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Figure 1. MAVias identifies instance-level potential visual biases through foundational models that extract tags representing visual features
and assess relevance to the target class. Then, MAVias encodes these features within the vision-language space and integrates them into a
bias-aware framework to train a model that is invariant to such visual biases.

Abstract

Mitigating biases in computer vision models is an essen-
tial step towards trustworthy artificial intelligence systems.
Existing bias mitigation methods are limited to predefined
biases, preventing their use in visual datasets where mul-
tiple, possibly unknown biases exist. To address this lim-
itation, we introduce MAVias, an open-set bias mitiga-
tion approach that leverages foundation models to discover
spurious associations between visual attributes and target
classes. MAVias first captures a wide variety of visual fea-
tures in natural language via a foundation image tagging
model, and then leverages a large language model to select
visual features that define the target class, resulting in a
set of language-coded potential visual biases. It then trans-
lates these biases into vision-language embeddings and in-
troduces an in-processing bias mitigation approach to pre-
vent the model from encoding information related to them.
Experiments on diverse datasets, including CelebA, Water-
birds, ImageNet, and UrbanCars, show that MAVias effec-
tively detects and mitigates a wide range of biases in visual
recognition tasks, outperforming current state-of-the-art.

1. Introduction

Computer Vision (CV) progress has been largely driven
by Deep Learning (DL) advances [9, 15] and large-scale

datasets [6, 22, 26], enabling models to learn complex pat-
terns and visual features with impressive accuracy. How-
ever, alongside this progress, concerns have emerged about
biases embedded in these models [11, 30, 33, 40, 43, 47] –
often stemming from unintended correlations present in the
training data [13, 23, 28, 31]. The correlated attributes that
are irrelevant act as “shortcuts” and can significantly im-
pact the model’s reliability and generalization [12, 37, 38].
It is important to note that in the context of this paper, we
define as visual bias any characteristic that does not con-
tribute to defining the target class, which we refer to as “ir-
relevant”. To address this, several methodologies have been
developed. Broadly, these fall into two categories: Bias
label-Aware (BA) and label-Unaware (BU) methods. BA
methods leverage the annotations of attributes introducing
the biases to address them [2, 20, 44, 48]. BU methods
focus on extracting bias pseudo-labels in cases of extreme
biases where a bias-proxy model (or bias-capturing classi-
fier) can be trained using the task’s target labels that closely
align with the bias labels [16, 29, 32, 41].

While effective in certain contexts, both BA and BU
methods have limited applicability when there are multiple,
complex, and possibly unknown biases. Common challeng-
ing scenarios include:

• Unknown biases: In large general-purpose CV datasets,
such as ImageNet, biases are difficult to identify and
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largely remain unknown, as they vary widely across dif-
ferent classes and are not prominent enough to allow
training of bias proxy models. For instance, in the Im-
ageNet9 example of Tab. 1, a sample labeled as a dog
could introduce biases related to the background scene
(e.g., armchair, couch, pillow, red), the color of the dog
(e.g., black and white), or accessories like a neckband.

• Potential biases beyond a predefined set: The CelebA
example in Tab. 1, shows that beyond the hair color, addi-
tional biases may be present, such as clothing styles (e.g.,
business suit, tie).

• Poor representation of predefined bias: In some cases,
biases are reduced to single labels, such as “rural back-
ground” in the UrbanCars dataset. However, as shown
in Tab. 1, more nuanced descriptors at the instance level
(e.g., path, tree, wood, forest, hydrant, red, etc.) provide
a richer representation of bias.

Existing BA and BU methods are not designed to mit-
igate such biases, leading to models that are biased and/or
do not achieve their optimal generalization potential. To
address this, Mitigate Any Visual bias (MAVias) introduces
a flexible and scalable solution, capable of identifying and
mitigating open-set biases in CV datasets. MAVias begins
by extracting descriptive tags that capture various visual
features, such as general-purpose objects, actions, scenes,
and visual attributes. Recent advancements in image
tagging [53] cover large and comprehensive vocabularies
(i.e., > 4, 000 tags), effectively meeting the open-set
requirements of MAVias. Then, these tags are processed by
a Large Language Model (LLM) to identify which ones are
irrelevant to each of the target classes, leading to a rich set of
language-encoded visual biases, text descriptions of visual
characteristics that are irrelevant to the classification task at
hand. MAVias translates these biases into vision-language
embeddings, projects them to the main model’s backbone
space and then to the classification layer. This projection
layer is trained simultaneously alongside the main model,
and during training, the output logits are a linear combina-
tion of the logits of the main model and those of the pro-
jection layer that captures visual biases. This setup allows
the main model to be exposed to the biased features – those
representing irrelevant information to the target class – in a
controlled way that leads to bias-invariant representations.
Overall, MAVias provides an effective, end-to-end solution
for identifying and mitigating biases in open-set scenarios.
We evaluate the proposed method on several datasets
involving single-attribute biases (CelebA, Waterbirds)
as well as multi-attribute predefined biases (UrbanCars),
demonstrating state-of-the-art performance. Furthermore,
experiments were conducted on ImageNet9, involving
unknown biases, where the suggested approach demon-
strates significant gains (from 5.24% to 10.21%) in terms
of accuracy compared to existing competitive approaches.

