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Abstract

We tackle the challenge of jointly personalizing content and
style from a few examples. A promising approach is to train
separate Low-Rank Adapters (LoRA) and merge them effec-
tively, preserving both content and style. Existing methods,
such as ZipLoRA, treat content and style as independent
entities, merging them by learning masks in LoRA’s output
dimensions. However, content and style are intertwined,
not independent. To address this, we propose DuoLoRA—a
content-style personalization framework featuring three key
components: (1) rank-dimension mask learning, (2) effec-
tive merging via layer priors, and (3) Constyle loss, which
leverages cycle-consistency in the merging process. First,
we introduce ZipRank, which performs content-style merg-
ing within the rank dimension, offering adaptive rank flex-
ibility and significantly reducing the number of learnable
parameters. Additionally, we incorporate SDXL layer pri-
ors to apply implicit rank constraints informed by each
layer’s content-style bias and adaptive merger initializa-
tion, enhancing the integration of content and style. To
further refine the merging process, we introduce Constyle
loss, which leverages the cycle-consistency between con-
tent and style. Our experimental results demonstrate that
DuoLoRA outperforms state-of-the-art content-style merg-
ing methods across multiple benchmarks. Project:https
//github.com/aniket004/DuoLoRA.git

1. Introduction

Text-to-image diffusion models [6, 27, 31]] have recently
attracted significant interest due to their broad range of ap-
plications. These models can produce images with desired
content and style, overcoming the limitations of earlier ap-
proaches that required extensive training data for neural style
transfer [13]]. They can generate specific images from just
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Figure 1. Content and style personalization using DuoLoRA pro-

vides (1) adaptive rank flexibility, (2) significantly fewer trainable
parameters, and (3) better content-style merging.

one or two reference images, but blending both content and
style remains challenging.

Recently, parameter-efficient fine-tuning (PEFT) methods
like Low-Rank Adapters (LoRA) have become popu-
lar. These methods can capture unique characteristics with a
small amount of data. Consequently, content-style person-
alization can be reframed as a LoRA merging task, where
individually trained LoRAs are combined to achieve efficient
content-style blending. For example, ZipLoRA [29] merges
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content and style by learning masks over the LoRA output
dimensions, assuming that content and style are independent
concepts. This approach provides adequate control over the
diffusion model. However, the requirement for fine-tuning
during inference is a drawback. Additionally, using the same
rank for both content and style LoORAs may not be opti-
mal, as content and style may have different representational
requirements depending on each layer.

In this work, we ask: How can we enable adaptive rank
flexibility to reduce fine-tuning costs while increasing the
separation between content and style distributions? To
achieve adaptive rank flexibility across the layers of the diffu-
sion UNet, we analyze the SDXL model architecture [3, [10].
We observe that UNet layers, with smaller resolutions, pri-
marily influence content generation, suggesting that content
merges should have higher rank in these layers than style
merges. Conversely, the layers, with larger resolutions, are
more crucial for style generation, and the rank constraint
should be adjusted accordingly [3,[10]].

Within this context, we introduce DuolLoRA, a frame-
work for effective content-style merging, composed of three
components: (1) ZipRank, which learns masks within the
rank dimension, (2) improved merging via layer priors, and
(3) Constyle loss, which leverages cycle-consistency across
content and style. In ZipRank, we propose learning masks
in the rank dimension rather than the output dimension, al-
lowing for adaptive rank adjustment and a substantial re-
duction in learnable parameters. To facilitate layer-wise
rank-adaptive merging, we apply rank constraints during
content-style merging, informed by our observations as prior
knowledge. This rank constraint is formulated as a nuclear
norm minimization problem under a [1 sparsity constraint,
improving content-style blending with fewer parameters. To
further disentangle content and style, we introduce Constyle
loss, which leverages cycle-consistency across content and
style. This approach, inspired by CycleGAN’s [45] treat-
ment of content and style as separate domains optimized
through domain translation with minimized reconstruction
loss, enables balanced content-style merging. Unlike Zi-
pLoRA, which treats content and style independently, our
cycle-consistency loss accounts for their interdependent na-
ture, resulting in improved content-style blending.

