
Deeply Supervised Flow-Based Generative Models

Inkyu Shin Chenglin Yang Liang-Chieh Chen

ByteDance Seed

https://deepflow-project.github.io

Abstract

Flow-based generative models have charted an im-
pressive path across multiple visual generation tasks by
adhering to a simple principle: learning velocity repre-
sentations of a linear interpolant. However, we observe
that training velocity solely from the final layer’s output
under-utilizes the rich inter-layer representations, po-
tentially impeding model convergence. To address this
limitation, we introduce DeepFlow, a novel framework
that enhances velocity representation through inter-layer
communication. DeepFlow partitions transformer lay-
ers into balanced branches with deep supervision and
inserts a lightweight Velocity Refiner with Acceleration
(VeRA) block between adjacent branches, which aligns
the intermediate velocity features within transformer
blocks. Powered by the improved deep supervision via
the internal velocity alignment, DeepFlow converges 8×
faster on ImageNet-256×256 with equivalent perfor-
mance and further reduces FID by 2.6 while halving
training time compared to previous flow-based models
without a classifier-free guidance. DeepFlow also out-
performs baselines in text-to-image generation tasks, as
evidenced by evaluations on MS-COCO and zero-shot
GenEval.

1. Introduction

In the era of generative AI, it is indisputable that
the strategy “denoising from noise” has significantly
propelled the advancement of visual generation. The
processes of introducing and removing noise have given
rise to two prominent families of generative models:
diffusion-based models [14, 38, 41, 40] and flow-based
models [22, 1, 25, 23]. Diffusion-based models utilize
a curved trajectory of diffusion forward process and
denoise it back using an noise prediction. In contrast,
flow-based models simply adopt the linear interpolation
between noise and target signals, learning to predict
velocity of interpolated noisy image under the prin-
ciples of normalizing flows [4, 37]. Owing to these

𝑽𝒆𝑹𝑨

Transformer
blocks

velocity
alignment

DeepFlow

Transformer
blocks

velocity
prediction

(a)

velocity
prediction

(b)

Figure 1. Overview of DeepFlow. Left: DeepFlow in-
corporates deep supervision by evenly adding velocity pre-
diction within transformer blocks, further enhanced by the
proposed Velocity Alignment block (VeRA). Right: (a) On
the ImageNet-256 benchmark, DeepFlow consistently out-
performs SiT [28] in FID scores across various model sizes.
(b) DeepFlow-XL achieves an 8× training efficiency improve-
ment over SiT-XL. See Table 8 for details.

straightforward yet effective noising and denoising mech-
anisms, flow-based models have achieved state-of-the-art
performance across numerous visual generation bench-
marks [28, 52, 26, 8, 17, 9].

Despite recent advancements, current fundamental
flow-based models [28, 8] have largely overlooked the po-
tential for enhancing their internal velocity representa-
tions. As illustrated in Figure 2(a), SiT [28], a represen-
tative flow-based model, relies on sequentially stacked
multi-layered transformer [45] blocks to learn the ve-
locity exclusively from the final layer. This approach
under-utilizes the significance of intermediate velocity
representations, leading to challenges such as slow train-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

16535

Transformer block

Transformer block

Transformer block

Transformer block

𝒗𝟏
∗

𝒗𝟐
∗

Transformer block

Transformer block

Transformer block

Transformer block

𝒗𝟏→𝟐
∗

𝑽𝒆𝑹𝑨

𝒗𝟐
∗

34.4

33

28.1

26

27

28

29

30

31

32

33

34
7.7 7.2

2.9

0

1

2

3

4

5

6

7

8

SiT + Deep Supervision DeepFlow-2T

SiT-B/2 SiT-B/2 + Deep Supervision DeepFlow-B/2-2T

Transformer block

Transformer block

Transformer block

Transformer block

Flow-based model
(e.g., SiT)

1.1x

2.7x

6.3 FID

1.4 FID

𝒗𝟏
∗

𝒗𝟐
∗

||𝒗𝟐
∗ - 𝒗𝟏

∗ || ||𝒗𝟐
∗ - 𝒗𝟏→𝟐

∗ ||

(a) (b) (c) (d) (e)

velocity
prediction 2

velocity
prediction 1

velocity
prediction 2

velocity
prediction 1

velocity
prediction

Feature Distance FID Score

Figure 2. Importance of Internal Feature Alignment for Flow-Based Models. Our DeepFlow enhances the baseline
flow-based model (a) by explicitly aligning intermediate velocity features with final layer features. As shown in (b), simply
applying deep supervision reduces the feature distance between intermediate velocity v∗1 (from middle 6th layer) and final v∗2
(from 12th layer), improving FID scores (light blue bars in (d, e)). To further minimize this distance, we introduce the VeRA
block, which refines deeply-supervised intermediate features into v∗1→2, more closely aligned with v∗2 (dark blue bar in (d)).
This leads to even better image generation quality (dark blue bars in (e)).

ing convergence and low performance [33, 52]. Recently,
to address this limitation, REPA [52] aligns the inter-
nal velocity representation with external features from
pre-trained self-supervised models (e.g ., DINO [3, 30]),
resulting in better generative models with fewer train-
ing time needed. However, relying solely on external
self-supervised models overlooks the opportunity to in-
ternally rectify feature misalignment within transformer
layers and fails to fully leverage the properties of flow-
based models. A natural question thus arises: Can
flow-based models be improved by internally aligning ve-
locity representations across transformer layers instead
of relying on external models?

We begin with a straightforward approach by incor-
porating deep supervision [20] within the transformer
layers of flow-based models to enhance alignment. As
depicted in Figure 2(b), flow-based models can employ
deep supervision across multiple velocity layers by par-
titioning transformer blocks into equal-sized branches,
each trained to predict the same ground-truth velocity.
This approach can align intermediate and final veloc-
ity features, as demonstrated by the reduced feature
distance 1 in Figure 2(d); SiT-B/2: 7.7 vs. SiT-B/2
with deep supervision: 7.2. This alignment, in turn,
positively affects image generation performance in Fig-
ure 2(e); SiT-B/2: 34.4 FID vs. SiT-B/2 with deep
supervision: 33.0 FID.

