaches exist for improving
NICs for 360-degree image compression. In [33], Li et al.
propose to estimate a code structure map that is generated
based on image content and 360-degree image latitude. This
code structure map determines how many latent channels
are coded in the bitstream for each latent position to reduce
bits spent on less important channels. In the context of im-
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Figure 2. Sample frames from our UGC360 dataset showcasing its diverse content.

age coding for machines, Zheng et al. propose to estimate
the significance of different pixels for the 360-degree ma-
chine task at hand at the encoder and use that to optimize
the bit distribution in the bitstream [65]. The estimation is
based on content and 360-degree image latitude. A similar
idea is followed in [18], where Gungordu and Tekalp per-
form a saliency estimation at the encoder optimizing the bit
distribution for the human observer. Similar to our proposed
approach, all of these works incorporate position informa-
tion in order to improve the 360-degree image compression
performance. However, unlike our proposed approach, they
focus on 360-degree images only and do not consider po-
tential losses for classical perspective images.

In [36], Mahmoudian et al. follow a different con-
cept, where they perform coding in the spherically uni-
form HEALPix format [17] with specially designed spher-
ical convolutions. While they achieve notable rate savings
for 360-degree images, the resulting NICs are not applica-
ble to perspective images.

3. Method
3.1. 360-Degree Video Dataset

We collected a large-scale 360-degree video dataset for
training neural video compression networks. Our UGC360
(user-generated content 360) dataset consists of 6866 user
generated 360-degree video clips licensed under Cre-
ative Commons [13], which have been collected from the
Vimeo [56] (5053 clips) and YouTube [16] (1813 clips) on-
line video platforms. Each clip consists of 9 frames. We
provide 9 frames per clip instead of the 7 frames per clip
provided by vimeo90k [63] in order to increase the poten-
tial frame distance for investigating bi-directional coding
concepts similar to traditional video codecs [9, 52, 60]. To
ease data handling, the dataset is split intro three subsets

Table 1. UGC360 dataset subsets. Subsets split the overall dataset
into smaller parts based on their resolution to ease data handling.

Subset Resolutions Minimum Maximum  Clips
UGC360-S SK-2.5K 640x320 2560x 1440 5080
UGC360-M 3K - 6K 3072x1536  5760%x2880 1618
UGC360-L 8K 7680x3840  7680x4320 168

UGC360-S, UGC360-M and UGC360-L grouped by reso-
lution as described in Table 1. Overall resolutions range
from 640320 pixels up to 7680x4320 pixels. All clips
are in the common equirectangular projection format. The
9-frame clips have been extracted from 1321 unique videos
employing scene detection using TransNetV2 [51]. Clips
with similar content have been removed from the dataset
using their gist descriptors [40] similar to the process used
for the vimeo90k dataset [63]. Furthermore, scenes with flat
content and low contrast have been excluded. Fig. 2 show-
cases the diverse nature of our UGC360 dataset, which is
publicly accessible via https://huggingface.co/
datasets/FAU-LMS/UGC360.

3.2. Flow-Guided Reprojection

Reprojection. Typically, NVCs are trained using training
patches with limited resolutions that are randomly cropped
from full-size training videos. A common training patch
resolution is M x N = 256 x 256 pixels. For 360-degree
videos, which capture the full spherical view, we can aug-
ment training data not just by cropping from random po-
sitions, but also through random rotations of the spheri-
cal data in 3D space. As the strength of distortions in the
equirectangular projection format varies heavily between
the equator and the poles, this data augmentation supports
the network in learning a broad range of 360-degree video
distortions. All frames of a training video share the same

16145



Original image in spherical domain Rotated image in spherical domain

R=R. (‘Ptcar)Ry(etca.r - egrc)RZ(_‘Pscrc)

c c
srer Star

—1
str = &0 (Plr)

B e >

Sge = sgl(pscrc)
‘5;1 -

Flow-guided reprojection

Reprojected patch =
Original image with overlaid flow guide Reprojected image

Figure 3. Visualization of our flow-guided reprojection. In a first step, the source position pg,. and target position py,. are sampled. The
source position is uniformly sampled within the valid region defined by the flow guide. The target position is uniformly sampled in the
entire image area. In a second step, the source and target positions are projected onto the unit sphere according to (1) and (2). To align the
source position with the target position, the rotation matrix R is then derived according to (3). Applying this rotation to all pixels in the
source image yields the reprojected image from which the target patch is extracted.

