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Figure 1. Overview of GTA-CLIP. (a) Vision-language models (VLMs) such as CLIP [36] enable zero-shot classification using similarity
between text embeddings of class prompts and images. (b) Transductive CLIP [61] exploits the structure of the entire image dataset to assign
images to classes improving accuracy. (c) Our approach, GTA-CLIP, iteratively (i) induces structure over the classes in language space
by generating attributes driven by the pairwise confusions, (ii) performing attribute-augmented transductive inference, and (iii) adapting
CLIP encoders using the inferred labels. (d) Across 12 datasets we improve upon CLIP and transductive CLIP by 9.5% and 4.0% using
VIT-B/16, and similarly for other encoders. Significant improvements are also reported in the few-shot setting.

Abstract

Transductive zero-shot learning with vision-language mod-
els leverages image-image similarities within the dataset
to achieve better classification accuracy compared to the
inductive setting. However, there is little work that ex-
plores the structure of the language space in this context.
We propose GTA-CLIP, a novel technique that incorpo-
rates supervision from language models for joint transduc-
tion in language and vision spaces. Our approach is it-
erative and consists of three steps: (i) incrementally ex-
ploring the attribute space by querying language models,
(ii) an attribute-augmented transductive inference proce-
dure, and (iii) fine-tuning the language and vision encoders
based on inferred labels within the dataset. Through ex-
periments with CLIP encoders, we demonstrate that GTA-
CLIP yields an average performance improvement of 9.5%
and 4.0% across 12 datasets and 3 encoders, over CLIP
and transductive CLIP respectively in the zero-shot setting.
We also observe similar improvements in a few-shot setting.
We present ablation studies that demonstrate the value of
each step and visualize how the vision and language spaces
evolve over iterations driven by the transductive learning.

1. Introduction

Recent advances in vision-language models (VLMs) have
enabled zero-shot image classification across diverse do-
mains. These models, such as CLIP [36], assign images to
classes based on the similarity between image and text em-
beddings, forming the basis of various zero-shot approaches
in classification [63, 66, 67], segmentation [20, 21, 37, 54],
and detection [27, 65] (Fig. 1a). However, in many practi-
cal scenarios, the images requiring classification are known
in advance. For example, an ecologist might have a large
collection of animal images that need to be categorized by
species. In such cases, transductive inference is more suit-
able, as it leverages the dataset’s inherent structure to refine
predictions (Fig.1b).

Despite the success of transductive inference with
VLMs, existing approaches often overlook the rich struc-
ture of the label space derived from language. For instance,
linking semantically similar descriptions or attributes can
yield more coherent class prototypes, while aligning these
attributes with image features can enable model adaptation
on the specific dataset. This strategy can be advantageous
for zero-shot and few-shot recognition, especially in novel
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or fine-grained domains where labeled data is scarce.
To address this gap, we propose GTA-CLIP, a trans-

ductive learning approach that exploits structure in both the
language and vision spaces (Fig.1c and Alg.1). Our method
begins by querying a language model to populate the lan-
guage space: starting with an initial set of attributes per
category, we dynamically expand this space by generat-
ing discriminative attributes based on pairwise confusion
between classes. This strategy improves class separation
while maintaining computational tractability. We then de-
sign a transductive inference procedure that refines predic-
tions using these attributes. Finally, we adapt the under-
lying VLM to the target dataset using inferred labels and
attributes. This iterative cycle of Generation, Transduction,
and Adaptation—hence the name GTA—progressively im-
proves recognition performance.

We present experiments on a benchmark of 12 datasets
using various CLIP encoders, where our approach achieves
8.6% improvement over CLIP and 3.7% improvement over
the current state-of-the-art transductive CLIP [61] on aver-
age (Fig. 1d and Table 1). Notably, on a dataset like CUB
with about 12k images, the whole process completes in 12-
20 minutes on a single A100 GPU (see § 5.6). Ablation
studies demonstrate that each component of our method
contributes to these gains. Specifically, while attribute-
augmented transduction improves performance on average,
it is most effective when paired with model fine-tuning.
Similarly, dynamically expanding the attribute space bene-
fits fine-grained domains while keeping learning efficient.
We visualize how the language and vision spaces evolve
over iterations providing insights into the performance im-
provements. Further, we demonstrate GTA-CLIP’s advan-
tages in a few-shot setting (Table 2) and a zero-shot setting
where labeled examples from related categories are avail-
able during training (Table 3). In both cases, our approach
outperforms transductive CLIP [61] and prior methods.

To summarize, our main contribution is to demonstrate
that zero- and few-shot classification can be significantly
improved in a transductive setting by integrating attribute
generation, transductive inference, and model adaptation
into a unified framework. While prior work has explored
these components in isolation, to the best of our knowledge,
this is the first work to show that their benefits are com-
plementary and can be effectively leveraged in label-scarce
scenarios. Our approach is of practical value as it provides
end users with another avenue to improve labeling accuracy
on their target dataset, alongside traditional labeling efforts.
Our code is released at https://github.com/cvl-
umass/GTA-CLIP.