In summary, the contributions of this paper are as follows:

* We address content-style personalization as a LoRA
merging problem, where we propose learning masks
in the rank dimension instead of the output dimension,
allowing for adaptive rank flexibility with significantly
fewer learnable parameters.

* We analyze the SDXL architecture’s layer prior infor-
mation, finding that layers with lower resolutions pri-
marily contribute to content generation, while layers
with higher resolutions focus on style generation. Based

on these insights, we introduce explicit rank constraints
through nuclear norm minimization under a sparsity
constraint to improve merging.

e We introduce Constyle loss, leveraging the cycle-
consistency across content and style, and we validate
this approach across various benchmarks.

2. Related work

Personalization. Personalizing text-to-image diffusion mod-
els has recently attracted significant attention. Early ap-
proaches, such as Textual Inversion [L1], focus on learn-
ing a text token that represents a particular concept, while
Dreambooth [27]] updates network parameters for person-
alization. Custom Diffusion [22] makes the process more
efficient by fine-tuning only the cross-attention modules.
However, these methods typically handle only a single con-
cept or object. In contrast, some approaches aim to person-
alize both content and style. StyleDrop [31] uses the Muse
transformer network to align the style of generated images
with a reference image. Other recent style learning methods
are - Rb-modulation [26]], Instantstyle [36], [P-adapter [42],
Magic-insert [28]], StyleAlign [[L6], LoRA-composer [41]],
Paircustomization [20], [, 2} 4} |5, [7H9, 114} 17419, 21} 23~
251,130, 132140 143]).

LoRA merging. LoRA [17] has proven particularly effective
for learning from small datasets. Individual LoRA models
are trained for each concept or style, and these concepts can
then be combined through LoRA merging. Methods like
Concept-Sliders [12] and ControlNet [44] also utilize LoRA
merging, though their approaches are primarily suited for
text-based editing. Recently, Shah et al. [29] introduced a
method for LoORA merging by learning orthogonal masks in
the output space of the layer.

3. Method : DuoLoRA

3.1. Problem statement

We address the problem of customizing both content and
style from few examples and generate variations conditioned
on text prompt. We investigate the problem through the
lens of merging individual concepts, where such individual
concepts are learned using LoRAs. Therefore we cast the
concept-style personalization as a LORA merging problem
(as shown in Fig. [I). However, content and style are not
orthogonal, rather those are intertwined concepts. Therefore,
entangling such concepts remains challenging.

In order to efficiently merge content and style specific
LoRAs, we first learn masks in the rank dimension, with
UNet layer-prior informed initialization, explicit rank and
sparsity constraint. To further improve performance, we use
content-style cycle-consistent merging. We explain this as
follows.
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Figure 2. Overview of DuoLoRA. It consists of three components - (1) ZipRank: learning the mask in rank dimension, (2) layer-prior based
merging identifying content-dominant and style-dominant blocks of SDXL UNet, (3) cycle-consistency based merging using Constyle loss.

3.2. ZipRank: Merging in Rank space

We start with providing background on LoRA.

Low-Rank Adaptation (LoRA): In LoRA [17], we fine-
tune neural networks by approximating weight updates using
low-rank matrices. Specifically, the weight update matrix
AW is parameterized as: AW = AB = U,%,.V,T, where
A € RéuxT B ¢ R and r is the rank of the approxi-
mation.

Blending LoRAs optimally presents a significant chal-
lenge. A straightforward approach is to use simple arithmetic
merging, but this is not efficient. ZipLoRA (Fig. 1)
uses the Zipit operation across model weights through
learnable masks in the output dimension as defined below,
ensuring the masks in the weight space remain orthogonal.

Definition 1. Output Dimension Masking (ZipLoRA [29]):
Here we apply a mask to the output dimension by defining
a diagonal mask matrix M,, € RowXdou yith entries n;; €
{0, 1}. The output-masked approximation is:

AI/Vout = MoutAB = MoulUTEr‘/rT-
Letd, = Zf;"’l n4; be the number of active output units.

Our approach, however, focuses on learning masks in the
rank dimension (ZipRank, Fig. [2), which greatly reduces the

number of learnable parameters and provides adaptive rank
flexibility across the LoRA adapters.

Definition 2. Rank Dimension Masking (ZipRank): We
apply a mask to the rank dimension by defining a diagonal
mask matrix M, € R"*" with entries m;; € {0,1}. The
rank-masked approximation is:

AW, = AM,.B = U, M, %, V.T.