3D space rotation. The mathematical procedure is detailed ing the inverse projection function & Las
in the following. ) o
. . Sgre = So (psrc)7 @))
For any 360-degree video projection format, a corre- s = 5071 (pL.). @

sponding projection function £, : S — R? describes the
relation between a 3D coordinate s = (z,y,z)T e S With (65, ©5..) and (65, ©f,) denoting the spherical coor-

Srce? tar?

on the unit sphere and the corresponding pixel coordinate dinate representation of st and s, respectively, the rota-
p € (u,v)T € R? on the 2D image plane. S = { s € tion matrix rotating the sampled source patch position to the
R? | |[slla = 1} describes the set of all pixel coordi- sampled target patch position is then derived as

nates on the unit sphere. The inverse projection function

& 1. R? — S maps the 2D image plane coordinate back R = R. (05 Ry (0 — 05 ) Ra(— 95 )- 3)

to the unit sphere. This allows to uniquely map 360-degree
video between its planar image plane representation and its
natural spherical domain representation.

Using the rotation matrix that rotates the source patch po-
sition pg,. to the target patch position pg,., the positions of
the unknown target samples p,,. in the source format are

For the reprojected patch extraction, a source patch cen- obtained as
ter position p&. = (u.,v<. )T € Ly in the original image _ 1.1
and a target patch center position p,, = (uS,, vt‘;r)T € Tiar Puar—ssic(Par) = &6 (R &, (ptar)) V Pur € Par,  (4)

in the reprojected image are randomly sampled. Zg. and Z;,,
denote the set of all pixel coordinates in the original image
ZTge € RYVXV and the reprojected image ¢, € RV*Y with
resolution U x V/, respectively. The goal of the reprojected
patch extraction is to extract a patch positioned at pf,, in
the reprojected image, whose content stems from a position

where Py, describes the set of pixel coordinates in the target
patch of resolution M x N (typically 256 x 256 pixels).

The unknown target patch sample values @ [p,,| can
then be obtained through interpolation from the original
360-degree video frames X as

PS,. in the original image. This is achieved by rotating the Tiar[Piar) = Tsre (Prar—ssre Prar)) ¥V Prar € Prar ©)
source image in 3D space such that its source patch position
aligns with the desired target patch position. using a suitable interpolation technique. We found that a
mipmapped bilinear interpolation [49, 61] yields the best
To derive the required rotation, the source and target training performance (further details in supplementary ma-
patch positions are first projected onto the unit sphere us- terial).
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Figure 4. Positional feature encoding at the example of the DCVC-HEM model [29].

V}
X C

U

(a) Feature encoding. (b) Kernel extension.

Figure 5. Depiction of (a) the insertion process of the additional
positional feature encoding channel and (b) the extension of the
respective convolution kernels.

Flow-guide. Despite the added flexibility of the de-
scribed reprojected patch extraction procedure, a challenge
with 360-degree video are scenes with a static camera. In
such scenes, large areas might inhibit no or close to no mo-
tion. This lack of motion can impair the training of NVCs,
as the primary goal lies in effectively coding innovation
in dynamic scenes. To ensure that training patches inhibit
sufficient motion, we propose to restrict the extraction of
patches to video areas that exceed a minimum optical flow
magnitude, which we estimate using SPyNet [42]. The flow
guide is obtained by averaging the optical flow magnitude
over all frames and filtering all pixel positions that surpass
a given threshold. The source patch center position pg, for
the reprojection procedure is then uniformly sampled only
from pixel positions in the flow guide. Our proposed flow-
guided reprojection is summarized in Fig. 3.

3.3. Positional Feature Encoding

The spatial position p of a pixel in the projected 360-degree
video determines two aspects that are relevant for the coding
procedure: The strength of distortions and the importance
of that pixel for final video quality. The strength of dis-
tortions might affect the relevant filters for a position, i.e.,

different features might be relevant for different distortion
characteristics. The importance of a pixel affects the desired
rate-distortion tradeoff for that position, i.e., the less impor-
tant a position is, the fewer bits should be used to code that
position. Both depend on the 360-degree projection format.

We address this position dependency by providing posi-
tional information as additional input to the network. The
best performance has been reached by introducing the posi-
tion information only into the entropy model. Fig. 4 shows
the extended NVC network architecture on the basis of the
popular DCVC-HEM [29] framework.

The raw pixel positions p are preprocessed by a posi-
tional encoder. During training, the patch extraction pro-
vides these positions. During inference, the encoder and
decoder can independently construct the position grid from
the known height and width of the 360-degree video. No
additional data has to be transmitted.