2. Related Work
Transductive learning [46] is well-suited for scenarios
where a model’s predictions must be accurate on a specific

dataset rather than on unseen future data. Access to the en-
tire unlabeled test set enables inference through methods
such as label propagation [10, 50], clustering [48, 50, 59],
among others [4, 19]. This setting closely resembles
semi-supervised learning, where techniques like pseudo-
labeling [3, 6, 62], entropy minimization [13], and self-
training [53, 56] have proven effective.
Zero-shot transduction has been previously explored us-
ing image generation [12, 49] and attribute-based ap-
proaches [55, 60], while more recent methods leverage
VLMs to estimate initial class prototypes from language.
For example, ZLaP [16] improves CLIP through label
propagation, while [25] iteratively estimate assignments
and class prototypes. TransCLIP [61] presents an effi-
cient approach for large-scale zero-shot transduction, em-
ploying a block majorization-minimization (BMM) algo-
rithm [15, 38] to optimize an objective comprising: a Gaus-
sian mixture model, a Laplacian regularizer, and a KL diver-
gence term that aligns assignments with image-text proba-
bilities across the dataset. We extend this state-of-the-art by
incorporating class-specific attributes in the KL divergence
term, enabling better alignment of image features with the
semantic structure of the dataset.
Improving Zero-shot with Attributes. Large language
models (LLMs) have been used to improve zero-shot classi-
fication by expanding attribute spaces beyond simple class
names. For example, [26, 29, 35] employ LLMs to generate
rich category descriptions (e.g., describing a tiger as having
stripes and claws) to improve both classification accuracy
and interpretability in CLIP-based models. Beyond LLM-
based augmentation, other approaches focus on identifying
a concise and discriminative set of attributes for recogni-
tion [7, 57]. Inspired by both strategies, we leverage lan-
guage models such as GPT [1] and LLaMA [45] to initially
populate the attribute space. However, rather than relying
on static expansions, we introduce a dynamic refinement
process: attributes are iteratively added to classes that are
frequently confused, improving class separability.
Adapting CLIP. Prior work has shown that augmenting
CLIP with attributes does not significantly improve zero-
shot recognition, particularly in out-of-domain or fine-
grained datasets. In such cases, model adaptation is nec-
essary. Existing techniques range from learning language
and vision prompts [66, 67] to incorporating learnable lay-
ers [11, 63] or performing full fine-tuning [42, 44, 51, 64].
A different line of work addresses fine-tuning without
paired image and text data. WiSE-FT [51] and LaFTer [28]
use ensembles, while others [18, 24, 40] show the value
of large-scale fine-tuning with image-text data aligned at
the category level. We build on the approach of Adapt-
CLIPZS [40], which stochastically pairs images with at-
tributes within a category and modifies the CLIP objective
to accommodate weaker supervision. However, while all the
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above approaches rely on labeled examples, such as images
with class labels on the target domain, our method enables
adaptation without any annotated data.

Our key contribution is unifying attribute generation,
model adaptation, and transductive inference within a sin-
gle framework for zero- and few-shot classification. Iter-
ative and stage-wise learning can be viewed as the opti-
mization of a single objective, enabling both label inference
within the dataset and end-to-end fine-tuning of the under-
lying VLMs on target domains (Alg. 1). While these ideas
have been explored individually, their integration is novel
and leads to significant improvements over the current state-
of-the-art across diverse datasets, with minimal additional
computational requirements.

3. Methodology
The input to our approach is a set of images X = {xi}Ni=1

and a set of classes Y = {yi}Mi=1. In the zero-shot setting
the goal is to assign each image to one of the M classes.
In the few-shot setting we are also provided with a few la-
beled examples Dtrain = {(xi, yi)}Ki=1 with x → Xtrain,
Xtrain ↑ X = Ø, and y → Y .

We also consider a setting where labeled data comes
from a different set of classes, i.e., y → Ytrain where
Ytrain ↑ Y = Ø. This setup is used in approaches where
labeled data from a set of base categories is used to adapt
CLIP on the target domain.

We report the mean per-class accuracy on the target set
of images X given their ground-truth labels. To enable zero-
shot learning we assume an image encoder ω(·) and a text
encoder ε(·) such that ω(x)→ε(y) is high for image x and
text y pairs that are similar. We experiment with a variety
of encoder pairs based on CLIP framework. In addition we
assume access to a language model (e.g., Llama3 or GPT-
4o) which we can query to generate attributes for each class.

