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Figure 1. Given a set of unposed images, HAMSt3R reconstructs the 3D scene as a dense point map with human semantics, attaching
instance segmentation and DensePose information directly to 3D points for human-aware modeling.

Abstract

Recovering the 3D geometry of a scene from a sparse set
of uncalibrated images is a long-standing problem in com-
puter vision. While recent learning-based approaches such
as DUSt3R and MASt3R have demonstrated impressive re-
sults by directly predicting dense scene geometry, they are
primarily trained on outdoor scenes with static environ-
ments and struggle to handle human-centric scenarios. In
this work, we introduce HAMSt3R, an extension of MASt3R
for joint human and scene 3D reconstruction from sparse,
uncalibrated multi-view images. First, we exploit DUNE,
a strong image encoder obtained by distilling, among oth-
ers, the encoders from MASt3R and from a state-of-the-art
Human Mesh Recovery (HMR) model, multi-HMR, for a
better understanding of scene geometry and human bodies.
Our method then incorporates additional network heads to
segment people, estimate dense correspondences via Dense-
Pose, and predict depth in human-centric environments, en-
abling a more comprehensive 3D reconstruction. By lever-
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aging the outputs of our different heads, HAMSt3R pro-
duces a dense point map enriched with human semantic
information in 3D. Unlike existing methods that rely on
complex optimization pipelines, our approach is fully feed-
forward and efficient, making it suitable for real-world ap-
plications. We evaluate our model on EgoHumans and
EgoExo4D, two challenging benchmarks containing diverse
human-centric scenarios. Additionally, we validate its gen-
eralization to traditional multi-view stereo and multi-view
pose regression tasks. Our results demonstrate that our
method can reconstruct humans effectively while preserv-
ing strong performance in general 3D reconstruction tasks,
bridging the gap between human and scene understanding
in 3D vision.

1. Introduction

3D scene reconstruction from uncalibrated images is a fun-
damental problem in computer vision with a wide range
of applications in robotics, augmented reality, and human-
computer interaction. Traditionally, this task has long been
approached by solving a succession of problems [53, 54]



using different algorithmic tools like image matching and
bundle adjustments. However, recent learning-based meth-
ods such as DUSt3R [64] and MASt3R [33] introduced
a new paradigm by directly regressing the 3D geome-
try of a scene, given a pair of images. These methods
not only significantly improved reconstruction quality but
also simplified the pipeline, inspiring numerous follow-
up works [56, 63, 69], including some efforts focused on
human-centric scene reconstruction [37, 41].

Despite these advances, estimating the geometry of
scenes involving people remains a major challenge. Hu-
mans are highly articulated, exhibit complex deformations,
and often appear in self-occluded poses, making their re-
construction significantly more difficult than static environ-
ments. While a complete 3D scene understanding should
ideally facilitate Human Mesh Recovery (HMR)—the task
of detecting and reconstructing people in 3D—humans
themselves provide valuable cues for scene understanding,
such as scale estimation. However, concurrent methods that
jointly reconstruct humans and their surrounding environ-
ment [37, 41] rely on cumbersome optimization-based pro-
cesses, limiting their scalability and practicality.

Furthermore, current learning-based reconstruction
models such as MASt3R have been trained on buildings
and outdoor scenes, with little focus on human subjects. As
a result, they struggle when applied to images containing
people, failing to capture articulated structures accurately
and often producing incomplete or distorted reconstruc-
tions. Addressing this limitation requires integrating addi-
tional human-specific cues into the reconstruction pipeline.

