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Figure 1. Schematic representation of conditioned embeddings for a vision transformer: An image is divided into N patches, with each
patch then embedded as a high-dimensional vector Xi ∈ Rd for 1 ≤ i ≤ N . These vectors are then concatenated to form the embedded
token matrix X = [X1 · · ·XN ]T . To improve the conditioning of the self-attention mechanism, a correction term C = [C1 · · ·CN ]T is
added to X , reducing its condition number. The modified matrix is then fed into the first layer of the transformer (positional encoding not
shown). Its effect on the self-attention equation is illustrated in the green equation (for simplicity, layer normalization has been omitted).

Abstract

Transformers have transformed modern machine learning,
driving breakthroughs in computer vision, natural language
processing, and robotics. At the core of their success lies the
attention mechanism, which enables the modeling of global
dependencies among input tokens. However, we reveal that
the attention block in transformers suffers from inherent ill-
conditioning, which hampers gradient-based optimization
and leads to inefficient training. To address this, we de-

velop a theoretical framework that establishes a direct rela-
tionship between the conditioning of the attention block and
that of the embedded tokenized data. Building on this in-
sight, we introduce conditioned embedded tokens, a method
that systematically modifies the embedded tokens to improve
the conditioning of the attention mechanism. Our analysis
demonstrates that this approach significantly mitigates ill-
conditioning, leading to more stable and efficient training.
We validate our methodology across various transformer
architectures, achieving consistent improvements in image
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classification, object detection, instance segmentation, and
natural language processing, highlighting its broad appli-
cability and effectiveness.

1. Introduction
The transformer architecture [23] has become a cornerstone
of modern machine learning, driving breakthroughs across
various domains including computer vision [3, 5, 15, 22],
natural language processing [23, 27, 28], and robotics
[16, 18]. Its success is largely attributed to its ability to
model complex relationships in data without relying on tra-
ditional recurrent or convolutional structures. At the heart
of the transformer is the self-attention mechanism, which
dynamically assigns importance to different parts of the in-
put, capturing both local and global dependencies. Unlike
traditional architectures that process inputs in a fixed order,
transformers utilize self-attention to integrate global context
at each layer, making them highly effective for tasks that re-
quire contextual understanding.

In general, transformers process input data by first con-
verting it into discrete tokens, which are then mapped to a
high-dimensional vector space through an embedding layer.
For text, these tokens represent words or sub-words, while
for images, image patches are treated as tokens. The result-
ing embedded tokens form a matrix that is passed into the
first transformer layer for self-attention computations. This
process allows the model to effectively learn relationships
between tokens in a high-dimensional space.

In this paper, we explore the conditioning of the self-
attention matrix in transformer architectures—an essential
yet often overlooked factor influencing optimization dy-
namics. The conditioning of a matrix is measured by its
condition number, defined as the ratio of its largest singu-
lar value to its smallest. A high condition number indicates
ill-conditioning, which is a well-known challenge for the
convergence of gradient-based optimization methods [17].

Previous work has addressed conditioning in feedfor-
ward neural networks. In [20], a methodology was intro-
duced to condition network weights, leading to improved
optimization. Similarly, [14] examined the condition of
the neural tangent kernel (NTK), proposing a framework
for reducing its condition number and demonstrating en-
hanced convergence for gradient descent. While these stud-
ies have focused on conditioning in feedforward architec-
tures, its role in self-attention mechanisms remains largely
unexplored. This gap motivates our investigation into how
conditioning affects optimization in transformers.

We develop a theoretical framework to analyze the con-
dition number of the self-attention matrix within a trans-
former’s attention layer. Our analysis establishes a di-
rect relationship between the condition number of the first-
layer self-attention matrix and that of the embedded tokens.