3.1. GTA-CLIP formulation
GTA-CLIP maintains a list of attributes indexed by class
denoted by A = (Aj)Mj=1, where Aj = {aj,k}

nj

k=1 denotes
the set of text attributes for the class j. The number of at-
tributes nj can vary across classes. Like the TransCLIP [61]
formulation we maintain µ = (µj)

M
j=1 and ! = (!j)Mj=1

denoting the Gaussian mixture model (GMM) mean and di-
agnonal variance for each class.

In addition we maintain a matrix of softmax class as-
signments z → [0, 1]N↑M , where N is the number of query
images and M is the number of classes. In other words
zi,· → !M reflects the probability of assignment over all the
classes, where !M is the M -dimensional probability sim-
plex. Given a class j → Y the vertical slices z·,j → [0, 1]N

represents the probability that a specific query image be-
longs to class j. After inference the class label for each
image i can be obtained as argmaxj zi,j .

Algorithm 1 GTA-CLIP
Require: Query images X , list of classes Y , list of initial

attributes indexed by class A, image encoder ω, text en-
coder ε, number of iterations T .

Ensure: Fine-tuned image and text encoders ω,ε, labels z,
class prototypes µ,!, attributes indexed by class A.

1: z,µ,! ↓ 0
2: for t ↓ 1 to T do
3: ϑ mine attributes
4: A ↓ GENERATEATTRIBUTES(Y,A, ω,ε)
5: ϑ transductive assignment with attributes
6: z,µ,! ↓ TRANSDUCT(X ,Y,A, ω,ε)
7: ϑ fine-tune image and text encoders
8: ω,ε ↓ ADAPT(X ,Y, z, ω,ε)
9: end for

10: return ω,ε, z,µ,!,A

Zero-shot Setting. The overall objective in this formula-
tion is:

Lzero-shot(z,µ,!,y, ω,ε,A) = ↔ 1

N

N∑

i=1

z→i log(pi)

︸ ︷︷ ︸
Clustering objective

↔
N∑

i=1

N∑

j=1

wi,jz
→
i zj

︸ ︷︷ ︸
Laplacian regularizer

+
N∑

i=1

KLω(zi||ŷi)

︸ ︷︷ ︸
Agreement with text

. (1)

The first term is a clustering objective under a Gaussian
assumption for each class, and pi = (pi,j)Mj=1 → !M de-
notes the probability over classes for the image xi. Let
fi = ω(xi), then this is defined as:

pi,j ↗ det(!)↓
1
2 exp

(
↔1

2
(fi ↔ µj)

→!↓1(fi ↔ µj)

)
.

(2)
The second term is a Laplacian regularizer commonly

seen in spectral clustering [30, 41] and semi-supervised
learning settings [2, 58]. Here wi,j denotes the affinity
between images xi and xj , and this term encourages im-
ages with high affinity to have similar predictions z. We set
wi,j = max(0, f→i fj) resulting in a positive semi-definite
affinity matrix W = [wi,j ] and faster optimization proce-
dure due to a convex relaxation.

The KL divergence term ensures alignment of predic-
tions with text and is defined as:

KLω(zi||ŷi) = z→i log zi ↔ ϖz→i log ŷi; ϖ > 0. (3)

The text based predictions ŷi are obtained as softmax
over the mean similarity between the image and the attribute
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embeddings Aj = {aj,k}
nj

k=1

ŷi,j =
exp(s̄i,j)∑M
j=1 exp(s̄i,j)

, where s̄i,j =
1

nj

nj∑

k=1

ω(xi)ε(aj,k).

(4)
The text and vision encoders – ω and ε output normalized

and temperature-scaled features.

Few-shot Setting. In the few-shot setting we can incorpo-
rate the labeled examples Dtrain = {(xi, yi)}Ki=1 by simply
setting and fixing their zi to the one-hot vector correspond-
ing to the label yi.

Zero-shot Setting with Seen Classes. In this setting, the
labeled examples Dtrain = {(xi, yi)}Ki=1 come from a
set of base classes different from the target classes, i.e.,
y → Ytrain where Ytrain ↑ Y = Ø, as part of the train-
ing set. We first fine-tune CLIP using AdaptCLIPZS on the
base classes, followed by transductive inference on only the
target images. While this approach does not incorporate the
similarity between the training and target images, it pro-
vides a straightforward comparison against prior work on
adapting CLIP to target domains.

3.2. Optimization
The key difference between our formulation and TransCLIP
is that we also update ω,ε and A. We initialize A with
the per-class attributes in AdaptCLIPZS, which consists of
prompting the LLM as:

What characteristics can be used to differentiate [class]
from other [domain] based on just a photo? Provide an ex-
haustive list of all attributes that can be used to identify the
[domain] uniquely. Texts should be of the form “[domain]
with [attribute]”.

where [domain] is coarse category, e.g. “birds” for
CUB [47], [class] is the common name of the category,
and [attribute] is a specific attribute. For example,
one such description is “A bird with a small, round body
shape, indicative of a Baird’s Sparrow.”