The main contributions of this paper are the following:
• A framework for identifying instance-specific open-set

potential visual biases in CV datasets.
• A learning strategy that exploits foundation models to

learn bias-invariant representations that force the under-
training model to avoid encoding any number of identi-
fied potential biases per training sample.

• An extensive evaluation study including 4 thematically
diverse datasets demonstrating the effectiveness and gen-
eral applicability of MAVias, which outperforms the
state-of-the-art.

MAVias implementation is available as part of the VB-
Mitigator library [39].

2. Related Work
Bias identification. Several recent methods leverage text
(such as captions, keywords, or tags) for bias detection,
highlighting the potential of this approach in this domain.
For instance, Say My Name (SaMyNa) [4] is an explain-
ability method that tries to discover model biases through
text-based pipelines. Similarly, the Bias-to-Text (B2T) [21]
and Language-guided (Lg) [54] frameworks discover biases
by extracting common keywords from the captions of mis-
classified images. These methods aim to identify the main
source of bias rather than discovering potentially biased vi-
sual characteristics in an open-set setting. Furthermore,
OpenBias [8] is a framework for detecting biases in text-
to-image generative models by leveraging LLMs to pro-
pose potential biases from captions. Although operating in
a different domain (text-to-image generation), similarly to
MAVias OpenBias acknowledges the need for discovering
biases in an open-set setting. However, it provides an LLM
with text-only image descriptions asking for potential types
of bias thus missing visual grounding of the depicted infor-
mation, which could offer essential context and semantics.
In contrast, MAVias takes a more structured and system-
atic approach; it evaluates each descriptive tag by querying
the LLM to determine whether it is directly relevant to the
target class using a detailed prompt (specified in the supp.
material).

Furthermore, bias identification methods typically use a
vanilla model and validation data to infer specific biases,
while MAVias focuses on defining irrelevant visual features
a priori, and leveraging them in model training to mitigate
them. While some open-set identification methods can pro-
vide bias labels to define subgroups for use by existing bias
mitigation approaches [4], it is known that mitigation meth-
ods struggle with multi-attribute biases and cannot scale be-
yond single-attribute subgrouping [25]. In contrast, MAVias
uses instance-level irrelevant visual features without relying
on dataset statistics (i.e., neither bias labels nor subgroups
w.r.t. them are defined), allowing it to handle complex bi-
ases effectively.
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Table 1. Examples of extracted tags for various datasets. Red color indicates the irrelevant tags (B(i)).

Dataset ImageNet9 Waterbirds UrbanCars CelebA

Target Class dog bird species car type hair color

Bias Type unknown background background and objects gender

Sample

Extracted Tags armchair, black, chair,
couch, dog, neckband,
pillow, red, sit, white

bamboo, bamboo forest, bird,
blue, branch, green, hide, par-
rot, perch, sit, stand, stem, tree,
yellow

car, path, forest, hydrant, lush,
park, red, road, sedan, silver,
SUV, tree, white, wood