Leveraging this insight, we introduce conditioned embed-
ded tokens, a method that applies a structured correction
term to the embedded token matrix, effectively reducing
its condition number and, in turn, improving the condi-
tioning of the self-attention matrix. While a full theoret-
ical proof linking this improvement to better convergence
in gradient-based optimization would require analyzing the
NTK of a transformer—a notoriously difficult task—we
provide strong empirical evidence that conditioned embed-
ded tokens enhances performance across a range of trans-
former applications.

Figure 1 illustrates how conditioned embedded tokens
are integrated into a vision transformer. An image is first
divided into tokens via patches, which are vectorized and
passed through a learnable embedding layer, producing em-
bedded tokens in a high-dimensional vector space. These
tokens form the matrix X = [X1 · · ·XN ]T . A correction
term C = [C1 · · ·CN ]T is added to X , reducing its condi-
tion number before the modified embedding matrix X+C is
fed into the first transformer layer (positional encoding not
shown). This correction not only lowers the condition num-
ber of the self-attention matrix in the first layer but also has a
cascading effect, improving conditioning in subsequent lay-
ers. In general, positional encodings are added to the tokens
before they are fed into the first transformer layer; however,
they are omitted in Figure 1 for simplicity. Our theory will
show that the optimal correction term can be derived from
the singular value decomposition (SVD) of X .

We validate our framework across various applications,
including image classification, object detection, instance
segmentation, and natural language processing. A key
advantage of conditioned embedded tokens is their flexi-
bility—they can be used with a wide range of attention
mechanisms, making them compatible with modern trans-
former architectures. As we demonstrate, our methodology
can serve as a drop-in enhancement for advanced attention
mechanisms proposed in recent works [2, 4, 15, 22, 25, 26],
offering a simple yet effective improvement to existing
models. Our main contributions include:

1. A theoretical framework introducing conditioned embed-
ded tokens for improving the conditioning of the self-
attention matrix within the first transformer layer yielding
a more stable transformer architecture.

2. An empirical evaluation of conditioned embedded tokens
across various transformer architectures and applications,
including image classification, object detection, instance
segmentation, and natural language processing, showing
in each case its superior performance.

2. Related Work
Attention: Various strategies have been introduced to en-
hance the efficiency and effectiveness of transformers, par-
ticularly by addressing their computational overhead and re-
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thinking attention mechanisms. The Data-Efficient Image
Transformer (DeiT) [22] improves training efficiency in vi-
sion transformers by leveraging distillation tokens, allow-
ing for competitive performance without requiring massive
datasets. The Cross-Covariance Image Transformer (XCiT)
[2] redefines attention by operating on cross-covariances
of spatial features, enabling more efficient spatial in-
teractions while reducing computational demands. The
Nyströmformer [25], approximates standard self-attention
using the Nyström method, reducing quadratic complexity
to near-linear. This technique has proven particularly ef-
fective for long-range sequence modeling. In this paper,
we demonstrate that our conditioning framework can be in-
tegrated as a drop-in replacement into these advanced at-
tention mechanisms, yielding superior performance across
multiple architectures.

Conditioning: In [20], the authors investigate the condi-
tion number of weight matrices in feedforward neural net-
works and demonstrate that lower condition numbers lead to
improved accuracy across various applications. They pro-
pose a preconditioner matrix that multiplies each layer’s
weight matrix, effectively reducing its condition number
and enhancing the training of dense weights. In [14], neu-
ral network optimization is explored through the lens of
the neural tangent kernel. The authors introduce the PL*
condition, a variant of the Polyak-Lojasiewicz condition,
and show that this approach improves the conditioning of
the neural tangent kernel, which, in the infinite-width limit,
governs the dynamics of gradient descent [10]. Finally, [1]
demonstrates that increasing the depth of feedforward neu-
ral networks improves their conditioning leading to more
efficient optimization. See [11, 12, 19, 20] for further re-
sults.

3. Notation
In this section, we formally define the transformer archi-
tecture by describing the structure of a transformer layer,
along with establishing notation for various mathematical
elements that will be referenced in subsequent sections. For
further foundational details on transformers, readers may
consult Vaswani et al. [23].