In this work, we present HAMSt3R which extends
MASt3R to explicitly handle human-centric scenes by
jointly reconstructing both humans and their surrounding
environments (see Figure 1). To achieve this, we first lever-
age DUNE [51], a strong image encoder which is pre-
trained by distilling those from several teacher models, in-
cluding MASt3R and Multi-HMR [6], a state-of-the-art
HMR model, to help the network gain human understanding
capabilities. We then introduce additional processing heads
for instance segmentation, dense pose estimation, and bi-
nary mask generation. These components allow our model
to distinguish human regions from the background, esti-
mate dense correspondences based on the SMPL model [38]
(e.g. DensePose predictions [26]), and integrate human-
specific priors into the reconstruction process. By leverag-
ing the outputs of our different heads, HAMSt3R produces
a dense point map enriched with human semantic informa-
tion in 3D. Specifically, each predicted 3D point is classi-
fied as human or non-human, with human points mapped
to precise body locations of specific individuals. Predic-
tions across multiple images pairs can be aggregated with
global alignment, enabling dense, structured human seman-
tics in 3D. By adapting a state-of-the-art stereo-based re-
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construction pipeline to the complexities of human shape
recovery, we offer an efficient and scalable alternative to
existing optimization-based approaches. Our model effec-
tively bridges the gap between general scene reconstruction
and articulated human modeling, enabling high-fidelity 3D
reconstructions from sparse and unstructured image collec-
tions. To train the new human-centric heads, we introduce a
large-scale, multi-view, synthetic dataset of humans in in-
door environments, created by combining the procedural
scene generation of Infinigen [44] with HumGen3D [1] hu-
man generator.

Following [41], we evaluate our approach on two
challenging human-centric benchmarks, namely EgoHu-
mans [31] and EgoExo4D [34], which feature a variety of
indoor and outdoor scenarios with one or several individu-
als across diverse environments. To ensure that our model
maintains strong performance in traditional reconstruction
setting - i.e., scenes without humans- we also evaluate it
for the task of multi-view stereo depth estimation across
several benchmarks following [64]. Additionally, we as-
sess its ability to perform multi-view pose regression on
the CO3Dv2 [46] and RealEstate10K [72] datasets follow-
ing [33]. Our thorough evaluation shows that our method
remains robust across both human-centric and general re-
construction tasks.

The remaining of the paper is organized as follows: after
reviewing the related work, we present our methodology,
followed by a description of our experiments. Finally, we
draw conclusions and discuss potential future directions for
improving human-centric 3D scene reconstruction.

2. Related Work

We review past work on structure-from-motion, multi-view
human reconstruction and both of them jointly.

Structure-from-Motion (SfM) [16, 17, 27] consists in re-
constructing 3D scene geometry and camera poses given a
set of images. The most popular approach is COLMAP [53,
54] that relies on traditional feature matching to perform in-
cremental bundle adjustments. For many years, most work
has focused on improving various parts of this pipeline such
as keypoint detection and description [7, 19, 39, 48, 49],
feature matching [22, 52, 60], initialization strategies [4, 58]
or optimization techniques [36, 65]. Recently, there has
been a significant paradigm shift towards fully-learnable ap-
proaches [10, 21, 57, 62, 64]. In particular, DUSt3R [64]
has shown outstanding performance in unconstrained 3D
reconstruction from as few as 2 images. Their core idea
is to regress pointmaps for each image, expressed in the co-
ordinate system of the first image. Several extensions have
been since proposed including MASt3R [33] which also re-
gresses pixel-aligned dense descriptors, Splatt3r [56] which
outputs pixel-aligned parameters for 3D Gaussian splat-



ting [30], MONSt3R [69] which enables handling dynamic
objects or MUSt3R [11] and CUT3R [63] which focus on
improving efficiency when processing large image sets. In
this paper, we build upon MASt3R to enable joint 3D re-
construction of humans and scenes from sparse uncalibrated
views. While prior methods focus on rigid scene recon-
struction, our approach explicitly incorporates human un-
derstanding while maintaining strong performance on struc-
tures, such as buildings and other man-made elements.

Multi-view Human Reconstruction has been extensively
studied, particularly in controlled environments where cam-
era parameters are known [23, 28, 29, 59]. In such set-
tings, multi-view geometry can be leveraged for accurate
3D shape estimation, effectively transforming single- and
multi-person reconstruction to a triangulation task [27].
When intrinsic and extrinsic camera parameters are avail-
able, single-view reconstruction techniques can also be ex-
tended to multi-view settings by enforcing geometric con-
sistency. For instance, SMPLify [9] has been adapted to
estimate 3D human body geometry in a shared coordinate
frame, where accuracy is assessed by minimizing the 2D re-
projection error of keypoints and silhouettes across multiple
views, ensuring a geometrically coherent model [35]. Re-
cent approaches have explored setups with unknown cam-
era poses, employing end-to-end learning to jointly estimate
camera parameters and 3D human poses [66, 68]. How-
ever, these methods are often limited to single-person sce-
narios [68] or lack scene context integration [66].