However, deep supervision alone is insufficient for
achieving optimal alignment between intermediate and
final layers, as intermediate layers exhibit a limited
capacity for velocity prediction compared to the fi-

1We compute euclidean distance between v∗1 (from middle 6th
layer) and v∗2 (from final 12th layer) across all 250 timesteps using
SDE while generating 50k samples on the ImageNet-256×256
dataset. This metric quantifies the alignment between intermedi-
ate and final layer velocity features.

nal layer. Motivated by this, we propose a redesigned
flow-based model that explicitly aligns internal veloc-
ity representations while effectively integrating deep
supervision—hereafter referred to as DeepFlow. It
aims to refine deeply-supervised intermediate velocity
features to be aligned for following branch as depicted
in Figure 2(c). To achieve this, DeepFlow consists of a
lightweight block between adjacent branches, explicitly
tailored to learn the mapping of velocity features from
preceding branch to subsequent one. This block, termed
the Velocity Refiner with Acceleration (VeRA) block,
is specifically designed to model acceleration. It refines
velocity features by conditioning on adjacent branches
across different time steps. This process is guided by
principles of second-order dynamics. To achieve this, we
implement a simple MLP that takes previous velocity
feature and is trained to generate an acceleration feature
using the second-order ODE as visualized in Figure 3.
Afterwards, we concatenate the previous velocity fea-
tures with the computed acceleration features and apply
a time-gap–conditioned adaptive layer normalization,
ensuring aligned velocity features for the subsequent
branch. Finally, we further refine these features by
incorporating spatial information through cross-space
attention, facilitating interaction between the refined
velocity and spatial feature spaces. We can observe
that the velocity feature refined from VeRA block is
significantly closer to the final output velocity feature
in Figure 2(d); SiT-B/2 with deep supervision: 7.2
vs. DeepFlow-B/2-2T: 2.9. It successfully leads to en-
hanced image quality as shown in Figure 2(e); SiT-B/2
with deep supervision: 33.0 FID vs. DeepFlow-B/2-
2T: 28.1 FID.

Driven by feature alignment strategy for enhanced
deep supervision, DeepFlow significantly improves both
training efficiency and final image generation quality,

16536

all without dependence on external models. Figure 1(a)
shows that DeepFlow-L/2-3T model with smaller num-
ber of parameters outperforms the SiT-XL/2 model
after 80 epochs of training on ImageNet-256 bench-
mark [6]. Moreover, our DeepFlow-XL/2-3T model de-
livers performance comparable to the SiT-XL/2 model
while reducing training time by eightfold, as shown
in Figure 1(b). It further improves generation quality
by outperforming SiT-XL/2 only using half of training
time. For optimal image generation, we can seam-
lessly integrate feature alignment using external self-
supervised model (e.g ., DINOv2 [30]) and classifier-free
guidance [15], yielding better results on both ImageNet-
256 and ImageNet-512 while requiring fewer training
epochs needed. Additionally, we performed extensive
comparisons with a conventional flow-based model on
the text-to-image generation benchmark using the MS-
COCO dataset [21] and GenEval benchmark [10].

2. Related Works

Generative Models with Denoising Transformers.
Recent studies have advanced the field of visual gener-
ation by leveraging transformer [45] architecture as a
denoising model [41, 14, 29, 38, 24, 47, 34, 35, 12, 36].
Specifically, U-ViT [2] and DiffiT [11] integrate skip con-
nections [39] into transformer-based backbones, whereas
DiT [32] demonstrates that a simple transformer-based
diffusion network without skip connections can serve as
a scalable and effective backbone for diffusion models.
Based on this simple architecture from DiT, SiT [28]
employs the principle of flow matching [22] and nor-
malizing flows [37], resulting in better image generation
quality. Although both studies recognize that scaling
laws hold as the number of transformer blocks increases,
they overlook the role of internal feature representations
across transformer layers.
Feature Enhancement in Generative Models. Sev-
eral approaches have sought to enhance internal rep-
resentations in denoising transformers. For example,
REPA [52] improves generative modeling by aligning
internal features in both diffusion and flow-based mod-
els with external representations from pre-trained self-
supervised models like MAE [13] and DINO [3, 30].
Similarly, VA-VAE [48] refines tokenizer [19] represen-
tations by incorporating external foundational models.
However, relying solely on external models may over-
look the self-correcting potential in addressing feature
misalignment across intermediate layers. Deep supervi-
sion [20] addresses this in classification tasks by provid-
ing multi-layer supervision that refines internal features
for better discriminative performance. Inspired by this,
we extend deep supervision to flow-based generative
models, where the discriminative quality of velocity

representations is critical.

3. Method

In this section, we first introduce the preliminaries
on flow matching in Section 3.1, followed by a detailed
presentation of the proposed method, DeepFlow, in Sec-
tion 3.2.

3.1. Preliminaries

Flow Matching. Normalizing flows [4] conceptualized
time-dependent velocity field, v : [0, 1] × Rd → Rd,
which can provide flow map, ϕ : [0, 1]× Rd. This flow
map aims to push-forward simple pure noise z to target
distribution, x0. Flow matching [22] applied this finding
to generative model by designing a neural network,
vθ(xt) that predicts the velocity of xt at time-step t with
parameter θ. Thus, it can generate target samples from
pure gaussian noise using progressive denoising step
with predicted velocity. To this end, during training,
forward noising step is conducted with simple linear
interpolation between prior noise (x1 ∼ N (0, 1)) and
target distribution (x0) as below:

xt = t · x1 + (1− t) · x0, (1)

where t ∈ [0, 1] denotes time-step used for interpolation
coefficient. Then, the flow-based method is learned to
transform vθ(xt) to be similar to corresponding ground-
truth velocity V = x1 − x0 with following objective
function:

L(θ) = E∥vθ(xt)− V ∥2 (2)

Consistent with a conventional flow-based model [28],
we use DiT Transformer [32] as vθ(·). It comprises
multiple transformer blocks that apply self-attention to
the input tokens, followed by AdaLN-Zero modulation
conditioned on the time step and class (or text), and a
final velocity layer. Equation (2) is thus expressed as
below:

L(θ) = E∥vθ(xt, t, c)− V ∥2, (3)

where t and c are input time-step and class features.
Similarly, SiT [28] adopts DiT Transformer while lever-
aging flow matching-based noising and denoising pro-
cess. Depending on the number of transformer blocks
and channel dimension used, SiT has four variants,
SiT-{S,B,L,XL}.