black, business suit, dress,
dress shirt, man, stand,
stare, suit, tie, wear

Bias mitigation. Recent bias mitigation methods include
those with direct access to the labels of attributes introduc-
ing bias (i.e., BA methods) [2, 16, 20, 25, 36, 38, 44, 48]
and those that do not take advantage of such labels but
instead rely on deriving pseudo-labels (i.e., BU methods)
[1, 3, 32, 41, 46, 49, 51]. For instance, Learning Not to
Learn (LNL) [20] is a BA method that discourages the
model from predicting the attribute introducing bias, while
Bias Contrastive-Bias Balance (BC-BB) [16] and FairKL
[2] rely on the bias labels to enforce bias-neutral pairwise
similarities between the samples using contrastive learning.
Some methods have indirect access to the bias labels by uti-
lizing bias-capturing classifiers trained on different datasets
offering bias-related information explicitly [41, 42]. Fi-
nally, other methods infer pseudo-labels from the biased
vanilla model to identify the biases [1, 5, 32]. While these
methods have been effective in mitigating biases, they pri-
marily depend on predefined bias labels or pseudo-labels
derived from biased models. On the contrary, this work
explores open-set scenarios and introduces a flexible bias
mitigation approach that can discover and handle multiple,
diverse biases without requiring a bias-labeling system.

3. Methodology
3.1. Problem Formulation
Let D = {(x(i), y(i))}Ni=1 be a dataset consisting of N
images, where x(i) ∈ X represents an input image, and
y(i) ∈ Y is the corresponding target label. The goal is to
train a DL model fθ : X → Y , parameterized by θ, to
predict the target label y(i) given an image x(i), while mit-
igating a set of potential biases, B(i), present in x(i) that
may lead to biased predictions. In this context, the term
“potential biases” refers to all visual attributes present in X
that are irrelevant to the target class, such as elements of the

background of images or other so-called “shortcuts”.

3.2. Method
3.2.1. Language-driven Bias Modeling
In many general-purpose CV datasets, biases manifest
through visual information that can be described in text.
MAVias, first, utilizes an image tagging model to extract
tags that describe the visual information present in an im-
age. Formally, for each image x(i), we derive a set of tags
T (i) = {t(i)1 , t

(i)
2 , . . . , t

(i)
mi}, where mi represents the total

number of tags for i-th sample. These capture various vi-
sual attributes, including colors, objects, backgrounds, and
other features that can either describe the target class or po-
tentially introduce bias.

The next step is to filter out tags that should not influ-
ence the decisions of an unbiased classifier. To achieve this,
we leverage an LLM to identify which tags are irrelevant to
the target class y(i). We denote this subset of potential bi-
ases as B(i) ⊆ T (i). These encapsulate visual features that
could lead to biased predictions if considered by the model.
To ensure the LLM correctly identifies these irrelevant tags,
we carefully design the prompt used for this task by provid-
ing precise instructions on what tag should be considered
relevant (e.g., physical components, defining features, in-
herent characteristics, etc.) or not (e.g., background details,
lighting, textures, other objects, etc.). Details on the prompt
formulation process are provided in the supp. material. Ta-
ble 1 shows several examples of B(i) for samples belonging
to different datasets.

For each set of irrelevant tags B(i) associated with an
image x(i), we employ a vision-language model to generate
a single embedding e(i) ∈ Rd, where d is the dimension
of the embedding. This is produced using the prompt “a
photo of t(i)1 , t

(i)
2 , . . . , t

(i)
ki

”, where ki ≤ mi is the number
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of irrelevant tags for the i-th sample. This aggregate em-
bedding captures the combined information from all irrele-
vant tags, providing an instance-level representation of the
biased features that could affect the model’s behavior. Com-
parison with alternative embedding approaches is provided
in Sec. 4.6.

3.2.2. Bias Mitigation
We define the main model fθ(x(i)), a DL classifier com-
posed of the following: (i) a backbone fθbb

(x(i)), which
extracts feature representations h(i) ∈ Rr, where r is the
feature vector size; (ii) a classification head fθc

(x(i)) out-
putting the logits z

(i)
main = fθc(h

(i)) ∈ Rp, where p =
|Y|. The overall main model is expressed as fθ(x

(i)) =
fθc

(fθbb
(x(i))). In parallel, we introduce a projection layer

gϕ, parameterized by ϕ, which takes the visual bias em-
beddings e(i) as input and outputs embeddings b(i) ∈ Rp.
Note that gϕ is employed to project e(i) to the feature space
of h(i). Then the corresponding logits are derived through
z
(i)
tag = fθc

(b(i)) ∈ Rp. The final logits z(i) for each sam-

ple are the addition of the main model logits z
(i)
main and the

visual bias logits z(i)tag :

z(i) = z
(i)
main + z

(i)
tag . (1)

It is worth noting that bias often arises during DL model
training because biased attributes in the training data are
easier to learn and thus dominate gradient updates [35].
To counteract this, MAVias incorporates visual bias logits
into the main model’s logits, ensuring that as the bias in a
sample increases, its impact on gradient updates is reduced.
The intuition behind this mechanism is that for bias-aligned
samples, the value of ztag is high, effectively reducing the
magnitude of zmain and its contribution to the total logits
z. This leads to significantly reduced gradients for these
samples. This is supported both empirically in Sec. 4.5 and
theoretically in the supp. material. In other words, ztag as-
sists in decoupling the learning of biased features from the
actual task at hand, which allows the main model to focus
on the relevant features for the target prediction.