The algorithm iterates between: (1) incrementally gener-
ating class-specific attributes to update A driven by pairwise
confusions; (2) attribute-augmented transductive inference
to estimate z,µ,!; and (3) encoder fine-tuning using the
inferred z to update the encoders ω and ε. This is outlined
in Algorithm 1 and described below.

1. Generating Attributes. Our general strategy is to
query large language models (LLMs) to explore the space of
attributes driven by pairwise confusions. This is inspired by
a long line of work on attribute discovery driven by pairwise
discrimination in the computer vision literature [22, 32, 34].
These are appended to the corresponding lists in A. For a
given pair of classes, we do this by prompting the LLM as:

I have a set of attributes for [class1] as: [attrs1].
I have a set of attributes for [class2] as: [attrs2].
Provide a few additional attributes for [class1] which can
help to distinguish it from [class2].
Make sure none of the attributes already given above are re-
peated. The texts in the attributes texts should only talk about
[class1] and should not compare it to [class2].

To keep this tractable we only generate attributes for
the most confused classes. We first update z by running
attribute-augmented transductive inference given the cur-
rent model and set of attributes A (Step 2)1. Then, we find
the images xi for which the difference in the top 2 proba-
bilities in zi,· is lower than a threshold of ϱ:

CC = {(i, {c1, c2}) | zi,c1 ↔ zi,c2 ↘ ϱ; c1 < c2}.

Here c1 and c2 are the indices of the top 2 highest proba-
bilities in zi,·. We then find the class pairs {c1, c2} → CC
which occur more than ς times.

2. Attribute-Augmented Transductive Inference Given
the list of attributes A we can compute the text-driven la-
bels ŷi for each class using CLIP encoders ω and ε as de-
scribed in Eq. 4. Optimization of z,µ,! can be done us-
ing the same formulation of TransCLIP [61]. In particular
they propose an iterative procedure where they optimize z
keeping µ and ! fixed using a Majorize-Minimization pro-
cedure (similar to EM) based on a tight-linear bound on the
Laplacian term. This results in efficient decoupled updates
on z. This is followed by updates on µ and ! keeping the
remaining variables fixed using closed form updates. The
algorithm converges in a few iterations and allows scaling
to large datasets. We refer the reader to the details in [61].

3. Adapting CLIP. We finally fine-tune CLIP encoders
ω,ε using the current set of attributes A and the inferred la-
bels z. For each class j we find the top k images with the
highest scores based on z·,j . The set of images and corre-
sponding attributes provide a coarse form of supervision for
fine-tuning. Specifically, we adopt the objective of Adapt-
CLIPZS [40] which takes into account class-level supervi-
sion and false negative associates since multiple text-image
pairs can be considered correctly aligned in a single mini-
batch training. For the few-shot setting, we simply include
the labeled examples to our samples.

Summary. Algorithm 1 can be viewed as a block co-
ordinate descent optimization of the objective in Eq. 1.
While this is straightforward for the continuous vari-
ables—such as the GMM, assignments, and encoder param-
eters—optimization over the space of attributes is challeng-
ing due to its inherently discrete, non-differentiable nature.

1We find it beneficial to run the transductive step before invoking the
generate step (see Appendix Table 9)
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Our LLM-guided exploration provides a heuristic motivated
by previous work showing that attribute-augmented CLIP
improves predictions, thereby improving the KL term (if z
is accurate) in Eq. 3. Class-confusion-guided exploration
further enriches the attribute space, targeting areas where
the model might benefit most. The attributes also provide a
better signal for fine-tuning the CLIP to the target domain.

4. Experiments
Datasets. We evaluate GTA-CLIP and compare to pre-
vious work on a benchmark of 12 datasets including
fine-grained ones like CUB [47] (200 classes), Flowers
102 [31] (102 classes), Stanford Cars [17] (196 classes),
FGVC Aircrafts [23] (100 classes) and Food101 [5] (101
classes). The benchmark also includes datasets such as Eu-
roSAT [14] (10 classes), ImageNet [39] (1000 classes),
CalTech101 [9] (100 classes), DTD [8] (47 classes), Ox-
ford Pets [33] (37 classes), Sun397 [52] (397 classes) and
UCF101 [43] (101 classes).

Evaluation Metrics. For zero-shot evaluation, we as-
sume all test images belong to the target classes, without
using any labeled images. In this setting, GTA-CLIP uti-
lizes only the set of unlabeled test images and target cate-
gories. For the few-shot setting, we use a few labeled im-
ages per class but report accuracy on the test images across
all classes, consistent with zero-shot evaluation methods.
We also evaluate in the AdaptCLIPZS setting, where half of
the dataset classes are considered “seen” and the other half
“unseen.” Here, the model has access to labeled examples of
the seen classes and unlabeled examples from the test set of
the unseen classes in a transductive setting. Final accuracy
is reported on the test images of the unseen classes. This
setup enables comparison with prior work that uses labeled
examples from the target domain to adapt CLIP while still
measuring performance on future unseen classes.