Joint Reconstruction of Scene and Humans has been
studied in some very recent concurrent methods. JOSH [37]
begins with an off-the-shelf scene reconstruction model [33,
641]; the resulting geometry offers valuable contact cues that
guide human fitting. HSfM [41] instead assumes accurate
2D human keypoints across views to refine camera poses
and, in turn, the surrounding scene. SynCHMR [71], fol-
lowing the SLAHMR [67] insight that human meshes can
disambiguate SLAM, stitches together camera-frame HMR,
monocular depth, and a human-aware SLAM pipeline be-
fore a global optimisation fuses the scene, cameras, and
a single actor. All three pipelines therefore depend on
pre-computed modules and iterative refinement to reconcile
them. Our method removes these dependencies: in a sin-
gle forward pass, we jointly predict metric 3D point-maps,
dense human semantics, and camera parameters, providing
a fully integrated and markedly more efficient solution.

3. Methodology

An overview of our model is shown in Figure 2. Building on
the DUSt3R/MASt3R architecture, our approach takes two
input images Iy and I; which are encoded using a siamese
ViT encoder. Each image is then processed by a separate
ViT decoder where cross-attention is applied with the to-
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kens from the other image. In addition to the 3D head
of MASt3R (which predicts pointmaps and descriptor fea-
tures for matching), our model is also trained to produce ad-
ditional human-specific outputs, including human instance
segmentation and DensePose predictions [26]. This helps
the model gain a more meaningful understanding of the
human geometry and its relation to the scene, adding rich
semantic information to the reconstruction process. These
outputs can be further leveraged for tasks like SMPL pre-
dictions through an optimization procedure. We first pro-
vide background on MASt3R (Section 3.1), then describe
the image encoder adopted from [51] (Section 3.2) and the
additional heads and training strategy (Section 3.3).

3.1. Background on MASt3R

Given an image pair I, I; € R¥*W>3 (3 channels for
RGB), MASt3R [33] jointly performs local 3D reconstruc-
tion and pixelwise matching. To achieve this, the network
predicts a pixel-aligned pointmap X € R¥*Wx3 for each
image, i.e., containing the predicted 3D coordinates of the
scene point corresponding to each pixel, expressed in the
coordinate system of the first image’s camera. A confidence
map C'is also produced. Additionally, another head predicts
a small descriptor for each pixel, enabling efficient match-
ing via approximate but fast nearest neighbor search.

For training, MASt3R uses a confidence-aware regres-
sion loss for pointmaps and a InfoNCE loss for the local
descriptor learning. We denote its total loss as Lyasir-

In terms of architecture, each image is processed by
a ViT encoder Enc [20] to obtain a feature map F' =
Enc(I) € R"w*d for an image I. A dual ViT decoder
Dec, incorporating cross-attention blocks, then processes
both feature maps while attending to the tokens from the
other image: Fjj, F{ = Dec(Enc(ly), Enc(ly)). Finally,
the prediction heads operate on F{ or Fy, producing pixel-
wise outputs via either a linear head or a DPT head [45]. In
this paper, we exclusively use linear heads.

3.2. A Strong Image Encoder

We replace the original MASt3R encoder with a stronger
image encoder Enc: a distilled ViT-B/14 backbone ob-
tained through the multi-teacher strategy of DUNE [51].
Distillation fuses complementary competencies from three
powerful teachers—(1) a generalist image encoder (DI-
NOvV2 [42]), (2) the encoder of a state-of-the-art multi-
person human-mesh-recovery model (Multi-HMR [6]), and
(3) the MASt3R encoder itself [33]. Their representa-
tions are aligned by the UNIC projection mechanism [50],
yielding visual features that are simultaneously robust for
scenes and humans. Unlike DUNE, which attaches sepa-
rate decoders per task and therefore reconstructs humans
only from single images, our method couples this encoder
with a unified, end-to-end architecture that jointly performs
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Figure 2. Overview of HAMSt3R. From left to right: (1) Input stereo images are processed via a Siamese ViT encoder, (2) extracted
features are passed to dual decoders with cross-attention, (3) separate heads generate 3D pointmaps and dense human semantic information,
in the form of instance segmentation, DensePose, and binary mask predictions. (4) These outputs can be lifted to 3D using the Pointmaps
and can be used, for example, to fit a SMPL body model for each human.