A layer in a transformer can be represented as a mapping

T : RN×D → RN×D (1)

defined by
T(X) = F(A(X) +X), (2)

where F denotes a feed forward network with a residual
connection, and A represents an attention mechanism. In
general, layer normalization is added however for simplicity
we omit layer normalization for this discussion.

To begin with input data x is tokenized into N tokens
yielding a tokenized representation (x1, · · · , xN ) where

xi ∈ Rt×1. Each xi is then mapped to a high dimensional
space Rd×1 using a learnable embedding layer E ∈ Rd×t

so that
Exi ∈ Rd×1. (3)

The matrix [Ex1 · · ·Exn]
T ∈ RN×d represents the embed-

ded tokens associated to the input data. To capture the order
of the tokens, a positional encoding matrix P ∈ RN×d is
added forming X = [Ex1 · · ·Exn]

T + P ∈ RN×d. The
matrix X is then input into the first layer of the transformer.
For the theoretical Sec. 4 we will often use the notation X to
denote embedded tokens often leaving out explicit mention
of the positional encoding part for ease of notation.

The key component of the transformer is self-attention.
This is composed of three learnable matrices, a query (WQ),
key (WK), and value (WV ), where WQ,WK ∈ RD×d and
WV ∈ RD×d. The output of the attention head A(X) is
then given by

A(X) = softmax(XWQW
T
k XT )XWV , (4)

where softmax is the softmax activation that acts row-
wise on the matrix XWQW

T
k XT . Note that then A(X) ∈

RN×d. In the case no activation is used we have the defini-
tion of linear self-attention which we will denote by

LA(X) := XWQW
T
k XTXWV . (5)

In general, multiple attention heads Ai for 1 ≤ i ≤ h
are utilized, each of dimension N ×di = N × d

h . These are
then concatenated to produce a multi-head attention output,

[A1, · · · ,Ah], (6)

which is subsequently fed into a feedforward layer. Simi-
lary, a multi-head linear attention can be defined in the same
way. The full transformer architecture is obtained by se-
quentially stacking several such transformer layers, as de-
fined in Eq. (2).

4. Theoretical Framework
4.1. Conditioning of self-attention
In this section, we analyze the conditioning of the self-
attention matrix in a transformer. Our objective is to demon-
strate that the condition number of the self-attention matrix
in the first layer is influenced by the condition number of
the embedded tokens. This insight motivates our key find-
ing: reducing the condition number of the embedded tokens
leads to a better-conditioned self-attention matrix in the first
layer, ultimately improving the overall conditioning of the
transformer. In this section, we omit positional encoding
and layer normalization to keep the core theoretical insight
clear and accessible. In Sec. 5, we will show our insights
go through for a variety of practical transformers that use
positional encoding and layer normalization.
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Definition 4.1. Let A be an N × d matrix of full rank. The
condition number of A, denoted by κ, is defined as

κ(A) =
σ1

σk
(7)

where k = min{N, d}, and σ1 denotes the largest singular
value of A and σk the smallest singular value of A. Note
that as A is assumed full rank σk ̸= 0 and the condition
number is well-defined. Furthermore, observe that κ(A) ≥
1 since σ1 ≥ σk.

We have the following estimate for the condition number
of linear self-attention and softmax self-attention.

Proposition 4.2. Let X denote an input for an attention
layer as defined in Sec. 3. Assume LA(X) and A(X) have
full rank. We then have

κ(LA(X)) ≤ κ(WQ)κ(WK)κ(WV )κ(X)3 (8)

κ(A(X)) ≤ κ(softmax(XWQW
T
KXT ))κ(X)κ(WV ).

(9)

The proof of Proposition 4.2 is given in Sec. A of the
Supp. material.
Remark 4.3. The statement of Proposition 4.2 assumes the
attention matrices are full rank. Since the layers of a trans-
former are randomly initialized we have that with probabil-
ity 1 the attention matrices will be full rank at initialization.