A position encoding inspired by the WS-PSNR quality
metric for 360-degree video [53] proved to be most effec-
tive. It encodes the area a pixel covers on the unit sphere
relative to its area on the 2D image plane and contains no
learnable parameters. For the equirectangular projection
with height V', the positional encoding at each pixel loca-
tion p = (u, v)T is derived as [53]

Werp (U, v) = cos <(U_VV/2)7T> .

(6)
While we focus on the equirectangular projection in this
work, please note that this position encoding can also be
derived for other projection formats. For perspective video,
the position encoding is set as wp(u, v) = 1.

The position encoding is then concatenated with the
input feature space of the entropy model as depicted in
Fig. 5(a), extending the channel dimension by an additional
positional feature encoding channel. The involved convolu-
tion kernels are extended accordingly as shown in Fig. 5(b).
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Table 2. BD-Rate (%) in YUV color space with respect to the baseline DCVC-HEM finetuned on vimeo90k. Different models and training
configurations. WS-PSNR used as quality metric for the 360-degree JVET360 dataset, PSNR for the remaining perspective datasets.
Column Average shows the average BD-Rate over all perspective dataset sequences. Highest rate savings for each dataset are marked bold.

Model Training set  FGR | JVET360 | HEVC-B HEVC-C HEVC-D HEVC-E UVG  Average
DCVC-HEM [29]  vimeo90k \ 0.00 | 0.00 0.00 0.00 0.00  0.00 0.00
DCVC-HEM [29]  UGC360 | 248 | 1174 332 8.88 393 991 7.39

v | 698 5.02 -0.78 6.52  -10.00  4.05 2.22

DCVC-HEM [29] U_Gc388;: | 392 2.77 4.50 4.28 706 1.05 1.44
vimeo v o | 112 065 1.41 171 -1055 -0.15  -1.13

DCVC-HEM.360 U'GC3381: | -5.68 | 4.52 1.35 2.18 622 110 115
vimeo | 13| <134 -1.47 219 1221 286 -3.40

HM-18.0 [52] \ 22.83 | 11.06 274 16.02 3.09 10.19 8.27
VTM-22.2 [9] | -1012 | -1943 2884 -13.00  -2882 -1646  -20.34

4. Experimental Results

4.1. Experimental Setup

Datasets. As 360-degree training data, we use the pro-
posed UGC360-S and UGC360-M subsets. UCG360-L is
used for validation. As perspective training data, we use the
vimeo90k dataset [63]. For combined training on UGC360
and vimeo90k (UGC360+vimeo90k), samples from both
datasets are drawn in equilibrium (50:50). For testing, we
use the JVET360 [19] dataset for 360-degree video at a res-
olution of 2048 x 1024 pixels, which is the official dataset
used in standardization. The HEVC Class B, C, D, E [7]
and UVG [37] datasets are used to evaluate performance on
perspective video.

Loss function. For finetuning on 360-degree video, we
use an updated loss function that uses the weighted mean
squared error (WMSE) dwwmsg from [53] instead of MSE
to optimize for the 360-degree specific WS-PSNR quality
metric. For conventional perspective video, the WMSE is
identical to the MSE dwmse = dmsg. The loss function
results as

N
1
L@,z) =+ D - dwwse (@i, @) +13), (D)
i=1

where 7 denotes the frame index, /N the number of consec-
utive frames used for training, &; the reconstructed frame,
x; the original frame, and r; the coded number of bits.
Model. Though our proposed contributions can be
applied to any recent NVC, our investigations focus on
DCVC-HEM [29]. As noted in [24], reproducing the per-
formance of the most recent DCVC-DC [30] and DCVC-
FM [31] models remains an unsolved challenge, since their
training procedures are not open-sourced. To ensure a fair
comparison, we thus use the DCVC-HEM model, whose
training performance could be successfully reproduced.

Training setup. We initialize DCVC-HEM with the
pre-trained weights from [38]. The extended model with
our proposed positional feature encoding is termed DCVC-
HEM-360. For DCVC-HEM-360, the additional convolu-
tion kernel channels are randomly initialized. The networks
are finetuned using 7 consecutive frames, whereby the first
frame is intra coded. The number of frames used for train-
ing the video network thus results as N = 6. Training
is performed in RGB color space similar to the original
model [33] with a patch size of 256 x 256 pixels. In each op-
timization step, a random rate point is trained corresponding
to the A values (85, 170, 380, 840). We finetune for 500,000
iterations using a batch size of 4.