Furthermore, since both the main model and the projec-
tion layer are trained concurrently, it is essential to ensure
the stability of the training process. To achieve this, we in-
troduce a loss function that combines the classification loss
with a logit alignment term. The classification loss ensures
that the combined logits z(i) accurately predict the target la-
bel y(i), while the alignment term controls the relative mag-
nitudes of the main model’s logits z(i)main and the visual bias
logits z

(i)
tag . By doing so, we prevent gϕ from dominating

or being overshadowed by hθ. Specifically, the loss is com-
puted as: L(θ,ϕ) = Lcls(z

(i), y(i))+α·Lalign(z
(i)
main, z

(i)
tag),

where: (i) Lcls(z
(i), y(i)) is the classification loss (e.g.,

cross-entropy loss) between the final logits z(i) and the

ground truth label y(i); (ii) Lalign(z
(i)
main, z

(i)
tag) is the logit

alignment term for the norm of the logits, calculated as:

L(i)
align =

1

2

∥∥∥∥z(i)main∥−λ · ∥z(i)tag∥
∥∥∥2 (2)

where ∥·∥ denotes the l2-norm, λ ∈ (0, 1) is a scaling fac-
tor and α ∈ (0, 1) is a weighting factor that balances the
influence of the Lalign(z

(i)
main, z

(i)
tag) in the total loss function.

Typically, the greater the bias in the data, the smaller the
value of λ should be, as this leads to smaller zmain values
and reduced gradient updates for the bias-aligned samples.
Details on the effects of hyperparameters λ and α are pro-
vided in the supp. material. The overview of the proposed
framework is illustrated in Fig. 2.

4. Experiments
4.1. Datasets
We use Biased-CelebA [16], Waterbirds [38], UrbanCars
[25], and Imagenet9 [50]. Biased-CelebA is a subset of the
CelebA dataset, containing facial images annotated with
40 binary attributes. In this subset, BlondHair is the target
attribute, while the gender attribute introduces bias with a
90% correlation. Waterbirds features a 95% co-occurrence
between waterbirds (or landbirds) and aquatic (or terres-
trial) backgrounds. UrbanCars is an artificially generated
dataset with a 95% co-occurrence between car body types
and relevant urban or rural backgrounds. ImageNet9
consists of 9 coarse ImageNet classes.

4.2. Model Architectures
For comparability purposes, we employ the same network
architectures as those used in other works [2, 16, 41, 42]. In
particular, for CelebA, we adopt the ResNet-18 architecture
[14], for Waterbirds, UrbanCars, and ImageNet9 datasets,
we use ResNet-50 networks. In all experiments, the projec-
tion layer is a dense layer that gets vision-language embed-
dings as input and its output size is aligned with the feature
size of the main model.

4.3. Implementation Details
The SGD optimizer is employed for all datasets except for
CelebA, where Adam optimizer is used. We use an ini-
tial learning rate of 0.001, which is divided by 10 every
1/3 of the training epochs. The weight decay is set to
10−4. The batch size is 128 for CelebA and 64 for Wa-
terbirds, UrbanCars, and ImageNet9. Following previous
works [16, 25, 38], we train the models for 40, 100, 300,
and 40 for CelebA, Waterbirds, UrbanCars, and ImageNet9,
respectively. For Waterbirds and UrbanCars, we do not use
a learning rate scheduler. The parameters (α, λ) are (0.01,
0.5), (0.05, 0.6), (0.01, 0.4), and (0.001, 0.7) for CelebA,
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Figure 2. Illustration of the proposed framework for mitigating any visual bias during model training. For inference, only the backbone
and the classification layer are considered (i.e., fθ).