We point out that although Eq. (8) and Eq. (9) only pro-
vide an upper bound for the condition number, we found
that the this upper bound provides a useful measure for
estimating the condition number of the self-attention ma-
trix. Therefore, for the self-attention matrices A(X) and
LA(X) we make the following definition

µ(LA(X)) := κ(WQ)κ(WK)κ(WV )κ(X)3. (10)

µ(A(X)) := κ(softmax(XWQW
T
k XT ))κ(X)κ(WV ).

(11)

4.2. Conditioned embedded tokens
In this section, we present our main theorem, which pro-
vides a method for reducing the condition number of em-
bedded tokens derived from a dataset. This reduction sub-
sequently decreases the measure µ(A(X)), a key metric for
assessing the condition number of the self-attention matrix
in the first transformer layer.

Theorem 4.4. Let (x1, · · · , xN ) denote N tokens associ-
ated to an input dataset with xi ∈ Rt×1. Let E ∈ Rd×t

denote an embedding matrix so that Exi ∈ Rd×1. Let
X = [Ex1 · · ·ExN ]T ∈ RN×d denote the matrix of em-
bedded tokens. Assume that κ(X) > 2. Then there exists a
matrix C ∈ RN×d such that

κ(X + C) ≤ 2 (12)

and hence that κ(X + C) < κ(X).

In particular, Theorem 4.4 shows that if the condition
number of the embedded tokens X is extremely large.
Adding a correction term given by C will bring it down
significantly. As we shall see in the experiments Sec. 5 the
condition number κ(X) is empirically extremely large. The
proof of Theorem 4.4 is given in Sec. A of the Supp. mate-
rial.

Theorem 4.5. Let X denote a collection of embedded to-
kens, as defined in the statement of Theorem 4.4, and let C
denote the matrix given by Theorem 4.4. We then have

µ(LA(X + C)) ≤ µ(LA(X)). (13)

Assume that

κ(softmax((X + C)WQW
T
K(XT + CT )))

≤ κ(softmax(XWQW
T
KXT )) (14)

then
µ(A(X + C)) ≤ µ(A(X)) (15)

where µ(LA(X)) is defined by Eq. (10) and µ(A(X)) by
Eq. (11).

The proof of Theorem 4.5 is given in Sec. A of the
Supp. material. A natural question arises: can self-attention
be conditioned directly through queries, keys, and values,
independent of the embedded tokens? Unfortunately, our
approach of introducing a correction term does not extend
to these components. This is because our correction mod-
ifies the singular values of the embedded tokens, whereas
altering the singular values of queries, keys, or values could
disrupt how self-attention captures spatial relationships be-
tween tokens.

Remark 4.6. We note that in the case of self-attention with a
softmax activation Theorem 4.5 requires an assumption on
the condition number of the non-linear self-attention proba-
bility matrix term softmax((X+C)WQW

T
K(XT +CT )).

Although this may be seen as a limitation of the theory we
will see in Sec. 5 that this framework still provides a use-
ful methodology to obtain good performance on a variety of
transformer applications.

Remark 4.7. Theorem 4.5 demonstrates that conditioning
embedded tokens can improve the condition number of the
self-attention matrix in the first layer. However, it does not
address how this affects the condition number in subsequent
layers. In Sec. 5, we will show that this effect propagates
through the network, leading to a reduced condition number
in deeper self-attention layers.

Remark 4.8. Our theory, as presented in Theorem 4.4 and
Theorem 4.5, demonstrates that conditioning embedded to-
kens reduces the condition number of the self-attention ma-
trix in the first layer. However, the framework does not
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Models
ViT-base DeiT-base Swin-base XciT-medium DaViT-base

Original embedded tokens 80.3 81.6 83.1 82.2 83.6

Conditioned embedded tokens 81.3 82.5 83.9 82.9 84.6

Table 1. Comparison of vision transformers with their original embedded tokens verse one with a conditioned conditioned embedded tokens
pre-trained on the ImageNet-1k dataset. We report the classification top-1% accuracy. In each case we see the transformers employing
conditioned embedded tokens (ours) outperforms the original ones.

theoretically establish how this improvement translates to
better optimization and, consequently, higher accuracy in
applications. Nonetheless, in Sec. 5, we provide empirical
evidence showing that our approach consistently enhances
accuracy across various applications, highlighting its prac-
tical effectiveness.