3.2. DeepFlow

Our DeepFlow aims to exploit the potential of internal
features across transformer blocks by enhancing fea-
ture alignment. It can be achieved by incorporating
Deep Supervision (Section 3.2.1) into flow-based models
and designing VeRA Block (Section 3.2.2) for explicit
alignment between internal features.

16537

noisy image: 𝑥𝑡1

Transformer block

Transformer block

Transformer block

Transformer block

patchify

𝒗𝒕𝟏

𝒗𝒕𝟏

∗

𝑽𝒆𝑹𝑨

𝒗𝒕𝟏→𝒕𝟐
∗

Transformer block

Transformer block

Transformer block

Transformer block

𝒗𝒕𝟐

𝐭𝟏

𝐭𝟐

vel layer1

vel layer2

𝒗𝒕𝟐

∗

𝑡1-linear interpolant

𝑥0 𝑥1

𝑽𝒆𝑹𝑨 𝑩𝒍𝒐𝒄𝒌

1. acceleration
generation

𝒗𝒕𝟏
∗ ACC

MLP

𝑎𝑡1

∗

©️

2. time-gap
condition

𝒅𝑡1→𝑡2

cross-space
attention

k

v

𝑥𝑡1

3. cross-space
 attention

𝒗𝒕𝟏→𝒕𝟐
∗

𝒅𝑡1→𝑡2

refined velocity feature

q

+

Loss

deep supervision
velocity loss

acceleration loss

MSE(𝒗𝒕𝟏
, V)

+
MSE(𝒗𝒕𝟐

, V)

sample-noise velocity:
V = 𝑥1- 𝑥0

{𝒙𝒕𝟏
, 𝒅𝑡1→0, 𝒗𝒕𝟏

, 𝒂𝒕𝟏
}

Second-order ODE

𝑥0©️ : Concat +

𝐭𝟏: time-step for the first branch

𝐭𝟐 : time-step for the second branch

: Add

𝒅𝑡1→𝑡2
 : time-gap between 𝑡1 and 𝑡2

𝒂𝒕𝟏

𝑎𝑡1

∗

acc layer

𝝂 / 𝒂 : predicted velocity / acceleration

𝒗∗/ 𝒂∗ : feature of velocity / acceleration

notations

MLP
AdaLN-

Zero

Figure 3. DeepFlow Architecture. We introduce advanced deep supervision by partitioning transformer blocks into
equal-sized branches and employing multiple velocity layers (dark blue boxes), enabling each branch to predict velocity at
a distinct time-step. Then, VeRA Block is inserted between adjacent branches for explicit feature refinement. It consists
of three sub-blocks: 1. acceleration generation: we design a simple MLP (ACC MLP) to generate acceleration feature. It
is trained with acceleration loss using second-order ODE function (Equation (7)). Meanwhile, we concatenate previous
velocity feature and computed acceleration feature for following sub-block. 2. time-gap condition: we modulate concatenated
features using AdaLN-Zero layer conditioned by time-gap. 3. cross-space attention: we design a novel cross-attention that
integrates two features from different spaces, modulated velocity features from temporal dynamics and spatial features from
original patchified image. By leveraging time-gap conditioning between branches with VeRA block, DeepFlow enhances
feature alignment and ultimately improves image generation quality.

3.2.1 Deep Supervision

DeepFlow employs deep supervision [20] by inserting
auxiliary velocity layers after selected intermediate
transformer blocks. The corresponding deep super-
vision loss at these key transformer layers is defined as
follows:

Ldeep(θ) = E

[
k∑

i=1

βi(∥viθ(xi
t, t, c)− V ∥2)

]
(4)

Here, k denotes the number of key layers, vi indicates
the velocity prediction from the ith velocity layer fol-
lowing the corresponding transformer branch, and xi

t

denotes input features for the ith branch (defined as
xt for i=1, and velocity features from the previous
branch otherwise). βi represents the deep supervision
coefficient. This loss encourages each velocity layer to
produce outputs that closely match the target V . This
design enables our DeepFlow to support various con-
figurations. For example, DeepFlow-{k}T denotes a

variant in which the transformer blocks are divided into
k equal-sized Transformer branches, with each branch
concluding with a velocity layer to facilitate deep su-
pervision. For simplicity, we set k as 2 for following
explanation about VeRA block.

3.2.2 VeRA Block

To enhance cross-layer deep supervision and improve
feature alignment across different branches, we intro-
duce a novel lightweight module called Velocity Refiner
with Acceleration (VeRA) block. This module explicitly
aligns the deeply supervised velocity features between
consecutive branches. We provide a step-by-step ex-
planation of its overall architecture, as illustrated in
Figure 3.

Branch Conditioned with Different Time-step.
During training, we deliberately differentiate time-steps
conditioned on adjacent branches. Two branches corre-
spond to two different time-steps as illustrated in Fig-

16538

ure 3 with t1 and t2, which effectively enables inserted
VeRA block to be trained with second-order dynamics
using time-gap. We first transform Equation (4) for
deep supervision as below to train each branch with its
corresponding time-step.