Test settings. For each video, 96 frames are coded with
an intra period of 32 similar to [29, 30, 41]. Rate savings are
evaluated using the Bjgntegaard Delta metric [6, 21] with
pchip interpolation. For 360-degree videos, the WS-PSNR
metric [53] is used to assess the quality of the reconstructed
frames. For perspective videos, the conventional PSNR is
used. The quality metrics are evaluated in YUV color space.
As the model input is RGB, color conversion is performed
using BT.709 color conversion coefficients [23]. DCVC-
HEM finetuned on vimeo90k is used as baseline as the fine-
tuned weights improve slightly over the publicly available
pre-trained weights [38].

4.2. Performance Evaluation

Table 2 shows the rate savings achieved by our framework
for neural 360-degree video compression for DCVC-HEM
and the extended DCVC-HEM-360 with positional feature
encoding. The column FGR denotes whether the proposed
flow-guided reprojection is applied for 360-degree data aug-
mentation. For perspective training data or if FGR is dis-
abled, patches are extracted via random cropping. For con-
text, Table 2 also reports the performance of the traditional
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Table 3. Ablation study investigating flow-guided reprojection.
BD-Rate (%) in YUV color space with respect to default config-
uration Ta for each model individually. All instances trained on
UGC360+vimeo90k.

Ta Ts Tc Tp T

Flow-Guide v v v

Reprojection v v v

Mipmap v v
DCVC- JVET360 0.00 135 434 338 242
HEM HEVC+UVG 0.00 1.61 339 256 1.44
DCVC- JVET360 0.00 153 173 214 222

HEM-360 HEVC+UVG 0.00 1.60 1.64 4.73 6.88

HEVC [52] and VVC [9] video coding standards.

Flow-Guided Reprojection. FGR shows significant
rate savings for each combination of model and training set
for both 360-degree and perspective video data. If DCVC-
HEM is finetuned exclusively on the new UGC360 dataset,
the application of FGR improves rate savings from 2.48%
to 6.98% for the 360-degree JVET360 dataset. For per-
spective data, FGR significantly reduces the losses from
7.39% to 2.22% on average. The same holds true for
DCVC-HEM (DCVC-HEM-360) trained on the combined
UGC360+vimeo90k, where rate savings increase from
3.92% (5.68%) to 7.12% (7.73%) for 360-degree video,
and the average bitrate increase of 1.44% (1.15%) for per-
spective video is turned into average rate savings of 1.13%
(3.40%).

Training set. Training on the combined
UGC360+vimeo90k dataset improves the compression
performance for both 360-degree and perspective video
data compared to training on UGC360 alone. Rate savings
improve from 6.98% to 7.12% for 360-degree video, and
the average losses of 2.22% for perspective video are
turned into slight bitrate savings of 1.13%. As discussed
in the introduction, this mutual benefit is possible because
of the significant domain overlap between perspective and
360-degree video data. Nonetheless, without positional
feature encoding, slight losses of 1.41% and 1.71% still
occur for the perspective HEVC-C and -D datasets.

Positional Feature Encoding. With the extended
DCVC-HEM-360, we eliminate losses for perspective
video while achieving even higher rate savings of 7.73%
for 360-degree video. For the perspective datasets, DCVC-
HEM-360 with FGR achieves robust average rate savings
of 3.40% consistently outperforming the baseline DCVC-
HEM finetuned on vimeo90k. This shows that the intro-
duced positional feature encoding helps the network in re-
liably differentiating between 360-degree and perspective
video content and allows the network to further profit from
the increased diversity of the joint training set. Similar tests

Table 4. Per-frame complexity metrics for the default DCVC-
HEM and DCVC-HEM-360 with positional feature encoding.

Model Parameters GMACs Enctime Dec time

DCVC-HEM 17.523 M 872.00 122 ms 89 ms
DCVC-HEM-360 17.528 M 872.01 122 ms 90 ms

“Evaluated on an RTX 3090 with input video of size 1024 x 512.

for the DCVC [28] and DCVC-TCM [50] models validate
that our approach yields gains for other NVC architectures
as well (further details in supplementary material).

4.3. Ablation Study

Table 3 shows the results of an ablation study investigating
the influence of the different elements of FGR. Results are
shown for DCVC-HEM and DCVC-HEM-360. We train
both models using five training configurations T, - Tg on
UGC360+vimeo90k. Each training configuration employs
a unique set of features from FGR.