Implementation Details. To generate attributes, we use
Llama-3.1 with a maximum token length of 500. All ex-
periments are run on a single A100 GPU. For each pair of
classes, we use the prompt described in § 3.2 to generate at-
tributes. The threshold ϱ for selecting the confused images
is set to 0.1, and the hyperparameter ς is adjusted so that the
cumulative count CC includes 5% of the most confused im-
ages. We run GTA-CLIP for 30 iterations (i.e., T = 30 in
Algorithm 1) and select the top k = 8 images per class for
fine-tuning using the labels in z. These parameters remain
fixed across all datasets, and we found our approach robust
to these choices within a reasonable range (see Appendix
for a sensitivity analysis).

For our experiments, we use the ViT-B/32, ViT-B/16,
and ViT-L/14 architectures of OpenAI’s CLIP models (Per-

formance using CLIP models from Meta are included in the
Appendix). Fine-tuning is performed with the AdamW op-
timizer, using betas of (0.9, 0.98), an epsilon of 1E-6, and
a batch size of 32. We set a learning rate of φ = 2E-7 and
weight decay of ϖ = 1E-4 for the Transformer layers of the
image and text encoders, and φ = 1E-6 and ϖ = 1E-4 for
the final linear projection layers. All results are reported in
terms of Top-1 accuracy, averaged over 3 runs.

5. Results
We present results for zero-shot (§ 5.1), few-shot (§ 5.2),
and zero-shot with seen classes (§ 5.3) setting on various
datasets, followed by ablation studies (§ 5.4) and a detailed
analysis of our method (§ 5.5). We also provide further ex-
periments in our Appendix, including similar performance
improvements using MetaCLIP (§ 9), sensitivity analysis
(§ 10), to show robustness of our method, and detailed vi-
sualization of generated attributes (§ 11).

5.1. Zero-Shot Performance
Table 1 shows the zero-shot performance of GTA-CLIP
compared to the CLIP [36] and the current state-of-the-art,
TransCLIP [61]. We report accuracy across 12 datasets us-
ing different CLIP architecture—ViT-B/32, ViT-B/16, and
ViT-L/14—along with the overall average accuracy. GTA-
CLIP improves over TransCLIP by 3.96%, 4.01%, and
3.22%% and over CLIP by 8.58%, 9.46%, and 7.78% on
average using B/32, B/16, and L/14 respectively.

The highest percentage improvements are observed with
ViT-B/16, though even the strongest architectures benefit
from our method. Food101 [5] is the most challenging,
where we see a modest average improvement of 0.14%.
In contrast, EuroSAT [14] shows the greatest improvement,
with the highest single-architecture boost (18.87% for ViT-
B/32) and the highest average improvement across archi-
tectures (13.67%). GTA-CLIP consistently outperforms
both baselines in all settings except one—namely, UCF101
with ViT-L/14. These results demonstrate that our approach
is broadly applicable and that reasoning over the attribute
space yields significant improvements compared to trans-
ductive inference with images alone.

5.2. Few-Shot Performance
Table 2 shows the few-shot performance of our approach
compared to TransCLIP. We report results using the ViT-
B/16 architecture with 1-shot, 4-shot, and 16-shot settings
denoting the number of labeled examples per class. We use
the TransCLIP-FS [61] setting for this. Both ours and Tran-
sCLIP can incorporate labeled examples by simply setting
the corresponding entries in z to the one hot vector corre-
sponding to their labels, as described in § 3. Performance is
reported on the same set of images in the zero-shot setting.
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Table 1. Zero-shot results. Performance of CLIP, TransCLIP-ZS, and GTA-CLIP across datasets using ViT-B/32, ViT-B/16, and ViT-
L/14 architectures. GTA-CLIP outperforms TransCLIP-ZS in all settings except for one – UCF101 with ViT-L/14.

Method CUB
Airc

raf
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Cars Flow
ers
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Foo
d
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ag
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Calt
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DTD
Pets SUN

UCF
Aver
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e

B/
32

CLIP 52.33 19.17 60.33 66.91 45.01 80.51 62.06 91.16 42.67 87.44 61.95 62.12 60.97
TransCLIP-ZS 56.70 20.13 63.57 74.54 58.51 81.38 65.15 91.72 50.59 89.32 67.44 68.01 65.59
GTA-CLIP 60.48 21.21 64.27 79.74 77.38 81.54 66.31 94.16 57.51 90.81 70.14 71.00 69.55

B/
16

CLIP 55.20 24.75 65.38 71.38 47.69 86.10 66.72 92.86 43.68 89.13 62.57 66.75 64.35
TransCLIP-ZS 62.23 26.88 68.87 76.17 65.42 87.15 70.38 92.86 50.00 92.34 68.93 76.34 69.80
GTA-CLIP 66.76 29.31 72.09 82.05 76.35 87.38 71.87 95.46 58.51 93.43 73.47 79.06 73.81