Ldeep* = E

[
2∑

i=1

βi(∥viθ(xi
t, ti, c)− V ∥2)

]
,

vt1 = v1θ(x
1
t , t1, c), vt2 = v2θ(x

2
t , t2, c),

(5)

where x1
t and x2

t indicate initial noisy image xt1 and
previous velocity feature v∗

t1 , respectively. It highlights
that different time-steps are used for conditioning dif-
ferent branches to generate distinctive velocities.
The VeRA Block Architecture. The VeRA block
is strategically placed between consecutive branches,
refining deeply-supervised velocity features for use in
the subsequent branch. The key operations include:

Acceleration Learning via Second-Order ODE Training:
The primary goal of the VeRA block is to refine pre-
vious velocity features by incorporating acceleration
information. To achieve this, we introduce a simple
MLP block, termed ACC MLP, which projects the
previous velocity feature (v∗

t1) to a higher dimension
and then back to the original dimension, producing
acceleration feature a∗t1 .

a∗t1 = ACC MLP(v∗
t1) (6)

Then, we can endow a∗
t1 with acceleration property

using a second-order ordinary differential equation
(2nd-ODE) as following equation:

Lacc = E∥2nd-ODE(xt1 ,vt1 ,at1 , dt1→0)− x0∥2,

2nd-ODE = xt1+vt1 ⊙ dt1→0+
1

2
at1 ⊙ (dt1→0)

2,
(7)

where vt1 and at1 are outputs of velocity and accelera-
tion layers from v∗

t1 and a∗t1 , reducing their dimension to
image space. dt1→0 is time gap between time-steps of t1
and 0. ⊙ indicates Hadamard product for element-wise
matrix multiplication. In this setup, the acceleration
is learned in such a way that it aligns closely with the
clean image representation (x0).

Feature Concatenation and Time-gap Conditioning:
After computing the acceleration features (a∗

t1), we
concatenate these with the original velocity features
(v∗

t1). To enable this concatenated feature to be aware
of time-gap, we apply a time-gap–conditioned adaptive
layer normalization [32] with a following MLP as below:

modulate(v∗
t1) = MLP (AdaLN -Zero(

concat(v∗
t1 ,a

∗
t1), T (dt1→t2)))

(8)

dt1→t2 denotes the time gap between t1 and t2 and
passes through time embedder T . This dynamically
modulates the concatenated feature statistics based on
the time difference, which steps forward refined velocity
feature.

Spatial Information Integration via Cross-Attention:
Beyond feature alignment with temporal property using
different time-steps, the VeRA block also integrates
spatial context by employing a cross-attention (CA)
mechanism. This mechanism facilitates interaction
between two spaces: modulated velocity feature space
from previous step and spatial feature space from an
original patchified image as noted in following equation.

v∗
t1→t2 = CA(modulate(v∗

t1),xt1), (9)

where modulate(v∗
t1) is used for key and value, while

xt1 is used for query. This approach using cross-space
attention effectively highlights pertinent spatial features
that may have been underrepresented in the pure tem-
poral transformation, leading to final refined velocity
feature.
In summary, DeepFlow incorporates deep supervision
and VeRA block, which together enable training to align
the internal velocity representation with Equation (5)
and Equation (7), as described below:

Ltotal = Ldeep∗ + λLacc, (10)

where λ is a hyperparameter that balances the deep-
supervised velocity loss and the acceleration loss.

4. Experiments

In this section, we demonstrate the effectiveness
of DeepFlow through extensive experiments. Sec-
tion 4.1 details the implementation of DeepFlow. Sec-
tion 4.2 presents the main results of DeepFlow on class-
conditional image generation and text-to-image gen-
eration. Finally, comprehensive ablation studies are
provided in Section 4.3.

4.1. Implementation Details

model depth hidden dim key layer indices

DeepFlow-B/2-2T 12 768 {6, 12}
DeepFlow-L/2-3T 18 1024 {6, 12, 18}
DeepFlow-XL/2-3T 24 1152 {8, 16, 24}

Table 1. We propose three variants of DeepFlow (B, L, and
XL), each differing in depth (i.e., the number of blocks) and
channel dimensions. DeepFlow-{k}T denotes a model with
k key layers, where deep supervision is applied. These key
layers are evenly distributed across the Transformer blocks.

Our framework is implemented in PyTorch [31] and
closely follows the flow matching and transformer setup

16539

model epoch SSL align sampling FID↓ sFID↓ IS↑

SiT-B/2 [28]

80 ✗ uniform 34.4 6.5 43.7
80 ✗ lognormal 29.7 6.2 51.0
80 DINOv1 uniform 28.3 6.6 53.8
80 DINOv1 lognormal 24.4 6.3 62.1
80 DINOv2 uniform 23.0 6.4 59.9
80 DINOv2 lognormal 20.4 6.3 72.7

DeepFlow-B/2-2T

80 ✗ uniform 28.1 (-6.3) 5.8 (-0.7) 49.8 (+6.1)
80 ✗ lognormal 23.1 (-6.6) 5.6 (-0.6) 60.3 (+9.3)
80 DINOv1 uniform 25.6 (-2.7) 6.4 (-0.2) 56.6 (+2.8)
80 DINOv1 lognormal 21.7 (-2.7) 6.1 (-0.2) 66.0 (+3.9)
80 DINOv2 uniform 20.0 (-3.0) 6.2 (-0.2) 70.2 (+10.3)
80 DINOv2 lognormal 17.2 (-3.2) 6.0 (-0.3) 77.8 (+5.1)

Table 2. Quantitative comparisons of flow-based generative
models under the Base configuration for class-conditional
image generation on ImageNet-256×256 without classfier-
free guidance [15]. DeepFlow-B/2-2T consistently outper-
forms SiT-B/2 across various settings, whether using SSL
alignment [52] or not, and under both uniform and lognor-
mal sampling strategies.

introduced in SiT [28]. Specifically, we extract patchi-
fied features from raw images using the VAE [19] en-
coder pretrained on Stable Diffusion [38]. For the trans-
former blocks, we divide them into equal-sized branches
to enable deep supervision, with VeRA blocks inserted
at key layers (see Table 1 for model configuration of
DeepFlow). We explain more about used hyperparame-
ters and implementation details in Appendix A.3.

DeepFlow Training & Evaluation. For training
VeRA block in DeepFlow-{k}T, we employ k distinct
time-steps while constraining the maximum gap be-
tween consecutive branches to α. We empirically ob-
served that assigning a low β value (e.g ., 0.2) to in-
termediate velocity predictions while maintaining a β
of 1.0 for final layer during training leads to improved
generation quality. During evaluation, we condition
all transformer layers on a single time-step, which still
enables the refinement of velocity features across ad-
jacent branches. We adopt basic training recipes and
sampling strategies from SiT [28] and REPA [52] for
fair comparisons.

4.2. Main Results

4.2.1 Class-conditional Image Generation

ImageNet-1k [6] is widely used for class-conditional
image generation benchmark. We provide the detail of
its usage for training and sampling in Appendix A.7.