3D scene reconstruction, instance segmentation, and cross-
view human reconstruction.

3.3. HAMSt3R

Unlike MASt3R, which primarily focuses on objects and
scenes (e.g. indoor environments or buildings), our method
— as shown in Figure 2 — is trained on scenes contain-
ing humans. HAMSt3R takes two images, Iy and Iy, as
input and encodes them using a shared Vision Transformer
(ViT) and a cross-attention decoder, generating global fea-
ture maps Fy and F. These feature embeddings are then
utilized by various heads. In addition to the original point
and matching heads, we introduce an object segmentation
head that produces segmentation masks for each individual
in both images and a DensePose head that predicts Dense-
Pose maps for each person, mapping human pixels to the
3D surface of the human body, represented by the SMPL
mesh [38]. The following paragraphs describe these addi-
tional heads in detail.

Instance Segmentation Head. An instance segmenta-
tion head is added to MASt3R, extending the original
backbone with a transformer-based design inspired by
Mask2Former [14]. This head is specifically designed to
segment human instances from the background, generating
masks that capture the full appearance of people, including
hair and clothing. The segmentation branch is supervised
by classification and mask losses following the strategy pro-
posed in [13, 14], but with an extension to account for the
two input views. In particular, the classification loss dis-
tinguishes between human and background, while the mask
loss combines binary cross-entropy and dice loss. The key
idea is that the model’s understanding of 3D geometry al-
lows it to assign consistent instance labels to each person
across different viewpoints.

DensePose Head. The DensePose head is introduced as an
additional branch to predict DensePose maps using SMPL
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projection templates. It consists of a linear layer that gen-
erates a four-channel prediction: an RGB dense pose map
Py, € RIXWX3 " where each pixel is assigned an RGB
color that encodes its corresponding 3D location on the
SMPL template mesh, and a binary mask indicating the re-
gions where the DensePose mapping is valid. The Dense-
Pose representation, when integrated with the 3D recon-
struction, is expected to enhance the model’s ability to rea-
son about human poses, body parts, and their interaction
with the environment, which adds semantics beyond just the
raw geometric points. The predicted DensePose map is su-
pervised by an L2 loss computed as Laqp = ||Pap — Pet|3.
where Py represents the ground truth DensePose map. Un-
like the original DensePose approach that uses discrete
body-part classes, our method employs a continuous map-
ping that directly formulates the problem as a 3D regression
task, as done in [5].

In addition to the RGB DensePose map, the head pro-
duces a binary mask M € RH*W that specifically dis-
tinguishes human regions corresponding to the SMPL pro-
jection — this excludes areas such as hair and clothing —
from the background. This is in contrast to the instance
segmentation mask, which covers the entire human silhou-
ette, including hair and clothing. The binary mask is opti-
mized using a cross entropy-loss L.k, Which ensures that
the SMPL model can be accurately fitted to the relevant hu-
man regions.

Semantic 3D Human Representation. By combining the
outputs of our different heads, we obtain dense point maps
with human semantic information in 3D. Specifically, ev-
ery 3D point predicted by our method can be classified as
either human or non-human, with human points mapped to
specific locations on the body of the corresponding human
instance. An advantage of our method is that we can readily
fit the SMPL body model to every detected human, e.g. for
numerical evaluation (see Section 4.1). This kind of seman-



Figure 3. Results on HumGen3D data (on a scene not seen dur-
ing training), using global alignment: Given a set of images of a
scene (three out of eight of them are shown in the first column),
we run our model on all possible image pairs, and aggregate pre-
dictions from the human heads in 2D, for each view (second and
third columns). We apply the alignment method of MASt3R [33]
to align the individual pointmaps in 3D (fourth column) and they
can be combined into a unified reconstruction (bottom).

tic understanding is crucial for applications like tracking,
behavior analysis, or interaction with the environment.