Let S denote the set of indices i where m;; = 1, and s = |S)|
is the number of active rank components.

Rank space masking serves two primary motivations: (1)
enabling adaptive rank flexibility during LoRA merging and
(2) reducing the number of learnable parameters. Unlike
ZipLoRA, which targets poorly aligned columns, ZipRank
addresses cross-concept interference by modulating the con-
tributions of specific rank components in the latent space,
allowing for more nuanced control over concept overlap. In
this approach, different concepts (e.g., subject vs. style) are
encoded in distinct subspaces within the rank space. Rather
than reducing the effective rank, rank-space masking ad-
justs the relative importance of specific feature interactions,
providing fine-grained control without entirely nullifying
components. ZipRank is designed to separate the style and
content adapters while minimizing the number of learnable
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Figure 3. SDXL selective weight scaling. The scaling parameter ()
has been applied to the content-dominant blocks (up_block. 2,
down_block.2, and mid_block). We observe that with a
smaller «, the model fails to generate the content and instead
focuses solely on the style. In contrast, increasing « allows the

model to generate the content specified in the prompt.

parameters. This approach reduces overfitting, especially
when training on small datasets, and introduces adaptive
rank flexibility during the merging of LoRAs. We have also
shown that under the same parameter budget, the approxima-
tion error resulting from rank dimension masking is less than
or equal to that from output dimension masking in Theorem.
1 (supplementary).

3.3. Layer priors
3.3.1. How content style is encoded in SDXL

Understanding how content, style, and similar informa-
tion are encoded within a diffusion UNet is crucial for en-
abling both local and global edits. We hypothesize that
in SDXL, layers with low resolutions (e.g.,up_block. 2,
down_block.2, mid_block, with resolution < 32)
capture localized updates, such as content details,
while layers with high resolutions (e.g.,up_block.1,
down_block.1, with resolution >= 32) capture global
updates, such as the overall style of the image.

This hypothesis is motivated by the structural design of
the SDXL model: layers with low resolutions, typically in
the earlier stages of the U-Net, focus on small, localized
regions, allowing them to encode essential spatial details,
shapes, and structures. This fine-grained attention enables
accurate representation of core content elements, like objects
and scene layouts, aligning closely with the input prompt.

In contrast, layers with high resolutions, often in deeper
sections of the model, capture style by blending and har-
monizing details across larger regions. This broader scope
makes them well-suited for encoding global stylistic features
like color gradients, textures, and lighting. Such attributes
require a coherent application across the image rather than
precision in spatial detail. Consequently, high resolutions
are believed to play a crucial role in generating the overall
aesthetic and mood of the image, supporting their role in

style encoding.

To verify the hypothesis, we use a layer-freezing simula-
tion via weight scaling. This method allows us to selectively
reduce the contributions of specific layers during inference,
enabling us to observe the distinct roles that different resolu-
tions play in image generation.

We begin by identifying the layers in the SDXL U-
Net architecture associated with low and high resolu-
tions. Layers such as up_block.2, down_block.2,
and mid_block have resolutions smaller than 32, while
layers like up_block.1 and down_block. 1 have reso-
lutions larger than 32.

Next, we apply selective weight scaling to simulate a
“freezing” effect. We scale the outputs of either low- or high-
resolution layers by a small factor, a (e.g., 0.1), to reduce
their influence in the generation process. Scaling down
the low-resolution layers diminishes their impact on content
details, while scaling down the high-resolution layers lessens
the effect on style features.

For instance, when using the prompt,p = “A cat on
a chair in the style of impressionism”
during inference, we scale down the weights of the low-
resolution layers (up_block.2, down_block.2, and
mid_block) by a scalar factor a. By varying «, as shown
in Fig. 3] we observe that lower values of « generate the style
but fail to capture the object (i.e., the “cat”). As we increase
«, the object becomes visible in the generated image. This
trend, illustrated in Fig. 3] supports our hypothesis that
low-resolution layers (up_block.2, down_block.2,
and mid_block) contribute to content generation,
while layers with higher resolution (up_block.1l and
down_block. 1) contribute to style. These observations
align with prior findings in the literature [3].