5. Experiments
In this section, we evaluate our insight from Sec. 4 on a
variety of transformer applications. For a detailed analysis
of how we implemented conditioned embedded tokens see
Sec. A in the Supp. material.

5.1. Image Classification
In this section, we apply our theoretical insights from
Sec. 4 to vision transformers on an image classification task.
We will train all vision transformers from scratch on the
ImageNet-1k dataset. We will be testing on the following
vision transformers. In each case we will compare the orig-
inal architecture with one that uses conditioned embedded
tokens.

ViT [5]: ViT is a pioneering architecture that applies
transformer-based processing to images by treating them as
sequences of non-overlapping patches. In our study, we uti-
lize ViT-Base (ViT-B), which is configured with a patch size
of 16, an embedding dimension of 768, 12 attention heads,
and 12 layers. The model employs a standard self-attention
mechanism to capture dependencies across patches.

DeiT [22]: DeiT builds upon ViT but is optimized for
data efficiency. Unlike standard ViT, it employs a data-
starvation training strategy [22], enabling faster conver-
gence while maintaining strong performance. In our setup,
we use DeiT-Base (DeiT-B) with a patch size of 16, an em-
bedding dimension of 768, 12 attention heads, and 12 lay-
ers. Like ViT, DeiT utilizes a self-attention mechanism for
feature extraction.

Swin Transformer [15]: Swin Transformer introduces
a hierarchical architecture and a novel shifted window-
based self-attention mechanism, significantly improving ef-
ficiency and effectiveness in vision tasks. In our experi-
ments, we adopt the Swin-Base (Swin-B) variant, which
features 128 channels in the hidden layers of the first stage.

Figure 2. Condition number comparison for ViT-B on ImageNet-
1k. The left, middle, and right bars show the condition num-
ber of embedded tokens, first-layer self-attention (averaged across
heads), and self-attention across all layers, respectively, aver-
aged over training epochs. Our model (conditioned) consistently
achieves a significantly lower condition number than the original.

The attention operates over non-overlapping windows of
size M = 7, while the query dimension per head is set to
d = 32. The network follows a hierarchical structure with
layers arranged as {2, 2, 18, 2} across different stages.

XCiT [2]: XCiT diverges from standard ViT architec-
tures by incorporating two key innovations. First, it in-
tegrates Local Patch Interaction within each block, using
depth-wise 3×3 convolutions, Batch Normalization, GELU
activation, and an additional depth-wise convolution to en-
hance local feature representation. Second, it employs
Cross-Covariance Attention, where attention maps are de-
rived from the cross-covariance matrix of the key and query
projections. For our experiments, we utilize the XCiT-M24
(XCiT-M) model with a patch size of 16, an embedding di-
mension of 512, 8 attention heads, and 24 layers.

DaViT [4]: DaViT extends traditional vision transform-
ers by incorporating both spatial and channel attention
mechanisms, enhancing feature extraction across multiple
dimensions. While conventional transformers rely solely on
spatial self-attention, DaViT introduces channel attention to
capture dependencies across feature channels, complement-
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Model AP b AP b
50 AP b

75 APm APm
50 APm

75

XCiT-S + original embedded tokens 44.9 66.1 48.9 40.1 63.1 42.8

XCiT-S + conditioned embedded tokens 45.7 66.6 49.7 40.4 63.5 43.4

XCiT-M + original embedded tokens 45.7 66.8 49.6 40.8 63.6 43.3

XCiT-M + conditioned embedded tokens 46.2 67.4 49.8 41.4 63.8 44.2

Table 2. Performance evaluation of object detection and instance segmentation on the COCO mini-val set. The backbone networks are
pretrained on ImageNet-1k and integrated into the Mask R-CNN framework. The reported metrics include AP b (Average Precision for
bounding box predictions), AP b