Dealing with more than 2 views. To handle scenes with
an arbitrary number of images, we run our network inde-
pendently on each possible image pair and align the output
pointmaps in 3D using the procedure from MASt3R [33].
Since instance segmentation is performed independently for
each pair, person IDs can vary across pairs—for instance, a
person labeled as ‘human 1’ in one pair might be labeled as
‘human 2’ in another. To maintain consistent IDs across the
scene, we resolve ID correspondences using 2D overlap be-
fore integrating all pairs into a consistent 3D representation.
For DensePose, we aggregate the predictions for a same im-
age (produced by each pair) by performing a weighted av-
erage of the DensePose outputs, using confidence scores as
weights. This prioritizes higher-confidence predictions, re-
sulting in a more accurate and stable human surface repre-
sentation in 3D. Predictions from multiple image pairs are
subsequently combined after a global alignment step, ensur-
ing a coherent 3D representation of human semantics across
the entire scene. This is illustrated in Figure 3. Note that in
the binocular case, our approach is fully feed-forward.

Training. The DUNE image encoder is frozen to preserve
the distilled features while the decoders and the new heads
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Table 1. Human-centric training datasets used for finetuning
on human-centric scenes alongside the original MASt3R training
datasets. All datasets provide camera pose, depth, and instance
segmentation. BEDLAM’s 9.2k scenes are motion clips from 8
3D environments and 95 HDRIs. For EgoBody, we use an off-the-
shelf segmentation tool [47] to obtain the instance segmentations.

Dataset Domain Type Scenes
HumGen3D Synthetic Indoor 10k
BEDLAM [8] Synthetic Indoor & Outdoor 9.2k
HuMMan [12] Real Studio 339
EgoBody [70] Real Indoor 125

are fine-tuned. The overall training loss £ is a weighted sum
of the MASt3R loss Lyasar, the segmentation loss L, the
dense pose loss Lgp, and the binary mask 10ss Lmask:

L = Lyvasor + A1 Leg + AoLap + A3Lmask, (1)

where A1, A2 and A3 are loss weights; details on their se-
lection can be found in the Supp. Mat. Training is per-
formed by mixing 50% of the original MASt3R dataset with
50% human-specific data in each epoch. For the original
MASt3R dataset, supervision is exclusively applied to the
point maps and the matching head. In contrast, the human-
specific data is used to supervise all heads. This tailored
supervision strategy ensures that each network component
is optimally trained based on the available data. Training
samples consist of image pairs from multi-camera setups or
closely spaced frames from videos, ensuring diverse view-
points while maintaining spatial coherence. All images are
downscaled to a maximum dimension of 518 pixels.

Training Datasets. Obtaining large-scale, multi-view data
with accurate camera poses, depth maps, and parametric
body annotations is particularly challenging for human-
centric scenes. Real-world captures often require special-
ized equipment or extensive manual post-processing, mak-
ing them both costly and error-prone. Consequently, we
rely primarily on synthetic data where camera intrinsics,
poses, and depth can be automatically recorded during ren-
dering. We generate our own training data with the follow-
ing pipeline: For each person in the data, we first sample a
random body shape and pose from the AMASS dataset [40],
then map a human model to it, from the HumGen3D [1]
human generator plugin for Blender. These Humgen3D
humans are then placed in detailed indoor 3D scenes that
are procedurally generated with Infinigen Indoors [44]. Fi-
nally, these scenes are rendered with Blender, along with the
necessary annotations (depth, instance masks, and Dense-
Pose). We generate 524k images, rendered from 10k scenes
and 1000 unique 3D environments, with approximately 5
persons per scene. To increase diversity in environment
types and the number of subjects, we also incorporate BED-
LAM [8], which includes both indoor and outdoor settings,



Figure 4. Illustration of the human-centric datasets used in this
paper and listed in Table 1, namely HumGen3D, BEDLAM, HuM-
Man and EgoBody. For each dataset, we show an input image
(left), along with its corresponding DensePose annotations (right).

and HUMMAN [12], which features single individuals per-
forming complex poses. Lastly, we include EgoBody [70], a
real dataset captured with multiple Kinect sensors that con-
tains up to two individuals per scene and provides accurate
depth maps. A summary of these datasets is provided in
Table | and some examples are shown in Figure 4.