L/
14

CLIP 62.03 32.43 76.82 79.54 58.07 90.99 73.48 94.85 53.66 93.62 67.59 74.17 71.44
TransCLIP-ZS 70.18 35.01 78.50 84.29 69.64 91.88 77.59 95.17 59.69 94.55 73.75 81.73 76.00
GTA-CLIP 76.56 38.58 82.29 85.87 80.83 91.91 78.54 97.36 64.89 95.83 76.65 81.28 79.22

Like the zero-shot case for CLIP ViT-B/16, we find that
in every setting and every choice of k-shot, GTA-CLIP out-
performs TransCLIP. We find an increase of 3.41%, 3.86%,
and 3.01% for 1-shot, 4-shot, and 16-shot, respectively.
We observe the most pronounced performance increase for
4-shot. Trends of improvements align with the zero-shot
setting. Interestingly, we find that zero-shot GTA-CLIP
outperforms 1-shot TransCLIP, saving human effort, as
labeling even a single example per category can be labor-
intensive for certain datasets. Furthermore, we find that
the gains from transduction, attribute-guided transduction
with adaptation (our approach) complement labeling ef-
forts. This flexibility is of practical value, offering end users
multiple ways to improve performance on a target dataset.

5.3. Zero-Shot Performance with Seen Classes
Previous work has also evaluated zero-shot learning in a
setting where labeled data from a related but different set
of classes is available during training, while performance is
evaluated on images from unseen classes. Approaches such
as CoCoOp [66], AdaptCLIPZS [40] and VDT [24] report
results by splitting a dataset’s categories in half, treating the
first half as “seen” classes to adapt their model and measur-
ing performance on the “unseen” second half. The results
are shown in Table 3. Performance tends to be higher in
this setting in comparison to the zero-shot and few-shot ex-
periments, as only half of the classes are considered2 and a
smaller domain shift.

For a straightforward comparison, we initialize the CLIP
model with the pre-trained weights from AdaptCLIPZS and
report the accuracies of TransCLIP and GTA-CLIP on the
“unseen” classes of each dataset, using the same framework
as the zero-shot setting. Note that this setup does not in-
clude a transductive term between training and testing im-
ages, thus representing a lower bound on achievable perfor-
mance. Despite this, we find that GTA-CLIP outperforms

2Only the CUB dataset has lower performance as the test split is harder
than the overall dataset.

prior methods across all five datasets considered: CUB [47],
Stanford Cars [17], FGVC Aircraft [23], Flowers102 [31],
and Food101 [5].

While AdaptCLIPZS, VDT, CoOp, CoCoOp, and CLIP-
A use an inductive setup, TransCLIP and GTA-CLIP adopt
a transductive approach that benefits from having test im-
ages available in advance. This results in improvements
in similar vein as the zero-shot setting. However, even
with domain-specific fine-tuning of CLIP with labels, trans-
ductive inference proves advantageous, and our attribute-
guided approach yields further improvements–an encour-
aging result. The improvements over CLIP are substantial,
though this setup requires more supervision than the previ-
ous settings.

5.4. Ablation Studies
We next aim to quantify the performance contributions of
each component in Algorithm 1. In Table 4, we selectively
disable components of our method and report the average
performance over five datasets.

We find that the largest performance gain comes from
combining all the components of GTA-CLIP – GENER-
ATEATTRIBUTES which corresponds to dynamic attributes
in Table 4, TRANSDUCT, and ADAPT with an average
of 6.96% over the considered datasets. However, using
dynamic attributes without ADAPT but with TRANSDUCT
leads to similar performance as using static attributes in the
same scenario. This shows that fine-tuning the model is nec-
essary to take advantage of the dynamic attributes. TRANS-
DUCT offers an improvement of 3.70% over baseline in-
ductive CLIP. Adding in ADAPT to this setting results in an
improvement of 2.50% over the strong baseline of TRANS-
DUCT. We also observe that initializing TRANSDUCT with
static text attributes offers a gain of 1.34% over just using
“a photo of a [class]” texts. Adding only the attributes
from GENERATEATTRIBUTES to inductive CLIP offers low
improvement (1.03%), but when used alongside TRANS-
DUCT and ADAPT, it increases performance.
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Table 2. Few-shot Results. Performance (1-shot, 4-shot, and 16-shot) of GTA-CLIP and TransCLIP-FS across datasets using CLIP
ViT-B/16 network. We find that GTA-CLIP outperforms TransCLIP-FS in all cases.