Disabling the flow guide (Tg) leads to a bitrate increase
of 1.35% (1.53%) for 360-degree video and 1.61% (1.60%)
for perspective video compared to DCVC-HEM (DCVC-
HEM-360) with all FGR features enabled (T ), demonstrat-
ing the relevance of dynamic content for NVC training. Dis-
abling the mipmap (T¢) yields even higher bitrate increases
of 4.34% (1.73%) for 360-degree video and 3.39% (1.64%)
for perspective video, highlighting the importance of con-
sidering signal theoretic limits (aliasing) during interpola-
tion of the reprojected samples. If not considered, disabling
FGR entirely (Tp) would be the better option for DCVC-
HEM as this does not require resampling. For DCVC-
HEM-360, the effect of disabling the mipmap is less severe
than for DCVC-HEM because it does not rely on local fea-
tures to estimate relative pixel positions. Enabling only the
flow-guide (Tg) also yields significant bitrate increases of
2.42% (2.22%) for 360-degree video and 1.44% (6.88%)
for perspective video. The reprojection procedure shows to
be crucial to reach the highest rate savings. The obtained
rate savings cannot be achieved by exclusion of static con-
tent from training data alone.

4.4. Complexity

Despite the notable benefits for 360-degree and perspective
video compression performance, the positional feature en-
coding in DCVC-HEM-360 shows only minimal complex-
ity overhead over the default DCVC-HEM model, as vis-
ible in Table 4. This is achieved by introducing the posi-
tional feature encoding only in the entropy model, which
works at a spatial resolution that is reduced by a factor of
16 compared to the input resolution. Introducing the posi-
tional feature encoding into additional network components
yields additional complexity, but no benefit in compression
performance (further details in supplementary material).
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Figure 6. Visual results of our DCVC-HEM and DCVC-HEM-360 for the JVET360 ChairliftRide sequence finetuned on vimeo90k or
UGC360+vimeo90k with flow-guided reprojection. The first column shows the bitrate allocation with the overall bitrate, the second
column shows the reconstructed frame with the overall WS-PSNR, the third and fourth columns show two exemplary viewports with their

allocated number of bits and corresponding viewport PSNR.

4.5. Visual Results

Fig. 6 shows a comparison of the bitrate allocation
and quality of the default DCVC-HEM finetuned on
vimeo90k (top row), the default DCVC-HEM finetuned on
UGC360+vimeo90k with flow-guided reprojection (mid-
dle row), and our extended DCVC-HEM-360 finetuned on
UGC360+vimeo90k with flow-guided reprojection (bottom
row) for the JVET360 ChairliftRide sequence. The global
quantization scale has been set for each model individually
in order to achieve the same overall bitrate for all models.

DCVC-HEM finetuned on UGC360+vimeo90k already
learned to allocate less bitrate to the polar areas. How-
ever, introducing spatial context into DCVC-HEM-360
further increases the focus towards the central equatorial
area. The resulting improvement in visual quality also
shows in the viewports. While DCVC-HEM finetuned
on UGC360+vimeo90k already saves bits for the bottom
viewport, DCVC-HEM-360 cuts down bitrate significantly,
while trading only little in quality. For the green view-
port, DCVC-HEM-360 is thus able to spend more bits and
achieve a significantly improved quality over the other mod-
els. This showcases the efficacy of positional feature encod-
ing for visual quality through improved bitrate allocation.

5. Conclusion and Outlook

In this paper, we introduced a broadly applicable 360-
degree optimization framework for neural video codecs that
outperforms naive optimization on 360-degree video signif-
icantly. Our framework improves compression performance
for both 360-degree video and perspective video by lever-
aging the significant domain overlap between both content
domains. We eliminate the lack of 360-degree video train-
ing data by publishing a dataset of more than 6000 full-
frame 360-degree video clips with resolutions ranging from
0.5K to 8K. Our proposed flow-guided reprojection shows
to be crucial to achieve maximum rate savings. It improves
the diversity of content seen during training by exploiting
the spherical characteristics of 360-degree video for data
augmentation. Extending the entropy model by a positional
feature encoding further boosts performance and yields ro-
bust rate savings for both 360-degree video and perspective
video. Using the recent DCVC-HEM compression model,
rate savings of almost 8% are reached for 360-degree video
and more than 3% for perspective video with minimal com-
plexity overhead. In the future, we will investigate training
on additional projection formats to improve NVC versatility
towards different 360-degree video representations.
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