Recent works, like B-LoRA [10]], have identified specific
layers involved in content (W4 in SDXL) and style (W5
in SDXL). However, these findings are highly specific and
may not generalize widely. Rather than adhering strictly to
these findings, we incorporate this knowledge in a more gen-
eralized way by blending content-style LoRAs. In SDXL,
we observe that layers up_block.2, down_block.?2,
and mid_block, which have lower resolutions (< 32), are
more involved in content generation. Conversely, layers
up_block.1l and down_block. 1, with higher resolu-
tions (>32), contribute more to style generation. Building
on this observation, we apply a prior-informed initializa-
tion strategy and implicit rank constraint during the merging
process. For instance, during merging, we enforce sparsity
along with the implicit rank constraint.

3.3.2. Prior-informed merger initialization

Instead of initializing the merger masks (m. and mg in
Fig.[2) in the rank dimension with all ones, we incorporate
layer-specific information to enhance the merging process.
To this end, we use the observation of content-style encoding
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in SDXL architecture made earlier. To capture the domi-
nance of content and style in different layers, the masks for
the merged LoRAs are initialized using content (7¢opeent) and
style (Tyy1e) thresholds. In content-dominant layers, more
ones are assigned to content merger m. than style merger
mg, while the reverse is applied in style-dominant layers.
The process begins with a normalized random vector, using
thresholds to determine priority for content or style based
on their ranks, defaulting to all ones when ranks are equal.
For other layers, LoRAs are initialized with all ones to adap-
tively balance content and style merging. As demonstrated
in Tab. [§] this adaptive initialization improves performance.
The threshold ablation is shown in Tab.[7] and the detailed
algorithm is provided in the supplementary.
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Figure 4. Rank analysis. We plot the frequency of ranks across
low-resolution layers (i.e., up_block.2, down_block. 2, and
mid_block with a resolution < 32) and high-resolution layers
(resolution >= 32) in content and style mergers post-training. The
rank distribution confirms that in SDXL UNet architecture, for
low-resolution layers, Rank(m.) > Rank(ms), while for high-
resolution layers, Rank(ms) > Rank(m.).

Algorithm 1: Rank-constrained Layer-prior Merging
Input: SDXL-UNet, content merger (m.), style
merger (m)
Output: Loss Liayer prior for merging layers
if Resolution(SDXL-UNet layer) < 32 then
// Rank(m.) > Rank(my)
»Clayer_prior —
[Imellr + Amaz (0, [[ms]l — [[mell+);

else
// Rank(mg) > Rank(m.)
Elayer_prior <
[Imsllx + Amaz (0, [[mell« — [[msll+) ;

end

3.3.3. Prior-informed rank constraint

Based on our observations in Sec.[3.3.1] we propose to use
the explicit layer-specific rank constraints during merging.
In Fig. [ we plot the frequency of ranks across low (i.e.,
up_block.2, down_block.2, and mid_block with
< 32 resolution) and high-resolution (>=32 resolution) layers
in content and style mergers post training. Through the dis-
tribution of the ranks, we can verify that for low resolution
layers, Rank(m.) > Rank(ms), and for high resolution
layers, Rank(ms) > Rank(m.) holds in SDXL UNet ar-
chitecture.

Therefore, for the content-dominant layers, we apply the
constraint Rank(m.) > Rank(m,) during merging, and for
the style-dominant layers, we reverse this constraint. In
Lemmal[l] we demonstrate that this rank constraint simplifies
to a nuclear norm minimization problem under a sparsity
constraint.

Lemma 1. Let m. € R™*™ be a matrix representing the
content merger and mg € R™*"™ be a matrix representing
the style merger. The problem of minimizing the ly-norm of
m. subject to a rank constraint on m. can be written as:
min ||mc||1 subjectto rank(m.) > rank(ms)

This problem is non-convex due to the rank constraint. A
convex relaxation can be achieved by approximating the rank
of a matrix using the nuclear norm || - ||, which is the sum of
the singular values of the matrix. Thus, the original problem
can be relaxed to:

min ||mc|ly  subjectto  ||mec|l« > ||ms]|«
where ||m.||« denotes the nuclear norm of m., and ||ms||«
is the nuclear norm of ms.