Method CUB
Airc

raf
t

Cars Flow
ers

EuroS
AT

Foo
d

Im
ag

eN
et

Calt
ech

DTD
Pets SUN

UCF
Aver

ag
e

1 TransCLIP-FS 65.50 29.84 70.66 85.10 71.43 87.83 69.81 93.18 51.44 91.81 70.59 77.82 72.08
GTA-CLIP 68.50 31.90 71.24 92.65 80.87 88.03 71.26 93.71 60.11 94.13 73.65 79.83 75.49

4 TransCLIP-FS 67.96 35.07 74.14 92.98 78.95 86.35 70.24 93.75 60.50 92.01 71.43 79.25 75.22
GTA-CLIP 74.01 38.57 76.75 96.59 91.03 86.77 72.76 94.20 66.76 92.87 74.66 83.94 79.08

16 TransCLIP-FS 74.24 38.40 79.56 94.68 83.35 86.86 71.89 94.20 65.47 92.59 74.81 81.58 78.14
GTA-CLIP 78.23 43.10 81.79 97.44 91.17 86.96 73.43 95.94 71.55 93.20 76.31 84.62 81.15

Table 3. Zero-shot Results with Seen Classes. In this setting
examples from a “seen” classes are used to adapt CLIP ViT-B/16
and evaluated on “unseen” classes. We compare both inductive
and transductive approaches. Some techniques such as VDT [24]
use 3:1 split as opposed to the 1:1 used by other methods on CUB
so we do not include their numbers. Tranductive inference remains
beneficial, and GTA-CLIP improves over TransCLIP.

Type Method CUB
Airc

raf
t

Cars Flow
ers

Foo
d

Ind.

CLIP 51.91 36.47 74.94 77.05 92.49
CoOp [67] — 22.30 60.40 59.67 82.26
CoCoOp [66] — 23.71 73.59 71.75 91.29
CLIP-A [11] — 33.50 73.30 71.50 91.20
VDT [24] — 33.00 72.90 75.30 91.20
AdaptCLIPZS 55.63 40.75 75.78 81.26 95.08

Trans. TransCLIP-ZS 61.98 37.37 78.04 86.45 95.12
GTA-CLIP 64.74 40.99 82.17 89.72 95.46

5.5. Class Confusion and Attribute Space

Table 5 presents the top confused class pairs identified by
our method during the first epoch on the CUB dataset. We
compare these pairs with confusion counts from a linear
classifier trained on the full CUB training set using labeled
data. The linear classifier is trained on the entire training
set of CUB using labels, and we use ground truth labels to
estimate its confusion. The comparison with our method,
as described in § 3, reveals that 9 out of our top 10 selected
confused pairs fall within the top 10% of confused pairs
identified by the linear classifier. Overall, there is strong
agreement between the most confused pairs, suggesting that
the class confusions identified by our approach align well
with those from a fully supervised model.

Table 5 also visualizes the progression of confusion
counts for the top confused pair (Western Gull, California
Gull). The number of images with a probability difference
below ϱ = 0.1 generally decreases over epochs. The most
significant drop occurs between the first and second epochs,
highlighting the impact of the newly generated attributes.

Figure 2 illustrates the evolution of the attribute space

Table 4. Ablation Study. Ablation study of the components of
GTA-CLIP using ViT-B/16. Average Top-1 accuracy across five
datasets is shown (see Appendix for the full table). Attributes
A = {Ø, S,D} refer to no, static, and dynamic attributes, respec-
tively. No attributes corresponds to standard CLIP, while static
and dynamic refer to the initial set of attributes and confusion-
driven attributes respectively. The first row shows the performance
of CLIP, and the third row shows the performance of TransCLIP.
Simply generating attributes leads to insignificant improvement in
performance on these fine-grained datasets (row 2), but it improves
transductive inference and subsequent adaptation. Dynamic at-
tribute generation provides additional benefits (last row).

ATTRIBUTES TRANSDUCT ADAPT Acc. ! CLIP

Ø ✁ ✁ 60.56 —
S ✁ ✁ 61.59 +1.03%
Ø ✂ ✁ 64.26 +3.70%
S ✂ ✁ 65.60 +5.04%
S ✂ ✂ 66.76 +6.20%
D ✂ ✁ 65.56 +5.00%
D ✂ ✂ 67.52 +6.96%

across various categories. For each category, the class pro-
totype (“photo of [class]”), the initial set of attributes, and
the final set of attributes are shown in green, blue, and red,
respectively. These visualizations were generated by pro-
jecting CLIP text embeddings of the attributes using t-SNE.
Several new attributes were added through pairwise com-
parisons, and a few notable examples are highlighted in the
figure. Many of the attributes discovered through pairwise
comparison highlight differences in habitat, relative char-
acteristics (e.g., “...more pronounced build compared to its
length” for the Western Gull), and other distinguishing fea-
tures. Bird images often include backgrounds indicative of
habitat types, and this form of supervision enables CLIP
to learn to associate these attributes with categorization.
Larger versions of these figures are in the Appendix.