50/75 (Average Precision at IoU thresholds of 0.50 and 0.75 for bounding boxes), APm (Average Precision
for mask predictions), and APm

50/75 (Average Precision at IoU thresholds of 0.50 and 0.75 for mask predictions). In each case we see the
XCiT architecture employing conditioned embedded tokens (ours) out performs the original architecture.

ing spatial interactions. This hybrid approach allows DaViT
to effectively model both local and global relationships. In
our experiments, we use the DaViT-Base (DaViT-B) model,
configured with a patch size of 4, embedding dimensions of
(128, 256, 512, 1024), attention heads of (4, 8, 16, 32), and
a layer distribution of (1, 1, 9, 1).

Results: Table 1 presents a comparison of the top-1% test
accuracy of five vision transformers trained from scratch on
the ImageNet-1k dataset. Each model is evaluated using
both the original embedded tokens and our conditioned em-
bedded tokens, following the approach outlined in Sec. 4.2.
While ViT-Base [5] and DeiT-Base [22] utilize standard
self-attention mechanisms, Swin-Base [15], XCiT-Medium
[2], and DaViT-Base [4] incorporate more advanced atten-
tion mechanisms. We include these latter models to illus-
trate that, although our theoretical analysis focuses on self-
attention, conditioned embedded tokens can be easily in-
tegrated into modern transformers with more sophisticated
architectures. As shown in the table, models using condi-
tioned embedded tokens consistently achieve higher accu-
racy. Full implementation details and hyperparameter set-
tings can be found in Sec. B.2 of the Supp. material.

Analysis: Figure 2 illustrates the condition numbers of
the embedded tokens, the first-layer self-attention matrix
(averaged across all heads), and the overall self-attention
matrix (averaged across all layers) for the ViT-B architec-
ture. We compare these metrics for models using the orig-
inal embedded tokens and our conditioned embedded to-
kens. These values were computed at each training epoch
and then averaged over all epochs to generate the plots. The
figure clearly shows that the ViT-B architecture with con-
ditioned embedded tokens maintains on average a signifi-
cantly lower condition number throughout training.

Implementation and hardware: For full details on the
implementation of each vision transformer, the training hy-
perparameters and the hardware used please see Sec. B.2 in
the Supp. material.

5.2. Object Detection and Image Segmentation
In this section, we extend our approach from Sec. 4.2 to
object detection and instance segmentation tasks. To eval-
uate its effectiveness in fine-tuning scenarios, we adapt a
pretrained XCiT model, originally trained on ImageNet-1k,
for these tasks. Our experiments leverage the COCO 2017
dataset [13], which consists of 118K training images and
5K validation images spanning 80 object categories. For
model architecture, we employ XCiT as the backbone of
the Mask R-CNN framework [9], incorporating a Feature
Pyramid Network (FPN) to enhance multi-scale feature rep-
resentation. To integrate XCiT with FPN, we modify its
inherently columnar structure by extracting features from
multiple layers. We do this by using an XCiT-small that has
12 layers (XCiT-S) and a XCiT-medium (XCiT-M) that has
24 layers. These features, originally computed at a fixed
stride of 16, are adjusted to strides of [4, 8, 16, 32] to align
with the FPN hierarchy. Max pooling is used for downsam-
pling, while a single transposed convolution layer facilitates
upsampling. The model is then fine-tuned for 36 epochs us-
ing the AdamW optimizer, with a learning rate of 10−4, a
weight decay of 0.05, and a batch size of 16. This train-
ing strategy effectively demonstrates how XCiT’s learned
representations can be adapted for downstream tasks.