This relaxed problem can be approached via a La-

grangian penalty formulation:
L(me,ms, A) = [[mell1 + Amax(0, [[ms]l« — [Imel|+)

for some penalty parameter A > 0, which enforces the con-
straint [|me||« > ||ms||« in the limit as A — oo.

Proof. Proof is provided in the supplementary material. [J

Consequently, in the content-dominant layers (i.e.,
up_block.2, down_block.2, and mid_block), Lo-
RAs are merged using the layer prior 10ss Liayer_prior-

[']ayer_prior = ||mc||1 + )\max(O, ||m5||* - Hm(”*) (D
where m4 and m, represent the style and content mergers,

respectively. Similarly, for the style-dominant layers, the
process is reversed, as outlined in Algorithm 1]
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3.4. Constyle loss : Cycle-consistent merging

To further improve the content-style alignment, we introduce
Constyle loss, leveraging the cycle-consistency between con-
tent and style. Inspired by CycleGAN [45]], where content
and style are transformed across domains with minimized
reconstruction loss, we add and then remove style from con-
tent, ensuring minimal reconstruction error during LoRA
merging. Similarly, content is added and removed from
style images, as illustrated in Fig.[2] Both processes pro-
vide feedback on the required blending while upholding rank
constraints. Next, we describe cycle-consistent merging in
detail (color coded for better explanation, refer to Fig. [2).
The cycle-consistent merging is performed as follows:

. Generate Individual LoRAs:

Content LoRA: Given a set of content images /., we learn a
content LoRA L, and tokens <V1>, <S1> using the prompt
Pc = "a <V1> object in <S1> style".

Style LoRA: For a (small) set of style images I, we learn
a style LoRA Lg, and tokens <V2>, <S2> using the prompt
pPs = "a <V2> object in <S2> style".

. Cycle-Consistency Across Style: Starting with a content

image I., we add noise to create its noisy latent. During the
denoising process, the style prompt "a <V1> object
in <S2> style" is injected via the style LoORA Lg to
produce a style-infused image I.;. This image I, is then
re-noised and denoised with the content prompt p. (via Lg)
to remove style, resulting in the reconstructed content image
I.5.. To mitigate mode collapse from limited examples, we
also generate a variant I.. by denoising I, solely with the
content LoRA L. using p.. We enforce cycle-consistency
in style by minimizing the loss (Fig. [2):
‘Ccyclefslyle = MSE(ICC, Icsc)

. Cycle-Consistency Across Object (Content): In a similar

manner, starting with a style image I, we add noise and
then denoise using a content prompt "a <V1> object
in <S2> style" (via the content LoRA L.) to obtain
a content-injected style image ;.. Next, we remove the
injected object by denoising ;. with the style prompt ps
via the content LoRA L., yielding I,.;. Additionally, we
generate a variant /55 by denoising I with the style LoORA
Ls using ps. The cycle-consistency in content is enforced
by minimizing (Fig. 2):
‘Ccyclefcontent = MSE(ISS, Iscs)

The merged LoRA L,, is then trained by minimizing the
following loss:

Econstyle = ||(D + Lm)(ICa pC) - (D + LC)(IC’ pc)”
+ (D + L) (Ls, ps) — (D + Ls) (s, ps) |
+ (Ecyclefstyle + Ecyclefconlent)

where D is the text-to-image diffusion model and Ay (set
to 0.1) controls the weight of the cycle-consistency losses.

The overall loss used during merging is given by

L= )\layerfprior ﬁlayerﬁprior + )\cycle Lconslyle

which is further used to train the layer masks. During in-
ference, the merged tokens are provided in the prompt (e.g.,

"a <V1> object in <S2> style running") to
the diffusion model with merged LoRA L,,, generating im-
ages that blend the desired content and style. Detailed algo-
rithm is provided in the supplementary.

3.5. Multi-concept stylization

We further extend our approach to handle multi-concept
stylization. Given concepts Cy, .. C,, and style S, we
first merge individual concept-style LoRAs, < Cy,S >
,.. < Cy, S >, using DuoLoRA/baselines and then com-
bine them via naive merging: C12 ., s = a1 < C1,5 >
+..+ ap < Cp, S >, where ; = 1/n. During inference,
we use directional prompting (i.e., object in left/right etc)
with the merged LoRA C 5, , g, using prompt p = “a
< (1 > object on the left and a < C2 >
object on the right in < § > style”.
In this way, we extend DuoLoRA for multiple concepts.