Comparison with Flow-based Models. Using
ImageNet-256×256, we compare our DeepFlow with
the representative flow-based model SiT [28] in Table 2
and Table 3, evaluated under the Base and XLarge
configurations, respectively. In Table 2, we consider
two key comparison criteria: (i) the use of external
self-supervised alignment (SSL align), which leverages
DINOv1 or DINOv2 as introduced in REPA [52], versus
no SSL alignment; (ii) the strategy for sampling time-
steps during training, comparing uniform sampling with

model epoch SSL align sampling FID↓ sFID↓ IS↑

SiT-XL/2 [28]

80 ✗ lognormal 13.8 5.0 91.0
200 ✗ lognormal 10.2 5.3 113.6
800 ✗ lognormal 9.8 7.3 128.2
80 DINOv2 lognormal 7.2 5.1 134.3
200 DINOv2 lognormal 6.2 5.3 149.6
800 DINOv2 lognormal 5.7 6.4 171.0

DeepFlow-XL/2-3T

80 ✗ lognormal 10.3 (-3.4) 4.8 (-0.2) 105.2 (+14.2)
200 ✗ lognormal 7.8 (-2.4) 4.8 (-0.5) 127.3 (+13.7)
400 ✗ lognormal 7.2 5.1 138.5
80 DINOv2 lognormal 6.5 (-0.7) 4.9 (-0.2) 134.9 (+0.6)
200 DINOv2 lognormal 5.4 (-0.8) 5.0 (-0.3) 151.6 (+2.0)
400 DINOv2 lognormal 5.0 5.2 162.0

Table 3. Quantitative comparisons of flow-based generative
models under theXLarge configuration for class-conditional
image generation on ImageNet-256×256 without classfier-
free guidance [15]. Our DeepFlow-XL/2-3T not only consis-
tently delivers superior image generation quality compared
to SiT-XL/2 when trained for an equivalent number of
epochs, but it also converges significantly faster, requiring
only half the training epochs (800 epochs → 400 epochs).

80 epochs 200 epochs 400 epochs 800 epochs

(a) SiT-XL/2

(b) DeepFlow-XL/2-3T

Figure 4. Qualitative Comparison in Different Epochs.
Images are generated from models trained in different epochs.
DeepFlow-XL/2-3T converges faster than SiT-XL/2 and pro-
duces high-quality samples even with fewer training epochs.

lognormal sampling, as also evaluated in SD3 [8]. With-
out SSL align, DeepFlow-B/2-2T consistently outper-
forms SiT under both uniform and lognormal sampling
strategies with a healthy margin, lowering 6.3 FID and
6.6 FID, respectively. When paired with SSL alignment
using either DINOv1 or DINOv2, DeepFlow-B/2-2T
further reduces the FID by an average of 3.0 points
compared to SiT-B/2, achieving a remarkable genera-
tion quality with FID as low as 17.2. More surprisingly,
DeepFlow-B/2-2T without SSL align can achieve com-
parable or better performance than SiT with SSL align
from DINOv1

2 — for example, 28.3 FID vs. 28.1 FID in
uniform sampling, 24.4 FID vs. 23.3 FID in lognormal
sampling), demonstrating the effectiveness of DeepFlow
in obviating the need for external feature alignment. Ex-
periments using the XLarge configuration (see Table 3)

2DINOv1 is used for this comparison since it was pretrained
with ImageNet-1k, while DINOv2 was pretrained on the additional
dataset, LVD-142M [30].

16540

ImageNet-256×256 epoch params FID↓ sFID↓ IS↑
Autoregressive Models

LlamaGen-3B [43] 50 3.1B 3.05 - 222.3
Open-MAGVIT2-XL [27] 350 1.5B 2.33 - 271.8

Masked Generative Models

TiTok-S-128 [51] 200 287M 1.97 - 281.8
MAGVIT-v2 [49] 270 307M 1.78 - 319.4

Diffusion-based Models

ADM-U [7] 400 554M 3.94 6.14 186.7
Simple diffusion [16] 800 - 2.77 - 211.8
DiT-XL/2 [32] 1400 675M 2.27 4.60 278.2

Flow-based Models

SiT-XL/2 [28] 1400 675M 2.06 4.50 270.3
DeepFlow-XL/2-3T 400 681M 1.97 4.39 264.7
DeepFlow-XL/2-3T 600 681M 1.89 4.40 263.3
SiT-XL/2 + SSL align [52] 800 675M 1.80 4.50 284.0
DeepFlow-XL/2-3T + SSL align 400 681M 1.77 4.44 271.3

Table 4. Comparison with state-of-the-art models in class-
conditional image generation on ImageNet 256×256.

reveal two key observations. First, DeepFlow-XL/2-
3T consistently outperforms SiT-XL/2—whether using
SSL alignment or not—under lognormal sampling at the
same training epochs (e.g ., 80 and 200 epochs). Second,
DeepFlow-XL/2-3T converges significantly faster than
SiT-XL/2. For example, training DeepFlow-XL/2-3T
for just 100 epochs without SSL alignment yields a 9.8
FID, matching the performance of SiT-XL/2 trained for
800 epochs. Furthermore, with 400 epochs, DeepFlow-
XL/2-3T surpasses SiT-XL/2’s 800-epoch results. As
illustrated in Figure 4, our model also produces higher-
quality images with fewer training epochs.
Comparison with state-of-the-art Models. In ad-
dition to flow-based comparisons, we compare against
state-of-the-art image generators—including autoregres-
sive [43, 27, 50], masked generative [49, 51, 46, 18],
diffusion-based [7, 16, 32], and flow-based models [28,
52]—using classifier-free guidance [15]. As shown in
Table 4 and Table 5, DeepFlow-XL/2-3T not only signif-
icantly outperforms existing flow-based models but also
achieves competitive or superior performance compared
to other state-of-the-art generators, all while training
efficiently. For instance, DeepFlow-XL/2-3T delivers
superior results on ImageNet-256 in only 400 epochs,
and on ImageNet-512, it outperforms the corresponding
SiT model with fewer epochs.