4. Experimental results

We evaluate our approach on both human-centric and tradi-
tional 3D tasks. We first present the evaluation protocol in
Section 4.1 and then discuss results in Section 4.2.

4.1. Datasets and Metrics

Human-centric experiments. We evaluate the effective-
ness of HAMSt3R across diverse indoor and outdoor envi-
ronments, covering various activities involving one or mul-
tiple individuals. Following [41], we evaluate on EgoHu-
mans [31] and EgoExo4D [34], and report different Mean
Per-Joint Position Error (MPJPE) metrics (expressed in me-
ters): W-MPJPE, when measured in the world coordinate
system, PA-MPIJPE, its Procrustes-Aligned version, and
Group-Aligned MPJPE, (GA-MPJPE), after alignment be-
tween people. To obtain 3D joint predictions with our
method, we fit SMPL to our predictions using an optimiza-
tion procedure that minimizes the distance between all pre-
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dicted 3D points of the person, and the corresponding ver-
tices on the SMPL model. This is accompanied by an addi-
tional loss that serves as a prior on the pose and shape, us-
ing VPoser [43] for pose regularization. We build upon the
MvSMPLPFitting framework [15], which extends SMPLify-
X [43] to multi-view settings. For evaluating camera poses,
we also report the average camera translation error TE, and
its Sim(3) aligned version (s-TE), the camera Angle Er-
ror (AE), the Relative Rotation Accuracy (RRA), the Cam-
era Center Accuracy (CCA) and its version computed after
Sim(3) alignment (s-CCA).

Traditional 3D tasks. To ensure that our model still per-
forms well in classical 3D vision tasks, we also evaluate
it for the task of multi-view stereo depth estimation on
KITTI [24], ScanNet [18], ETH3D [55], DTU [3], Tanks
and Temples [32], following [64]. We report the Abso-
lute Relative Error (rel) and Inlier Ratio (7) with a thresh-
old of 1.03 on each test set and the averages across all test
sets. Additionally, we assess the ability of HAMSt3R to
perform multi-view pose estimation on the CO3Dv2 [46]
and RealEstate 10K [72] datasets following [33] and report
the Relative Rotation Accuracy (RRA) and Relative Trans-
lation Accuracy (RTA) for each image pair to evaluate the
relative pose error and we select a threshold of 15° to re-
port RTAQ15 and RRAQ15. Additionally, we calculate
the mean Average Accuracy (mAA30).

4.2. Results

Human-centric experiments. We report human met-
rics in Table 2, comparing various human pose estima-
tion baselines on EgoHumans and EgoExo04D. Specifically,
we evaluate against UnCaliPose [66] and the concurrent
work HSfM [41], as well as a monocular baseline Multi-
HMR [6]. For the latter, we simply select a random view
among the set, to be used as input. For HSfM, we also
provide numerical evaluation before their optimization step
(init). While both HSfM and UnCaliPose jointly reconstruct
humans and cameras, HSfM is more comparable to our ap-
proach as it also reconstructs the environment and leverages
DUSt3R to estimate the cameras. HAMSt3R outperforms
the other baselines on EgoExo04D in World coordinate met-
ric (W-MPJPE = 0.51 m), in particular HSfM (0.56 m) that
uses a global scene optimization (and bundle adjustment
guided by 2D human keypoint predictions) to optimize the
humans, depth maps, and cameras. However, after Pro-
crustes alignment, our performance (PA-MPJPE= 0.09m) is
slightly below HSfM’s performance (PA-MPJPE= 0.06m).
The similar results of HSfM (init) for PA-MPJPE (0.07m)
indicates that most of its human pose estimation accuracy
comes from its strong initialization using the off-the-shelf
HMR?2 [25]. A possible reason for our slightly lower per-
formance in PA-MPJPE is that we discard RGB information
before fitting the SMPL model, making it challenging to



Table 2. Human-centric evaluation metrics on EgoHumans and EgoExo04D.