Results: We pretrained a total of four models on the
ImageNet-1k dataset, namely an XCiT-S and XCiT-M both
using the original embedded tokens following the method-
ology from Sec. 4.2. The results of the experiment are
shown in Tab. 2. As can be seen from the table in both
cases the transformer using conditioned embedded tokens
out performs the original.

Implementation and hardware: For full details on the
implementation, the training hyperparameters and the hard-
ware used see Sec. B.3 in the Supp. material.

5.3. Language Models
In this section, we evaluate our insights from Sec. 4.2 on
two different language models.
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MNLI SST-2 STSB RTE QNLI QQP MRPC CoLA GLUE

Crammed BERT (original) 83.8 92.3 86.3 55.1 90.1 87.3 85.0 48.9 78.6

Crammed BERT (ours) 84.2 92.5 86.5 55.6 91.1 87.4 86.3 53.7 79.7

Table 3. Evaluation of a pre-trained Crammed BERT on the GLUE benchmark with the original embedded tokens (original) and our
conditioned embedded tokens (ours). As can be seen from the table our methodology out performs the original in every task.

Crammed BERT: In the first experiment we applied our
insights from Sec. 4.2 to a Crammed BERT language model
[8], trained entirely from scratch using masked language
modeling with conditioned embedded tokens. The model
consists of 110 million parameters, with 12 transformer lay-
ers and 12 attention heads per layer. We train two ver-
sions from scratch: the original Crammed BERT [8] and
a variant incorporating conditioned embedded tokens using
the insight from Sec. 4.2. Both models are trained on The
Pile dataset [7], a large-scale corpus designed for language
model training following the pretraining regime in [8]. Af-
ter pretraining, we evaluate the performance on the GLUE
benchmark [24] following the evaluation methodology out-
lined in [8].

Results: The evaluation results are shown in Tab. 3 with
each number representing the accuracy. We see from the
table that in each task the model employing conditioned
embedded tokens outperforms the original Crammed Bert
model on every task within the GLUE benchmark.

GPT-2: We conducted a second experiment training a
GPT-2 model with a decoder-only transformer architecture,
consisting of 12 layers, 12 attention heads per layer, and an
embedding dimension of 512. The model was trained using
masked self-attention to predict the next token, leveraging
the TinyStories dataset [6] for language generation. Two
versions of the model were trained from scratch: one using
the original embedded tokens as in [6] and another incor-
porating the conditioned embedded tokens from Sec. 4.2.
Both models were evaluated using perplexity loss (PPL),
a widely used metric for assessing language models on
datasets like TinyStories. Perplexity measures the model’s
confidence in its predictions by computing the exponential
of the average negative log-likelihood of the predicted to-
kens. A lower perplexity score indicates that the model as-
signs higher probabilities to correct tokens, leading to better
fluency and coherence in text generation.

Results and Analysis: Tab. 4 presents the results of our
experiment, demonstrating that the model trained with con-
ditioned embedded tokens consistently achieves lower val-
idation loss and lower perplexity compared to the original
GPT-2 model. These results indicate that conditioning the
embedded tokens improves model performance, leading to
more accurate language generation. Fig. 3 plots the con-

Val loss
GPT-2 original 2.41

GPT-2 conditioned (ours) 2.36

Table 4. GPT-2 model trained on the TinyStories dataset. We com-
pare two models, the original model and one using conditioned
embedded tokens (conditioned). We report the validation loss; in
both cases, our model yields a lower loss, indicating better perfor-
mance.

Figure 3. Condition number comparison for GPT-2 training on
TinyStories. The left, middle, and right bars show the condition
number of embedded tokens, first-layer self-attention (averaged
across heads), and self-attention across all layers, respectively,
averaged over all epochs. Our model (conditioned) consistently
achieves a significantly lower condition number than the original.

dition numbers of the embedded tokens, self-attention in
first layer averaged over all heads and self-attention aver-
aged over all layers. Each of these are evaluated over each
training epoch and then averaged over all epochs.