4.2.2 Text-to-Image Generation

Following REPA [52], we modify the architecture of
MMDiT [8] by incorporating a flow matching objec-
tive, seamlessly integrating DeepFlow into MMDiT’s
architecture. Both our model and SiT (MMDiT + flow
matching) are trained on the MS-COCO [21, 5] train-
ing set with a hidden dimension of 768 and 24 trans-
former layers while sampling time-steps from uniform

ImageNet-512×512 epoch params FID↓ sFID↓ IS↑
Autoregressive Models

GIVT-Causal-L+A [44] 500 1.7B 2.92 - -

Masked Generative Models

TiTok-B-128 [51] 200 177M 2.13 - -
MAGVIT-v2 [49] 270 307M 1.91 - 324.3

Diffusion-based Models

LDM-4-G [38] 167 400M 3.60 - 247.7
DiT-XL/2 [32] 600 676M 3.04 - -

Flow-based Models

SiT-XL/2 [28] 600 676M 2.62 4.18 252.2
DeepFlow-XL/2-3T 200 682M 2.59 4.23 231.1
DeepFlow-XL/2-3T 400 682M 2.22 4.27 249.4
SiT-XL/2 + SSL align [52] 200 676M 2.08 4.19 274.6
DeepFlow-XL-3T + SSL align 160 682M 2.03 4.29 248.8
DeepFlow-XL-3T + SSL align 200 682M 1.96 4.28 260.3

Table 5. Comparison with state-of-the-art models in class-
conditional image generation on ImageNet 512×512.

model SSL align
MS-COCO Eval GenEval

FID↓ FDDINOv2↓ IS↑ CLIP↑ Overall↑

SiT [28]
✗ 5.38 408.27 31.1 0.2954 0.2672

DINOv2 4.24 274.19 34.4 0.2979 0.3166

DeepFlow-3T
✗ 5.32 343.60 33.0 0.2974 0.2957

DINOv2 4.18 216.20 35.9 0.3010 0.3458

Table 6. Quantitative comparison on text-to-image gener-
ation. To ensure a fair comparison, both SiT [28] and
DeepFlow utilize 24 layers of transformer blocks and use
same MS-COCO [21] training set. Then, they are both com-
pared for MS-COCO evaluation and GenEval [10] bench-
mark (please refer to category-level performance of GenEval
in Appendix). We reproduced MS-COCO evaluation perfor-
mance of SiT variants.

distribution. We extensively conducted evaluation on
MS-COCO validation set and GenEval [10] benchmark.
For MS-COCO evaluation, we observe that DeepFlow
outperforms in all of the metrics (FID, FDDINOv2

[42],
IS, CLIP score). Furthermore, we show that DeepFlow
significantly increase overall score of GenEval compared
to SiT (check Appendiex A.5. for category-level perfor-
mance in GenEval benchmark).

4.3. Ablation Studies

4.3.1 DeepFlow Components

Table 7a summarizes the incremental improvements of
DeepFlow over the baseline SiT-B/2 [28] (FID 34.4) us-
ing uniform sampling. Deep supervision on each branch
reduces FID to 33.0 by aligning intermediate velocity
features with the ground-truth. Adding a time-gap
mechanism further lowers FID to 31.1 by enhancing
robustness to time-step variations. An inter-layer ac-
celeration pipeline within the VeRA block decreases
FID to 29.9, and incorporating a cross-space attention
module refines spatial fusion to achieve a final FID of
28.1. Overall, these enhancements yield a total FID
improvement of 6.3, demonstrating the complementary

16541

model FID↓
SiT-B/2 [28] 34.4

+ deep supervision 33.0
+ time-gap 31.1
+ inter-layer acceleration 29.9
+ cross-space attention 28.1

(a) Component Ablation:
study on effectiveness of com-
ponents for DeepFlow.

model α FID↓

DeepFlow-B/2-2T

0.1 28.9
0.05 28.6
0.01 28.1
0.005 28.3
0.001 28.5

(b) Time-gap: ablation on
maximum time-gap (α) be-
tween adjacent branches used
during training.

model λ ACC MLP FID↓

DeepFlow-B/2-2T

1.0 {2048, 768} 30.4
0.5

{2048, 4096, 2048, 768}

27.8
0.75 28.1
1.0 28.1
1.25 28.5
1.5 28.8

DeepFlow-B/2-2T∗ 0.5 {2048, 4096, 2048, 768} 23.5
1.0 23.1

(c) Acceleration Design: ablation on λ and number of
channels for ACC MLP . * indicates the model trained
with lognormal sampling of time-steps.

Table 7. DeepFlow Ablations.

model depth params GFLOPS FID↓
SiT-B/2 [28] 12 130M 24 29.7

SiT-L/2 [28] 24 458M 80 16.1

SiT-XL/2 [28] 28 675M 114 13.7

DeepFlow-B/2-2T
10 144M 24 27.3
12 166M 28 23.1

DeepFlow-L/2-2T
20 431M 72 13.9
22 469M 78 13.3
24 507M 84 12.8

DeepFlow-XL/2-2T

22 588M 97 11.9
24 636M 106 11.7
26 683M 114 11.1
28 731M 122 11.1

DeepFlow-L/2-3T
18 433M 72 13.3
21 490M 82 12.0
24 547M 92 11.9

DeepFlow-XL/2-3T

18 538M 89 12.4
21 609M 101 10.9
24 681M 113 10.3
27 753M 125 10.0

DeepFlow-XL/2-4T 28 822M 137 9.7

Table 8. Tradeoff between Efficiency and Performance
of DeepFlow. All of the experiments, including the re-
produced, better baseline SiT variants, utilize lognormal
sampling with 80 epochs of training in ImageNet-256×256
and are evaluated using SDE 250 steps without a classifier-
free guidance [15]. Best viewed in color.

benefits of each component in our framework.

4.3.2 Time-gap

Table 7b presents the impact of varying the maximum
time-gap α between adjacent branches during training
for DeepFlow. When α is set to 0.01, the model achieves
its best FID of 28.1 under the base configuration. Ad-
ditionally, we observe that the model’s performance
remains relatively stable across different values of α,
indicating that DeepFlow is not highly sensitive to vari-
ations in the time-gap parameter.