Waterbirds, UrbanCars, and ImageNet9, respectively. RAM
[53], GPT-4o [34], OpenCLIP [18] are employed for image
tagging, irrelevant tag filtering, and vision-language encod-
ing, respectively. For all the experiments presented in the
main manuscript, we run the compared methods using the
code provided by the corresponding papers, using the sug-
gested hyperparameters. Specifically, we use 50 epochs
for bias discovery and 100 upweight for JTT; α = 110
for FLAC-B; 0.1 SD coefficient; and α = 0.7 for LfF.
For the baseline methods results presented in the supple-
mentary material (i.e., closed-set), we present performance
as reported in the corresponding works to avoid potential
underperformance due to reimplementation. Experiments
were conducted on an NVIDIA A100 GPU. All experiments
were repeated for 5 different random seeds.

4.4. Evaluation Protocol

To assess bias, we primarily use worst-group accuracy (WG
Acc.), which measures the accuracy of the least-performing
group within a dataset, and average accuracy (Avg. Acc.),
which is the mean accuracy across all groups and reflects
overall model performance. The formation of these groups
determines whether the evaluation supports a closed- or
open-set bias scenario. Accordingly, we implement two
distinct evaluation protocols. The first one is designed to
align with our approach, focusing on open-set biases, while
the second protocol adheres to established evaluation stan-
dards in the literature (i.e., closed-set scenario). Further-
more, since MAVias is designed for BU scenarios, we eval-
uate its performance against the following widely-employed
and competitive BU methods: LfF [32], JTT [27], SD [35],
Debian [24], and FLAC-B [41].
Open-set. Here, we form groups based on the presence/
absence of the detected open-set bias attributes (i.e., no pre-

defined biases are considered). To achieve that, we use a
vanilla model and the potential biases B extracted through
MAVias to identify the subset of tags B′ ⊆ B that actu-
ally introduce bias to the model. We define bias as occur-
ring when the model exhibits increased accuracy on images
that include a particular tag, relative to its overall accuracy
across the entire dataset. After deriving B′ for each class
within the datasets, we categorize each group of images be-
longing to a class into two sub-groups based on whether the

Table 2. Open-set performance comparison across CelebA, Water-
birds, and UrbanCars datasets.

Dataset Method WG Acc. Avg. Acc.

C
el

eb
A

LfF [32] 14.7 ±15.2 67.1 ±4.4

JTT [27] 31.5 ±8.0 61.6 ±8.5

SD [35] 13.3 ±8.2 67.4 ±1.9

Debian [24] 12.0 ±8.7 67.0 ±2.6

FLAC-B [41] 12.0 ±8.7 65.9 ±2.4

MAVias 66.7 ±4.7 81.4 ±1.8

W
at

er
bi

rd
s

LfF [32] 30.0 ±6.8 72.7 ±1.4

JTT [27] 64.7 ±2.4 85.2 ±4.6

SD [35] 35.0 ±16.3 75.5 ±4.1

Debian [24] 37.5 ±0.0 74.7 ±0.5

FLAC-B [41] 37.5 ±8.8 75.2 ±2.7

MAVias 75.4 ±0.9 87.5 ±1.2

U
rb

an
C

ar
s

LfF [32] 34.6 ±2.6 61.0 ±1.4

JTT [27] 69.0 ±3.3 77.8 ±0.3

SD [35] 40.4 ±2.7 66.5 ±1.1

Debian [24] 33.2 ±8.0 61.1 ±2.1

FLAC-B [41] 28.5 ±4.3 57.3 ±1.7

MAVias 84.4 ±2.2 89.3 ±1.3
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Table 3. Open-set performance on ImageNet9 in terms of accuracy across 7 test sets.

Method MIXED-NEXT (↑) MIXED-RAND (↑) NO-FG (↓) ONLY-BG-B (↓) ONLY-BG-T (↓) ONLY-FG (↑) ORIGINAL (↑)

Vanilla 82.66 ±0.1 85.06 ±0.0 64.16 ±0.1 35.18 ±0.1 44.74 ±0.1 93.12 ±0.0 97.69±0.0

LfF [32] 78.70 ±0.1 81.47 ±0.2 61.07 ±0.1 34.82 ±0.2 44.46 ±0.0 88.99 ±0.2 94.34 ±0.2

JTT [27] 84.43 ±0.1 86.16 ±0.5 61.09 ±2.0 32.04 ±1.0 36.62 ±4.7 92.09 ±0.5 97.71 ±0.1

Debian [24] 83.02 ±0.4 85.64 ±0.3 64.53 ±0.4 34.45 ±0.1 45.00 ±0.6 93.06 ±0.1 97.89 ±0.1