Implementation and hardware: For full details on the
implementation, the training hyperparameters and the hard-
ware used please see Sec. B.4 in the Supp. material.

5.4. Nyströmformer for Long Range Sequences
We applied our methodology to the Nyströmformer [25],
a transformer architecture designed for efficient long-range
dependency modeling on the Long-Range Arena (LRA)
benchmark [21]. We trained two Nyströmformer models:
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Model ListOps Text Retrieval Image Pathfinder

Nyströmformer (original) 37.1 63.8 79.8 39.9 72.9

Nyströmformer conditioned (ours) 37.9 64.9 80.9 40.1 80.0

Table 5. Comparison of a Nyströmformer using its original embedded tokens (original) with a Nyströmformer using conditioned embedded
tokens (ours) on the LRA benchmark. We report the evaluation accuracy (%). As can be seen from the table our methodology yields a
hihger accuracy on each task.

one utilizing conditioned embedded tokens and the original
Nyströmformer for comparison. The Long-Range Arena
(LRA) benchmark consists of five distinct tasks:
1. ListOps: A synthetic task that tests hierarchical reason-

ing by evaluating nested arithmetic operations.
2. Text Classification: Character-level text classification,

requiring models to process long sequences of text.
3. Retrieval: A document retrieval task that measures the

model’s ability to identify relevant patterns within long
textual inputs.

4. Image Classification: Modeling image data as a se-
quence of flattened pixel values to assess a model’s ca-
pability in visual recognition.

5. Pathfinder: A visual reasoning challenge that requires
detecting connected paths in an image, emphasizing spa-
tial relationship modeling.

Results and Analysis: Tab. 5 shows the results of the ex-
periment. As can be seen from the table the Nyströmformer
that employed conditioned embedded tokens outperformed
the original Nyströmformer from [25] in every task in the
LRA benchmark. We computed the condition numbers of
the original Nyströmformer and one employing conditioned
embedded tokens throughout training for the embedded to-
kens, the self-attention within the first layer averaged over
all heads and the self-attention averaged over all layers. We
then took the average for each task over all training epochs
and averaged over the five tasks within the LRA benchmark.
The plots are shown in Fig. 4. As can be seen from the fig-
ure, the Nyströmformer employing conditioned embedded
tokens has lower condition number in all cases.

Implementation and hardware: For full details on the
implementation, the training hyperparameters and the hard-
ware used please see Sec. B.5 in the Supp. material.

6. Limitations
Our work explored the conditioning of transformer attention
blocks through embedded tokens. While we showed that
conditioned embedded tokens reduce the first-layer self-
attention condition number, their impact on optimization
remains theoretically unproven. Prior studies [1, 10, 14]
have linked NTK conditioning to optimization in feedfor-
ward networks, raising an important question: how does

Figure 4. Condition number comparison for Nyströmformer on
the LRA benchmark. The left, middle, and right bars show the
condition number of embedded tokens, first-layer self-attention
(averaged across heads), and self-attention across all layers, av-
eraged over training epochs and tasks. Our model (conditioned)
consistently achieves a significantly lower condition number than
the original.

conditioning embedded tokens affect the NTK in transform-
ers? Investigating this could offer deeper insights into how
embedded token structure influences transformer optimiza-
tion.

7. Conclusion

In this paper, we introduced a framework for analyzing the
conditioning of the self-attention matrix in the first layer of
a transformer, highlighting its dependence on the embedded
tokens. Our analysis demonstrated that by adding a care-
fully designed correction term—which we refer to as condi-
tioned embedded tokens—we could significantly reduce the
condition number of self-attention in the first layer, leading
to a better-conditioned attention mechanism. We empiri-
cally validated the effectiveness of conditioned embedded
tokens across a diverse set of tasks, including image classi-
fication, object detection, instance segmentation, language
modeling, and long-range sequence modeling. In all cases,
our approach proved to be a simple, drop-in replacement for
existing embedding methods, consistently improving model
performance across these applications.
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