4.3.3 Acceleration Design

In Table 7c, we explore how varying the balancing coeffi-
cient λ used in Equation (10) and the architecture of the
acceleration MLP (ACC MLP) affect performance of
DeepFlow. Considering the optimal λ that works both

in uniform sampling and lognormal sampling (marked
with an asterisk), we choose λ as 1.0. We can also
find out that expanding the ACC MLP capacity with
deeper layers (the number of channels for ACC MLP:
{2048, 4096, 2048, 768}) can increase the capability of
acceleration, yielding further performance gains.

4.3.4 Efficiency vs. Performance

Table 8 compares various DeepFlow configurations
(DeepFlow-B/2, DeepFlow-L/2, DeepFlow-XL/2) with
baseline SiT models in terms of transformer depth,
parameter count, GFLOPS, and FID. All models are
trained for 80 epochs with lognormal sampling and eval-
uated using SDE (250 steps) on the ImageNet-256×256
benchmark without a classifier-free guidance. Two key
observations emerge: (i) Efficient Performance Scal-
ing: Even smaller DeepFlow variants match larger
SiT models. For example, DeepFlow-L/2-3T (18 lay-
ers, 433M parameters, 72 GFLOPS) achieves an FID
of 13.3, comparable to SiT-XL/2 (675M parameters,
114 GFLOPS, 13.7 FID). (ii) Superior Performance:
DeepFlow variants consistently outperform compara-
ble SiT models. DeepFlow-XL/2-3T reduces FID by
3.4 points relative to SiT-XL/2, while maintaining a
similar computational cost. Moreover, DeepFlow scales
effectively, as DeepFlow-XL/2-4T further improves per-
formance down to 9.7 FID.

5. Conclusion

We introduced DeepFlow, a novel flow-based genera-
tive model that enhances internal velocity representa-
tions via deep supervision and explicit feature alignment
using proposed VeRA block. Our extensive experiments
show that DeepFlow not only dramatically improves
training efficiency of flow-based models while achieving
competitive performance on various image generation
benchmarks. We believe this work lays a strong founda-
tion for efficient and high performing flow-based models.

16542

References

[1] Michael S Albergo, Nicholas M Boffi, and Eric
Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint
arXiv:2303.08797, 2023. 1

[2] Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan
Li, Hang Su, and Jun Zhu. All are worth words: A vit
backbone for diffusion models. In Proc. of Computer
Vision and Pattern Recognition (CVPR), 2023. 3

[3] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé
Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision
transformers. In Proc. of Int’l Conf. on Computer
Vision (ICCV), 2021. 2, 3

[4] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. Neural ordinary differential
equations. In Proc. of Neural Information Processing
Systems (NeurIPS), 2018. 1, 3

[5] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data
collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015. 7

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Proc. of Computer Vision and
Pattern Recognition (CVPR), 2009. 3, 6

[7] Prafulla Dhariwal and Alexander Nichol. Diffusion
models beat gans on image synthesis. In Proc. of Neural
Information Processing Systems (NeurIPS), 2021. 7

[8] Patrick Esser, Sumith Kulal, Andreas Blattmann,
Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi,
Dominik Lorenz, Axel Sauer, Frederic Boesel, et al.
Scaling rectified flow transformers for high-resolution
image synthesis. In Proc. of Int’l Conf. on Machine
Learning (ICML), 2024. 1, 6, 7

[9] Peng Gao, Le Zhuo, Ziyi Lin, Chris Liu, Junsong Chen,
Ruoyi Du, Enze Xie, Xu Luo, Longtian Qiu, Yuhang
Zhang, et al. Lumina-t2x: Scalable flow-based large
diffusion transformer for flexible resolution generation.
In Proc. of Int’l Conf. on Learning Representations
(ICLR), 2025. 1

[10] Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig
Schmidt. Geneval: An object-focused framework for
evaluating text-to-image alignment. In Proc. of Neural
Information Processing Systems (NeurIPS), 2024. 3, 7

[11] Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz,
and Arash Vahdat. Diffit: Diffusion vision transformers
for image generation. In Proc. of European Conf. on
Computer Vision (ECCV), 2024. 3

[12] Ju He, Qihang Yu, Qihao Liu, and Liang-Chieh Chen.
Flowtok: Flowing seamlessly across text and image
tokens. arXiv preprint arXiv:2503.10772, 2025. 3

[13] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li,
Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proc. of Computer
Vision and Pattern Recognition (CVPR), 2022. 3

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denois-
ing diffusion probabilistic models. In Proc. of Neural
Information Processing Systems (NeurIPS), 2020. 1, 3

[15] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 3, 6,
7, 8

[16] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans.
simple diffusion: End-to-end diffusion for high reso-
lution images. In Proc. of Int’l Conf. on Machine
Learning (ICML), 2023. 7

[17] Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao
Jiang, Nan Zhuang, Quzhe Huang, Yang Song, Yadong
Mu, and Zhouchen Lin. Pyramidal flow matching for
efficient video generative modeling. arXiv preprint
arXiv:2410.05954, 2024. 1

[18] Dongwon Kim, Ju He, Qihang Yu, Chenglin Yang,
Xiaohui Shen, Suha Kwak, and Liang-Chieh Chen. De-
mocratizing text-to-image masked generative models
with compact text-aware one-dimensional tokens. arXiv
preprint arXiv:2501.07730, 2025. 7

[19] Diederik P Kingma. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013. 3, 6

[20] Chen-Yu Lee, Saining Xie, Patrick Gallagher, Zhengyou
Zhang, and Zhuowen Tu. Deeply-supervised nets.
In Proc. of Artificial Intelligence and Statistics (AIS-
TATS), 2015. 2, 3, 4

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco: Common objects
in context. In Proc. of European Conf. on Computer
Vision (ECCV), 2014. 3, 7

[22] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Max-
imilian Nickel, and Matt Le. Flow matching for gen-
erative modeling. In Proc. of Int’l Conf. on Learning
Representations (ICLR), 2023. 1, 3

[23] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta
Shaul, Matt Le, Brian Karrer, Ricky TQ Chen, David
Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow match-
ing guide and code. arXiv preprint arXiv:2412.06264,
2024. 1