4. Experiments

Dataset. We experiment on four datasets (datasets and splits
provided in supplementary).

(1) Dreambooth-SyleDrop: We choose diverse set of con-
tent images from the Dreambooth dataset [27], which con-
sists of images of 30 subjects with 4-5 images per subjects.
Style images are chosen from StyleDrop [31] dataset, where
a single image is used per style.

(2) Subjectplop: subjectplop [28] contains a single image
for both content and style.

(3) Subjectplop-StyleDrop: We also benchmark on cross
dataset, i.e., contents are taken from subjectplop dataset [28]],
and style images are taken from StyleDrop [31]] dataset. Note
here also, the content and style contains a single image.

(4) Custom101-StyleDrop: We conduct experiments on the
real-world object-centric Custom101 dataset [22] (with 101
objects like human faces and everyday items) using styles
from the Styledrop dataset [31]].

Metrics. For content similarity, we use DINO similarity
score [27], i.e., the average pairwise cosine similarity of
DINO ViT-B/6 embeddings of the content and generated
images. For style similarity, we use the CLIP-I metric [27],
which is the average pairwise cosine similarity between CLIP
embeddings of the style and generated images. Text simi-
larity (CLIP-T [27]) is computed as the average cosine sim-
ilarity between CLIP’s text and prompt embeddings. We
also report the Contrastive Style Descriptor-style (CSD-s)
metric [32], which is more appropriate to evaluate style sim-
ilarity.
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Table 1. Performance comparison of content and style merging across different datasets and methods

Method Dreambooth + StyleDrop Subjectplop Subjectplop + StyleDrop Custom101 + StyleDrop # Params Param Training
DINO CLIP-I CLIP-T CSD-s | DINO CLIP-I CLIP-T CSD-s | DINO CLIP-I CLIP-T CSD-s | DINO CLIP-I CLIP-T CSD-s (M) storage (MB) | time (m)
Naive Merging 0.47 0.64 0.266 0.44 0.48 0.59 0.263 0.30 0.42 0.49 0.274 0.12 0.40 0.39 0.204 0.18 - - -
B-LoRA [I0] (ECCV’24) 0.45 0.57 0.281 0.28 0.64 0.57 0.275 0.32 0.63 0.56 0.281 0.14 0.49 0.51 0.263 0.25 - - -
ZipLoRA (ECCV'24) | 0.53 0.65 0.285 0.41 0.75 0.62 0.288 0.35 0.87 0.56 0.289 0.16 0.54 0.58 0.286 0.30 1.33 6.5 548
ZipRank 0.53 0.64 0.287 0.42 0.71 0.62 0.291 0.35 0.86 0.56 0.296 0.17 0.56 0.58 0.295 0.32 0.07 0.35 528
ZipRank + Layer-Priors 0.54 0.67 0.293 0.45 0.73 0.63 0.310 0.37 0.90 0.56 0.302 0.18 0.59 0.60 0.307 0.35 0.07 0.35 6.02
DuoLoRA 0.56 0.69 0.314 0.48 0.78 0.65 0.318 0.40 0.90 0.58 0.319 0.20 0.61 0.62 0.316 0.37 0.07 0.35 6.38
Styles > ) ) )
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Figure 5. Qualitative Results on Dreambooth + StyleDrop.

Implementation details. In all our experiments, we have
used SDXL v1.0 as our base model. To train the content and
style LoRAs, we use Dreambooth finetuning with LoRA of
rank 64. We update the LoRA weights using Adam optimizer
for 1000 steps with batch size of 1 and learning rate of Se-4.
The text encoder of SDXL remains frozen during the LoRA
finetuning.