SD [35] 87.56 ±0.57 88.92 ±0.74 62.60 ±1.05 31.42 ±2.93 40.81 ±3.00 93.71 ±0.71 98.16 ±0.06

FLAC-B [41] 84.60 ±0.46 86.62 ±0.45 59.84 ±1.67 29.71 ±0.53 40.38 ±1.28 92.72 ±0.73 97.89 ±0.09

MAVias 88.26±0.1 (+0.70) 89.64±0.2 (+0.72) 53.02±0.7 (-6.82) 21.83±0.4 (-7.88) 32.48±0.6 (-4.14) 91.90±0.4 (-1.81) 96.92±0.2 (-1.24)

samples contain at least one of the biased tags. This re-
sults in 2 × p groups. Subsequently, we measure the WG
Acc. and Avg. Acc. across all groups. To ensure a fair
assessment, the optimal training epoch for each method is
selected based on the overall accuracy, without considering
any information related to the biases. An exception to this
protocol is ImageNet9. In the original ImageNet9 test set,
we observed that for several classes, the subgroups without
any biases contain very few samples (fewer than 4), making
reliable evaluation difficult. We therefore use the official
seven test set variations, which allow for a more compre-
hensive evaluation of the model’s reliance on factors beyond
the target object: ORIGINAL, ONLY-BG-B (bounding box
of a black object), ONLY-BG-T (bounding box of an in-
painted object), NO-FG Black (segmented object removed),
ONLY-FG (black background), MIXED-RAND (random
background of a random class), and MIXED-NEXT (ran-
dom background of the next class).
Closed-set. Here, we follow the protocols suggested by the
dataset providers and previous works for predefined biases.
In particular, for CelebA we use the accuracy of the under-
represented groups (i.e., bias-conflicting accuracy) and the
average accuracy across all groups (i.e., unbiased accuracy)
[16, 41]. For Waterbirds, we use the WG Acc. and the Avg.
Acc. across all groups. In the case of UrbanCars, we calcu-
late the weighted average accuracy across groups, referred
to as In-Distribution Accuracy (I.D. Acc), with weights de-
termined by group representation ratios. Furthermore, I.D.
Acc serves as a baseline for assessing accuracy drops re-
lated to background (BG Gap), co-occurring objects (CoObj
Gap), and both background and co-occurring objects com-
bined (BG+CoObj Gap).

4.5. Comparative Analysis
Table 2 presents the open-set performance comparison
across the CelebA, Waterbirds, and UrbanCars datasets.
For CelebA, MAVias significantly outperforms competing
methods by achieving a 66.7% (+35.2%) WG accuracy
and 81.4% (+14%) Avg. accuracy. As expected, most
existing BU methods exhibit poor performance, as they
struggle to handle scenarios with multiple concurrent
biases [25]. For the Waterbirds, MAVias reaches a WG
accuracy of 75.4% (+10.7%) and an Avg. accuracy of

87.5% (+2.3%), surpassing competing approaches by
a notable margin. Similarly, in the UrbanCars dataset,
MAVias achieves a WG accuracy of 84.4% (+15.4%) and
an Avg. accuracy of 89.3% (+11.5%). For ImageNet9, as
shown in Tab. 3, MAVias achieves accuracy improvements
on the test sets with modified backgrounds, MIXED-NEXT
and MIXED-RAND (+0.7% and +0.72).

Similarly, for the sets where background information
is suppressed (ONLY-BG-B, ONLY-BG-T, and NO-FG)
MAVias achieves improvements of +7.88%, +4.14%, and
+6.82%, respectively. As observed, most competitive meth-
ods, including MAVias, underperform on ONLY-FG com-
pared to the vanilla model. This is likely because the
vanilla model can exploit biases present in the foreground
(e.g., colors) to increase its accuracy. Finally, there is a
1.24% drop in performance on the ORIGINAL test set,
which aligns with expectations, as MAVias is designed to
rely less on shortcuts that boost overall performance. The
top-10 biased tags for each Imagenet9 class are reported
in Tab. 4. Moreover, Tab. 5 reports the top-10 irrelevant
tags derived using MAVias for CelebA, Waterbirds, and Ur-
banCars datasets. For CelebA, MAVias successfully detects
the primary bias (i.e., gender) while also revealing other bi-
ases associated with facial expressions (smile), shot types
(selfies), and clothing items (e.g., dresses, business suits,
or ties). In the case of Waterbirds, we observe that, in
addition to background elements, waterbirds are predomi-
nantly depicted in flight, whereas landbirds are often ob-
served perched on tree branches. Finally, for UrbanCars,
as anticipated, the top irrelevant tags correspond to objects
that are common in urban/rural environments.