Method EgoHumans EgoExo04D
W-MPJPE | GA-MPIJPE| PA-MPJPE | | W-MPIJPE | PA-MPJPE |
Multi-HMR [6] 7.66 0.99 0.12 2.88 0.07
UnCaliPose [66] 3.51 0.67 0.13 2.90 0.13
HStM (init) [41] 4.28 0.51 0.06 5.29 0.07
HStM [41] 1.04 0.21 0.05 0.56 0.06
HAMSt3R (Ours) 3.80 0.42 0.14 0.51 0.09
Table 3. Camera pose evaluation on EgoHumans and EgoExo4D.
Method EgoHumans EgoExo4D
etho TE] s-TE] AE] RRA@101T CCA@I101T s-CCA@101 | TE|l s-TEl AE] RRA@1017 CCA@107T s-CCA@107T
UnCaliPose [66] 2.63 2.63 60.90 0.28 0.33 243 1.16  65.61 0.19 - 0.24
DUSI3R [64] - 1.15 11.00 0.61 - 0.49 - 0.33 9.92 0.81 - 0.64
MASt3R [33] 4.97 0.92 10.42 0.61 0.06 0.65 0.96 0.35 11.70 0.79 0.06 0.68
HStM (init) [41] 2.37 1.15 11.00 0.52 0.26 0.49 1.27 0.33 9.92 0.81 0.05 0.64
HSfM [41] 209 075 935 0.72 0.32 0.75 095 036 11.57 0.78 0.07 0.67
DUNE 143 017 351 0.96 0.27 0.97 .03 026 645 0.94 0.25 0.85
HAMSt3R (Ours) | 2.33 0.40 10.24 0.77 0.06 0.75 0.60 0.15 2.85 0.99 0.42 0.87
Table 4. Camera pose evaluation on EgoHumans according Table 5.  Multi-view pose regression evaluation on the
to scene scale. Average results over the entire dataset (All), CO3Dv2 [46] and RealEstate10K [72] with 10 random frames.
compared with a finer analysis based on the split between large- Co3Dv2 | RealEstate10K 1
scale/open scenes (Badminton, Tennis, Volleyball) and smaller en- Method RRA@15 RTA@15 mAA(30) mAA(30)
vironments (Basketball, Fencing, Lego, Tagging). DUSH3R [64] 93.3 88.4 772 61.2
Env.  Method TE| sTE| AE| RRA@I0} CCA@I01 s-CCA@IO0T MAS3R [33] 94.6 919 818 76.4
All DUNE 1.43 0.17 351 0.96 0.27 0.97 DUNE 92.2 90.7 18.7 80.1
HAMSER (Ours) 233 040 1024 0.77 0.06 0.75 HAMSt3R (Ours) 90.7 90.2 76.3 71.4
L DUNE 0.98 0.24 4.78 0.90 0.34 0.93
A8 HAMSER (Ours) 330 066  16.303 058 0.00 051
Small pUNCoR 0w 131 012 23 100 o ot the accuracy of camera estimates. We hypothesize that this

match neural HMR methods that leverage richer appearance
cues. The same trend is observed on EgoHumans, where
we outperform the state-of-the-art method UnCalibPose on
W-MPJPE and GA-MPJPE but not on PA-MPJPE. Notably,
on this dataset, the concurrent work HSfM achieves signif-
icantly better results, particularly on the PA-MPJPE metric
(0.17m for us vs. 0.05m for HSfM), where their global opti-
mization provides only marginal improvements over their
strong initialization (0.06m). Our lower performance on
EgoHumans compared to EgoExo4D is likely due to the
nature of scenes, which often features large, open, outdoor
environments. Our method to estimate SMPL parameters
appears more sensitive to lower-resolution inputs as obtain-
ing accurate SMPL fits becomes difficult when a person oc-
cupies only a small portion of the image.