5.6. Computational Cost
For attribute expansion, we explore both open-source
Llama-3.1-8b and GPT-4o, and find their effect on perfor-
mance to be similar (see Table 8 in Appendix). The number
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Table 5. Class Confusions. (Left) Progressive reduction of pair-
wise confusion between “Western Gull” and “California Gull”
over training iterations of GTA-CLIP. (Right) Most confused
class pairs according to our selection criteria. We show the counts
of pairwise misclassified test images according to our procedure
and according to a linear classifier trained on the labeled training
images using the CLIP image features.

C
ou

nt
s

Epochs

Confusion counts 
per epoch Confused Class Pairs Ours Linear

California Gull Western Gull 16 10
Least Flycatcher Olive sided Flycatcher 13 3
American Crow Common Raven 8 12
Least Flycatcher Western Wood Pewee 7 6

Eared Grebe Horned Grebe 7 11
Bronzed Cowbird Shiny Cowbird 6 3

Brewer Sparrow Harris Sparrow 6 2
Slaty backed Gull Western Gull 5 6

Baird Sparrow Grasshopper Sparrow 5 3
Philadelphia Vireo Warbling Vireo 5 8

of class pairs requiring attribute expansion decreases with
each epoch, reaching zero for most datasets after about 10
epochs due to the chosen thresholds ϱ and ς, ensuring that
attributes are not regenerated for duplicate class pairs.

In the CUB dataset, a total of approximately 30 pairs
of confusing classes were selected over 30 iterations for
prompting the LLM. Across datasets of various sizes, the
number of sampled class pairs remains within a similar
range, with the Flowers dataset requiring attribute expan-
sion for only three pairs. For larger datasets such as Ima-
geNet, we lower ϱ to 0.05 to keep attribute expansion com-
putationally feasible. Running Llama-3.1-8b on our hard-
ware (a single A100) takes less than 10 minutes for all se-
lected pairs, while using GPT-4o via API calls takes under
2 minutes and costs less than $1.

Our fine-tuning process is highly efficient, using only 8
examples per category. For a dataset like CUB, which con-
tains approximately 12k images across 200 classes, 30 it-
erations of fine-tuning and transduction take less than 10
minutes on a single A100 GPU.

Overall, the runtime cost of GTA-CLIP is approxi-
mately 10-20 minutes higher than that of CLIP on most
datasets. However, these additional costs can be justified
given the performance gains, since manually labeling even
a small fraction of the dataset would require significantly
more time, such as in fine-grained domains.

6. Limitations
There are two main limitations to our work. The first is the
use of LLMs to generate fine-grained attributes. LLMs are
known to hallucinate data, posing a risk of generating in-
correct attributes. However, similar to AdaptCLIPZS [40],
which demonstrated through human evaluation that the gen-
erated attributes are highly accurate, we did not find this to
be a significant issue for the datasets we considered. Addi-

Slaty-backed Gull Western Gull

“... with a white head and 
underparts.”

“... with a more 
pronounced, heavier build 

compared to its length.”

“... with a thick, yellow bill that 
has a distinctive red spot on the 

lower mandible…”

“... with pinkish legs, which 
can vary in intensity 

depending the individual 
and time of year. ”

Figure 2. t-SNE Plots of Class Attributes. For each category the
prototype, initial set of attributes, and the final set of attributes are
shown in green, blue, and red respectively. Habitat, relative char-
acteristics, and other distinguishing features are often identified
through pairwise comparisons, while the initial attributes tend to
describe the prominent visual features. These plots were obtained
by mapping the CLIP text embeddings of the attributes using t-
SNE. Please see the Appendix for detailed figures.

tionally, this step can be guided by domain experts.
The second limitation is the applicability of the transduc-

tive setup. It requires access to the entire test set at once,
which may not always be feasible (e.g., in a streaming set-
ting). Additionally, we have not demonstrated robustness to
imperfect knowledge of class distributions and data struc-
ture. For instance, we assume that images within a class
cluster together, allowing us to model each class as a Gaus-
sian distribution, which may not always be true.

7. Conclusion
The transductive setting offers a compelling approach for
practitioners and domain experts who need precise answers
for specific datasets. For instance, an ecologist might be
interested in estimating species counts from data gathered
via a network of camera traps, while a scientist might want
to determine land-cover distribution using satellite imagery.
VLMs enable straightforward labeling through language-
based descriptions of categories, but their initial accuracy
is often insufficient. Our work demonstrates that expand-
ing categories based on attributes, when combined with
transductive learning, enables model fine-tuning to achieve
significant accuracy improvements. Additionally, this ap-
proach offers complementary advantages to traditional la-
beling methods, such as providing a few labeled examples
per class. While we use large language models for conve-
nience, this iterative procedure is naturally suited to human-
in-the-loop approaches, allowing practitioners to incremen-
tally add attributes and labels for ambiguous classes. These
findings are practically valuable, as they offer end-users
multiple pathways to improve labeling precision on their
target dataset without investing significant efforts on train-
ing dataset curation and model training.
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