For the closed-set evaluation, as reported in Tab. 6
MAVias achieves +2.7% (89.7%) Unbiased and +2.2
(87.1%) Bias-conflict accuracy compared to the second-best
performing method, on CelebA. On Waterbirds, MAVias
attains 93.7% WG Acc., outperforming all compared BU
methods (+5%), while slightly improving the average ac-
curacy (+0.7%). On UrbanCars, MAVias significantly
enhances performance by reducing the BG, CoObj, and
BG+CoObj gaps to 4.1, 2.4, and 6.7, respectively, repre-
senting absolute improvements of 4, 8.1, and 33.4. The full
closed-set results are provided in the suppl. material.

In addition, by examining the logit spaces, as shown in
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Table 4. Top-10 biased tags for each class of ImageNet9.

Class Top-10 Irrelevant Tags

Bird perch, sit, branch, tree, tree branch, wa-
ter, blue, twig, brown, sky

Carnivore stand, grass, stone, lush, fur, walk, lay,
enclosure, tree, red

Dog brown, white, stand, black, lush, stare,
green, carpet, blanket, bed

Fish
sea, swim, water, underwater, aquarium,
tank, coral reef, catch, man, yellow

Insect green, plant, break, floor, sit, stem, leaf,
close-up, white, yellow

Instrument play, woman, ceiling, table, pillar, cloth,
hang, band, tool, hand

Primate tree, sit, branch, tree branch, stare,
black, enclosure, brown, stone, log

Reptile floor, stone, green, branch, tree, grass,
tree branch, water, lay, sit

Vehicle road, track, red, building, curb, equip-
ment, travel, load, train track, railroad

Table 5. Top-10 biased tags for each class of CelebA, Waterbirds,
and UrbanCars.

D Class Top-10 Irrelevant Tags

C
el

eb
A Blonde woman, dress, pose, smile, girl, beau-

tiful, curl, selfie, actor, carpet

Non-Blonde wear, man, shirt, selfie, tie, black,
stand, stare, dress shirt, business suit

W
at

er
bi

rd
s Landbird stand, perch, sit, tree, yellow, branch,

floor, brown, forest, green

Waterbird water, stand, white, sea, fly, lake, sky,
ledge, pond, stone

U
rb

an
C

ar
s Country Car road, rural, animal, stand, white, jump,

cow, lift, bull, highway

Urban Car park, house exterior, house, red, build-
ing, flip, home, lift, white, jump

Fig. 3 (a), the vanilla model increases logit values propor-
tionally with the bias, ranging from 4 to 7. This is an ex-
pected behavior, as the biases are easier to learn than the ac-
tual target and thus the model illustrates higher confidence
for the bias-aligned samples. This phenomenon is referred
to as Gradient Starvation [35] and describes how bias is in-
troduced. Also, it is theoretically shown that methodologies
penalizing high logit values can mitigate this phenomenon
[35]. As shown in Fig. 3 (b), the interactions between the
main model and the projection layer in the training proce-
dure (defined by Eq. (1) and (2)) reduce the main model’s

Table 6. Brief closed-set performance comparison between
MAVias and competitive BU methods.

Dataset Metric Best BU Method MAVias

CelebA Unbiased 87.0±0.6 [41] 89.7±0.6
Bias-Conflict 84.9±2.2 [41] 87.1±1.7

Waterbirds WG Acc. 88.7±0.4 [49] 93.7±0.4
Avg. Acc. 93.8±0.7 [49] 94.5±0.4

UrbanCars
BG Gap 8.1 [27] 4.1±0.6

CoObj Gap 10.5 [24] 2.4±1.4
BG+CoObj Gap 40.1 [27] 6.7±1.4

BG: Country
CoObj: Country
#samples: 10

BG: Country
CoObj: Urban

#samples: 190

BG: Urban
CoObj: Country
#samples: 190

BG: Urban
CoObj: Urban

#samples: 3610
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(b) MAVias

Figure 3. Logits for UrbanCars training samples belonging to
groups defined by the urban car class and Background (BG) and
Co-occurring Object (CoObj) biases.

logit values proportionally to the data bias.