The camera pose estimation metrics are reported in Ta-
ble 3, where we evaluate our method against HSfM and
UnCaliPose, as well as the original DUSt3R and MASt3R.
To better analyze our performance, we also report cam-
era metrics when estimating the cameras using DUNE. On
EgoExo04D, HAMSt3R clearly outperforms all the other
baselines for all the considered metrics. On the EgoHumans
dataset, DUNE consistently achieves the best performance
overall. In contrast, training our method seems to reduce
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is due to the large scale of some environments in the Ego-
Humans dataset, combined with our use of MASt3R log-
scaling of the 3D regression loss. This non-linear scaling
does not penalize distant points as heavily, which may neg-
atively affect performance on larger scenes. This hypothesis
is further supported by separate evaluations of performance
on large and small scenes, where our method performs sig-
nificantly better on smaller environments; See experiments
in Table 4.

Traditional 3D tasks. Table 6 presents our multi-view
stereo depth estimation results. As expected, overall per-
formance decreases compared to the original DUSt3R and
MASt3R models. This is due to two factors: (1) we use
DUNE’s encoder that distills MASt3R alongside an HMR
model, enhancing human understanding but reducing depth
accuracy for structures (see the drop in performance be-
tween MASt3R and DUNE) and buildings, and (2) we intro-
duce additional human-centric heads and tasks during train-
ing while using 50% human-centric data, further impact-
ing depth estimation in non-human regions. Nevertheless,
HAMSt3R remains competitive, performing on par with or
even surpassing recent deep learning architectures such as
Deepv2D [61]. A similar trend is observed in the multi-
view pose regression results reported in Table 5, where
performance drops on CO3Dv2 but unexpectedly improves



Table 6. Multi-view depth evaluation (ScanNet) denote training on data from the same domain.

Method KITTI ScanNet ETH3D DTU T&T Average
rel. ] 71 rel.l 71 rel.l 71 rel.l 77 rel.l 71 rel.l 771
DeepV2D (ScanNet) [61] | 10.00 36.20 4.40 5480 11.80 29.30 7.70 33.00 890 4640 8.60 39.90
DUSI3R [64] 588 47.67 3.01 7254 3.04 7517 292 7394 293 7851 356 69.56
MASE3R [33] 3.54 65.68 4.17 6522 244 8277 346 66.89 2.04 87.88 3.13 73.69
DUNE [51] 4.88 5076 424 59.68 248 7797 2.69 75.63 2.60 79.19 338 68.65
HAMSt3R (Ours) 5.60 4566 443 5650 296 71.68 531 57.62 3.01 7353 426 61.00

- el

Figure 5. Qualitative results of HAMSt3R. Results from EgoExo4D (left) and EgoHumans (right). Each example includes point clouds

(pink), instance segmentation ( ), and dense pose (

on RealEstate10K. The distillation process is beneficial on
this benchmark (see DUNE’s performance) and the perfor-
mance drop is less important when training HAMSt3R.

Qualitative results are presented in Figure 5, illustrating
human reconstructions from EgoExo4D and EgoHumans.
Our method successfully estimates dense human poses, in-
stance segmentation, and point clouds across a variety of
indoor and outdoor settings. The reconstructions capture
realistic human shapes and spatial configurations, demon-
strating the robustness of our approach even in challeng-
ing scenes. While some minor artifacts are visible in com-
plex environments, our results align well with the quantita-
tive findings, reinforcing our strong performance in world-
coordinate metrics.

5. Conclusion

We have introduced HAMSt3R, the first feed-forward
method for jointly reconstructing people and their surround-
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), with corresponding input images below (Best viewed when zoomed in).

ings from sparse stereo views. Given multiple images
of a scene involving one or several persons, it produces
dense point maps with human semantic information in 3D.
Unlike optimization-based approaches, our method avoids
common drawbacks such as computational slowness and
sensitivity to hyperparameters. Through extensive evalu-
ation, we demonstrate that our approach, combined with
SMPL fitting, outperforms prior methods in estimating hu-
man poses and achieves competitive results to concurrent
work in small environments, all while maintaining strong
performance in general scene reconstruction—even in the
absence of people. For future work, we aim to extend our
method to videos and dynamic scenes, further enhancing its
applicability to real-world scenarios.
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