During the merging, we train the mergers in the rank
dimension for 100 steps, with both the layer-prior loss
(Liayer_prior) and the cycle loss (Lconstyie), With Adam op-
timizer and a learning rate of 0.01. The hyperparameters are
choosen as follows, A¢ycre = 0.01 and Ajgyer_prior = 0.1.
Baselines. For personalized stylization, we compare our
method with the following baselines. (1) Naive merging:
The content and style adapters are added together with a
blending scalar parameter during inference. This merging is
training free. (2) B-LoRA [10]: Specific blocks are learnt for
content and style in SDXL. (3) ZipLoRA [29]: A weighting
vector is learned at the output dimension of each adapter,
such that their similarity is reduced. We used the parameters
from ZipLoRA paper [29]]. and (4) Paircustomization [20].
Quantitative and Qualitative Results. We compare our
method with Naive merging, B-LoRA and ziplora baselines.
Tab. [T] shows the comparison with different datasets and
baseline methods. Our method outperforms the SOTA in all
the DINO, CLIP and CSD metrics. Qualitative results are
shown in Fig.[5] Fig.[6]and Fig.[7] Visually it is also evident
that our method outperform the baselines. We also compare

Figure 6. Qualitative Results on Custom101 (best viewed in color)
Style

Content

Naive merging

ZipLoRA DuolLoRA

B-LoRA

Figure 7. Qualitative Results on Subjectplop (best viewed in color).

"riding
bicycle"

"driving
Acar"

"in a boat"

Content sleeping

Style

{1'5?. Q E
i > 121

Figure 8. Recontextuahzatlon through prompts.

DuoLoRA with Pair-customization [20] in Tab. 2} using their
test set for a fair evaluation since their approach requires
paired object and stylized images (details and qualitative
results in supplementary). To demonstrate that DuoLoRA
generated images are not biased toward the content of the
style images, we measured the DINO similarity between the
content, style, and generated images. On the Dreambooth-
StyleDrop benchmark, the average DINO similarity is 0.56
w.r.t content images and 0.25 w.r.t style images, indicating
minimal content bias from the style images.

Recontextulization. Tab. [T]and Fig. [8|show DuoLoRA suc-
cessfully recontextualizes through text prompts, measured
by CLIP-T, (e.g., “a <V> object in <S> style riding a bicy-
cle”) while seamlessly blending content and style (more in
supplementary). Fig.[8|also demonstrates that our blending
preserves the model’s finer text-based editing capabilities,
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Figure 9. Multi-concept stylization comparison (2 concepts).

such as depicting “sleeping” through closed eyes.
Table 2. Comparison with Table 3. Same #params.

Method DINO CLIP-I CSD-s Method DINO CLIP-I CSD-s #Params
Paircustomization [20] 0.56 0.65 0.47 ZipLoRA 0.53 0.65 0.41 1.33M
DuoLoRA 0.62 0.69 0.50 DuoLoRA  0.57 0.73 0.50 1.33M

Multi-concept stylization. The multi-concept stylization
results are visualized in Fig. where our method shows
qualitative improvements over the baselines in preserving
both content and style details. For instance, as shown in
Fig. 0] naive merging often loses details of either content,
style, or both. Similarly, ZipL.oRA struggles to retain content
details, while our method successfully captures and main-
tains both content and style elements. We combine 2, 3, 4
concepts from Dreambooth dataset and styles from Style-
Drop dataset and the results are shown in Tab.[4] Fig.[9]and
Fig.[I0] Details and more results are in the supplementary.
Other diffusion models. We evaluate DuoL.oRA on the
SSD-1B [13] and Segmind-Vega [15] architectures, demon-
strating its generalizability across architectures (Tab.[3).
Runtime and storage. We compare runtime and extra stor-
age required for the mergers in DuoLoRA vs baselines in
Tab. [TJon an NVIDIA A6000 (24GB RAM). Our method
slightly increase training time while reducing extra storage
requirements compared to the baselines.

User study. Since perceptual metrics are not always reliable,
we also conducted a human preference study using Amazon
Mechanical Turk (AMT) for assesing the content-style align-
ment. We asked 50 unbiased users rank our method against
baselines (i.e., “Naive merging”, “B-LoRA”, “ZipLoRA”,
“DuoLoRA”, “None is satisfactory”), totaling 1000 ques-
tionnaires. The aggregate responses in Tab. [6] show that
DuoLoRA generated images significantly outperformed the
baselines by a large margin (50%). Further details are pro-
vided in the Supplementary.