[24] Qihao Liu, Zhanpeng Zeng, Ju He, Qihang Yu, Xiaohui
Shen, and Liang-Chieh Chen. Alleviating distortion in
image generation via multi-resolution diffusion models.
In Proc. of Neural Information Processing Systems
(NeurIPS), 2024. 3

[25] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow
straight and fast: Learning to generate and transfer
data with rectified flow. In Proc. of Int’l Conf. on
Learning Representations (ICLR), 2023. 1

[26] Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng,
et al. Instaflow: One step is enough for high-quality
diffusion-based text-to-image generation. In Proc. of
Int’l Conf. on Learning Representations (ICLR), 2023.
1

[27] Zhuoyan Luo, Fengyuan Shi, Yixiao Ge, Yujiu Yang,
Limin Wang, and Ying Shan. Open-magvit2: An open-
source project toward democratizing auto-regressive

16543

visual generation. arXiv preprint arXiv:2409.04410,
2024. 7

[28] Nanye Ma, Mark Goldstein, Michael S Albergo,
Nicholas M Boffi, Eric Vanden-Eijnden, and Saining
Xie. Sit: Exploring flow and diffusion-based generative
models with scalable interpolant transformers. In Proc.
of European Conf. on Computer Vision (ECCV), 2024.
1, 3, 6, 7, 8

[29] Alexander Quinn Nichol and Prafulla Dhariwal. Im-
proved denoising diffusion probabilistic models. In Proc.
of Int’l Conf. on Machine Learning (ICML), 2021. 3

[30] Maxime Oquab, Timothée Darcet, Théo Moutakanni,
Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fer-
nandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. Dinov2: Learning robust visual features
without supervision. arXiv preprint arXiv:2304.07193,
2023. 2, 3, 6

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance
deep learning library. In Proc. of Neural Information
Processing Systems (NeurIPS), 2019. 5

[32] William Peebles and Saining Xie. Scalable diffusion
models with transformers. In Proc. of Int’l Conf. on
Computer Vision (ICCV), 2023. 3, 5, 7

[33] Pablo Pernias, Dominic Rampas, Mats Leon Richter,
Christopher Pal, and Marc Aubreville. Würstchen:
An efficient architecture for large-scale text-to-image
diffusion models. In Proc. of Int’l Conf. on Learning
Representations (ICLR), 2024. 2

[34] Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan
Yuille, and Liang-Chieh Chen. Flowar: Scale-wise
autoregressive image generation meets flow matching.
arXiv preprint arXiv:2412.15205, 2024. 3

[35] Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan
Yuille, and Liang-Chieh Chen. Beyond next-token:
Next-x prediction for autoregressive visual generation.
arXiv preprint arXiv:2502.20388, 2025. 3

[36] Sucheng Ren, Qihang Yu, Ju He, Alan Yuille, and
Liang-Chieh Chen. Grouping first, attending smartly:
Training-free acceleration for diffusion transformers.
arXiv preprint arXiv:2505.14687, 2025. 3

[37] Danilo Rezende and Shakir Mohamed. Variational
inference with normalizing flows. In Proc. of Int’l Conf.
on Machine Learning (ICML), 2015. 1, 3

[38] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models. In Proc.
of Computer Vision and Pattern Recognition (CVPR),
2022. 1, 3, 6, 7

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image
segmentation. In Proc. of International Conference
on Medical Image Computing and Computer Assisted
Intervention (MICCAI), 2015. 3

[40] Yang Song and Stefano Ermon. Improved techniques
for training score-based generative models. In Proc.

of Neural Information Processing Systems (NeurIPS),
2020. 1

[41] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differen-
tial equations. In Proc. of Int’l Conf. on Learning
Representations (ICLR), 2021. 1, 3

[42] George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi
Sui, Brendan Ross, Valentin Villecroze, Zhaoyan Liu,
Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-
Ganem. Exposing flaws of generative model evaluation
metrics and their unfair treatment of diffusion models.
In Proc. of Neural Information Processing Systems
(NeurIPS), 2023. 7

[43] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang,
Bingyue Peng, Ping Luo, and Zehuan Yuan. Autore-
gressive model beats diffusion: Llama for scalable image
generation. arXiv preprint arXiv:2406.06525, 2024. 7

[44] Michael Tschannen, Cian Eastwood, and Fabian
Mentzer. Givt: Generative infinite-vocabulary trans-
formers. In Proc. of European Conf. on Computer
Vision (ECCV), 2025. 7

[45] A Vaswani. Attention is all you need. In Proc. of Neural
Information Processing Systems (NeurIPS), 2017. 1, 3

[46] Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng,
Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
Maskbit: Embedding-free image generation via bit to-
kens. arXiv preprint arXiv:2409.16211, 2024. 7

[47] Chenglin Yang, Celong Liu, Xueqing Deng, Dongwon
Kim, Xing Mei, Xiaohui Shen, and Liang-Chieh Chen.
1.58-bit flux. arXiv preprint arXiv:2412.18653, 2024. 3

[48] Jingfeng Yao and Xinggang Wang. Reconstruction vs.
generation: Taming optimization dilemma in latent
diffusion models. In Proc. of Computer Vision and
Pattern Recognition (CVPR), 2025. 3

[49] Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca
Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al.
Language model beats diffusion–tokenizer is key to
visual generation. In Proc. of Int’l Conf. on Learning
Representations (ICLR), 2024. 7

[50] Qihang Yu, Ju He, Xueqing Deng, Xiaohui Shen, and
Liang-Chieh Chen. Randomized autoregressive visual
generation. arXiv preprint arXiv:2411.00776, 2024. 7

[51] Qihang Yu, Mark Weber, Xueqing Deng, Xiaohui Shen,
Daniel Cremers, and Liang-Chieh Chen. An image
is worth 32 tokens for reconstruction and generation.
In Proc. of Neural Information Processing Systems
(NeurIPS), 2024. 7

[52] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon
Jeong, Jonathan Huang, Jinwoo Shin, and Saining
Xie. Representation alignment for generation: Training
diffusion transformers is easier than you think. In Proc.
of Int’l Conf. on Learning Representations (ICLR),
2025. 1, 2, 3, 6, 7

16544