4.6. Ablation Analysis
An important aspect in MAVias is how the embeddings
are calculated. Table 7 compares two well-known vision-
language models, i.e., OpenCLIP and SigLip, and the
text-based model BERT. Furthermore, Tab. 8 compares
MAVias’s performance using various LLMs. GPT-4o shows
the highest performance, with open-source models also per-
forming competitively. For experiments, we use GPT-4o to
minimize LLM-related errors. Table 9 presents the perfor-
mance of GPT-4o in deriving relevant tags for the Water-
birds, CelebA, and UrbanCars datasets. The ground truth
was manually established.

Furthermore, we investigate the impact of the different
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Table 7. Impact of the employed encoders on the MAVias perfor-
mance. Results pertain to the Waterbirds dataset.

Model WG Acc. Avg. Acc.

BERT-L [7] 91.7±1.3 92.8±1.0

SigLip-L-16-256 [52] 92.7±1.2 93.5±1.0

OpenCLIP (ViT-L-14) [18] 93.7±0.4 94.5±0.4

Table 8. Impact of the employed LLM on the MAVias perfor-
mance. Results pertain to the Waterbirds dataset.

Model #parameters WG Acc. Avg. Acc.

Qwen2.5 [17] 7B 91.9±2.4 94.4± 0.5

Mistral-small [19] 22B 92.9±0.4 94.9±0.2

Gemma2 [45] 9B 93.5±0.6 94.5±0.6

Llama3.1 [10] 8B 93.6±0.6 94.4±0.4

GPT-4o [34] >>175B 93.7±0.4 94.5±0.4

Table 9. Performance of GPT-4o.

Dataset Precision Recall

Waterbirds 96.1 79.0
CelebA 81.8 75.0
UrbanCars 89.2 71.7

Table 10. Impact of Eq. (2) on the MAVias performance. Results
pertain to Waterbirds dataset.

Type WG Acc. Avg. Acc.

w/o Eq. (2) 89.4±1.6 95.2±0.4

w/ Eq. (2) 93.7±0.4 94.5±0.4

MAVias components. First, as discussed in Sec. 3, the logit
alignment term in Eq. (2) is crucial for balancing the logits
between the two models. Table 10 shows the impact of re-
moving this term from the training on the effectiveness of
MAVias.

In addition, let us report the accuracy of gϕ(·) on the
training samples of the urban car class from the Urban-
Cars dataset, which correlates the target classes with rele-
vant backgrounds and co-occurring objects. As shown in
Tab. 11, the gϕ shows a clear distinction in its performance:
its accuracy increases from 0% for bias-conflicting samples
(i.e., those with a country background and co-occurring ob-
ject) to 98.42% for bias-aligned samples (i.e., those with
an urban background and co-occurring object). This result
confirms that our tag-based approach produces embeddings
that effectively capture bias, providing a foundation for the
main model fθ(·) to focus on learning unbiased features.

Furthermore, we investigate the impact of the vocabulary

Table 11. MAVias: gθ(·) accuracy for UrbanCars training samples
belonging to subgroups of urban car class with different biases.

BG CoObj #samples gθ(·) acc.

Country Country 10 00.00
Country Urban 190 54.21
Urban Country 190 67.36
Urban Urban 3610 98.42

size employed for image tagging. The original vocabulary
of RAM has a size of 4585 words. Tab. 12 reports the per-
formance of MAVias for different portions of the original
vocabulary. Notably, using 30% or more of the original vo-
cabulary yields highly effective models.

Table 12. Performance of MAVias across varying portions of the
original tag vocabulary. Results pertain to the Waterbirds dataset.

size WG Acc. Avg. Acc.

10% 78.1 87.1
20% 79.4 89.0
30% 91.1 92.0
40% 93.1 92.3
50% 93.8 93.2
60% 93.2 93.5
70% 92.9 94.2
80% 93.0 94.3
90% 93.6 94.5
100% 93.7 94.5

5. Conclusion
We presented a method to address open-set biases in CV
using instance-level descriptive tags. Unlike previous meth-
ods relying on predefined biases, MAVias offers a flexible
solution for identifying and mitigating unknown biases. It
detects visual features that may introduce bias and reduces
their impact. Extensive experiments show MAVias outper-
forms existing methods in detecting and mitigating com-
plex, real-world biases. The main requirement is an image
tagging model with a comprehensive tag vocabulary and an
LLM suited to the application context. For example, cloud-
deployed models are not ideal for applications where sen-
sitive data is involved, e.g., medical images, images of per-
sonal identity documents, etc.
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