Ablations. We perform ablations on the loss and initial-
ization when applied to content (Dreambooth dataset) and

Table 4. Multi-concept comparison

Method 2-concepts 3-concepts 4-concepts

DINO CLIP-I CSD-s | DINO CLIP-I CSD-s | DINO CLIP-I CSD-s
Naive Merging 0.38 0.63 0.35 0.35 0.56 0.30 0.28 0.55 0.25
ZipLoRA 0.40 0.64 0.42 0.38 0.60 0.34 0.29 0.58 0.31
DuoLoRA 0.45 0.66 0.47 0.40 0.64 0.39 0.32 0.63 0.35

Table 5. Comparison w.r.t architectures

Method SSD-1B Segmind-Vega

DINO CLIP-I CSD-s #params(M) | DINO CLIP-I CSD-s #params(M)
Naive Merging | 0.35 0.55 0.38 0.33 0.57 0.42
ZipLoRA 0.42 0.65 0.46 0.61 0.40 0.67 0.50 0.26
DuoLoRA 0.44 0.71 0.52 0.03 0.41 0.72 0.56 0.02

»

|

&

<V4> <V1>, <V2>, <V3>,

<V4>in style
Figure 10. Multi-concept stylization (4 concepts).

Table 6. User study
None Naive merging B-LoRA ZipLoRA DuoLoRA
0.0% 10% 18% 22% 50%

Table 7. Ablation of content and style threshold (Teontent, Tstyie)

Method Alayer_prior Tcontent Tstyle DINO CLIP-I CSD-s

ZipRank 0.1 - - 0.53 0.64 0.42

ZipRank + Init 0.1 0.1 0.0 0.56 0.65 0.43

ZipRank + Init 0 0.75 0.50 0.57 0.64 0.41

ZipRank + Init 0 1 0.75 0.53 0.64 0.42

ZipRank + Init 0.1 0.75 0.50 0.50 0.64 0.44

ZipRank + Init 0.1 1 0.75 0.47 0.64 0.43

Table 8. Ablations of components
ZipRank Merger Nuclear Norm  Sparsity  Cycle Loss Cycle Loss DINO CLIP-I CSD-s
Initialization loss loss (Style) (Content+Style)

v x x x x x 0.530  0.647 0424
v v X X X X 0.560  0.652 0.435
v v 4 X X X 0.577  0.637 0.400
v 4 4 X X X 0516  0.679 0.476
v v 4 v X X 0542 0.670 0.458
v v v v v X 0.507 0.704 0.519
v v v v v v 0.560 0.693 0.482

Table 9. Ablation of parameters

Parameters (Miayer_prior/Aeyete)  0/0 0/1 0/0.01  1/0  0.1/0  0.1/0.1 0.01/0.01 0.1/0.01  1.0/0.01
DINO 053 045 047 057 055 052 0.48 0.51 0.56
CLIP-I 0.64 070 0.68 0.63 0.64 0.64 0.65 0.66 0.69
CSD-s 042 052 048 040 042 043 0.45 0.46 0.48

style (StyleDrop dataset) in Tab. [§] Ablation of initializa-
tion parameters (Tcontent and Tiye) is also provided in
Tab.[7] We also present a hyperparameter sensitivity analysis
on Dreambooth-StyleDrop in Tab. 0] w.r.t loss coefficients
(Atayer_priors Acycle). With same number of parameters com-
pared to baseline (ZipLoRA), DuoLoRA obtains better per-
formance gains in Tab. [3] More ablation results are provided
in the supplementary material.

Limitations. At present, our approach handles only two con-
cepts simultaneously, limiting its applicability for merging
multiple concepts jointly. We aim to address this limitation
in future work.

5. Conclusion

We investigate content and style personalization via LORA
merging, introducing DuoLoRA—a content-style personal-
ization framework with three core components: (1) learning
a mask in the rank dimension, (2) merging informed by layer
priors, and (3) Constyle loss that leverages cycle-consistency
between content and style. By learning the mask in the rank
dimension, DuoLoRA enables adaptive rank flexibility with
a significant reduction in trainable parameters (19x fewer).
To further refine the merging process, we apply explicit rank
constraints informed by layer priors and adaptive initializa-
tion. Additionally, we introduce Constyle loss, which uses
content-style cycle-consistency to enhance merging. Experi-
ments across multiple benchmarks show that our approach
outperforms state-of-the-art methods.
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