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Figure 1. We present AgroBench (Agronomist Al Benchmark) designed to comprehensively evaluate 682 disease categories across
203 agricultural crop types for 7 vision-language question-answer tasks. In the era of larger-scale vision-language models (VLMs), our
AgroBench is obviously non-trivial in terms of many more crop and disease categories with all expert annotations for establishing QA
benchmarks in the agricultural domain.

Abstract

VLMs have room for improvement in fine-grained identifi-
cation tasks. Notably, in weed identification, most open-

Precise automated understanding of agricultural tasks such
as disease identification is essential for sustainable crop
production.  Recent advances in vision-language mod-
els (VLMs) are expected to further expand the range of
agricultural tasks by facilitating human-model interaction
through easy, text-based communication. Here, we intro-
duce AgroBench (Agronomist Al Benchmark), a bench-
mark for evaluating VLM models across seven agricul-
tural topics, covering key areas in agricultural engineer-
ing and relevant to real-world farming. Unlike recent agri-
cultural VLM benchmarks, AgroBench is annotated by ex-
pert agronomists. Our AgroBench covers a state-of-the-
art range of categories, including 203 crop categories and
682 disease categories, to thoroughly evaluate VLM capa-
bilities. In our evaluation on AgroBench, we reveal that
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source VLMs perform close to random. With our wide range
of topics and expert-annotated categories, we analyze the
types of errors made by VLMs and suggest potential path-
ways for future VLM development. Our dataset and code
are available at https://dahlian00.github.i0/
AgroBenchPage/.

1. Introduction

Agriculture is a fundamental process for humans to pro-
duce crops to live and stay healthy. With the develop-
ment of computer vision technology, effective and auto-
mated management of external crop factors such as diseases
and pests has been explored, contributing to stable crop


https://dahlian00.github.io/AgroBenchPage/
https://dahlian00.github.io/AgroBenchPage/

Dataset ‘ Annot. | Crop Weed | Disease Pest | Images QA pairs Main Purpose
Agri-LLaVA [48] | GPT-4 | 29 - 109 112 | 391k 391k (Synthetic) Training
Agrolnstruct [4] GPT-4 | 174 4 74 12 70k 70k (Synthetic) Training
CDDM [20] GPT4 | 15 60 - 137k 1M (Synthetic) Training
AgroBench (Ours) ‘ Expert | 203 108 682 134 | 3,745 4,342 (Expert) Evaluation

Table 1. Comparison of agricultural vision datasets. Expert refers to ‘human expert’ in this context. AgroBench provides a compre-
hensive evaluation framework for assessing VLMs, featuring multiple tasks and a wide range of categories.

production. This includes detecting and classifying unde-
sirable conditions like diseases [1, 10, 13, 34, 38, 41, 47]
and pests [3, 49, 53], as well as general plant management
tasks such as crop classification [52, 54] and recognition
of crop maturity [22, 25, 37, 39], and structure understand-
ing [21, 43].

To maintain stable crop production, it is important to rec-
ognize a wide range of crop conditions, including undesir-
able situations such as diseases and pests, and to know how
to respond appropriately. A single visual model that can
handle various conditions, not only disease and pest de-
tection but also treatment and general crop management,
would be highly beneficial. However, most existing ap-
proaches use task-specific models. These models usually
require large amounts of training images and manual anno-
tations for each task. As a result, farmers often need to use
several different models depending on the situation. This
increases complexity and makes the overall system less ac-
cessible for practical use in agriculture.

For general purpose visual tasks, vision-language mod-
els (VLMs) [17, 19, 32, 33, 45, 46, 50] have become
widespread recently because they can understand task def-
initions provided by natural language prompts, covering
a wide range of applications without the need for task-
specific model training. The recognition ability of VLMs
is closely connected to image recognition itself and linked
to an object’s words, and supports open-vocabulary recog-
nition through web-scale training. Here, zero-shot recog-
nition and few-shot adaptation have also been realized by
VLMs with language representations. This ability opens up
a wide range of applications; therefore, we believe this can
be applied to agricultural scenarios as well. It is worth not-
ing that VLMs offer an easy-to-use interface for the general
public, especially the question-answer (QA) and conversa-
tion modes. To investigate the range of tasks that VLMs
obtained through large-scale vision-language training can
cover, recent studies have introduced various benchmark
datasets to fully evaluate the VLMs, including tasks such as
understanding diagrams and charts [26, 28], and question
answering requiring specialized knowledge [7, 55, 56].

However, VLM research remains underexplored in agri-
culture due to a lack of benchmark datasets that include di-
verse tasks and categories in agriculture. Several pioneer-
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ing works [20, 48] have adapted open-source VLMs such as
LLaVA [18] to the agricultural domain by fine-tuning them
on synthetic datasets generated from closed-source VLMs
such as GPT-4o0. This is recognized as an effective approach
because black-box VLMs often possess a certain amount of
agricultural knowledge obtained from the Internet. While
this helps in generating responses that are generally accept-
able to experts, there is almost no way to verify whether the
answers are truly correct. Moreover, in the limited evalu-
ation of categories, we are insufficient for fully assessing
VLM knowledge; whether they can answer a wide range
of types, such as diseases, pests, and weeds. These limita-
tions motivated us to develop a benchmark dataset in order
to evaluate the VLM’s broad knowledge in the agricultural
domain and its applicability as a practical application.

Here, we introduce AgroBench (Agronomist Al
Benchmark), a comprehensive benchmark dataset for VLM
for the agricultural domain, covering a state-of-the-art range
of categories for agriculture-focused benchmark datasets
for VLM; 682 disease, 134 pest, 108 weed, and 203 crop
categories (Figure 1). We cover not only identification tasks
but also crop production and disease management knowl-
edge. Moreover, we include other important topics related
to crop management with 98 machine categories and 77
traditional management methods to investigate more about
VLM’s ability. We carefully selected benchmark tasks from
key agricultural engineering research areas, and also the
tasks that address challenges faced by farmers in real agri-
cultural scenarios. We employ a multiple-choice format,
and all questions are annotated by human agronomist ex-
perts, which overcomes the limitations of previous syn-
thetically created datasets. We carefully selected images
from Creative Commons-licensed and publicly available
datasets, including real farm conditions. Also, under our
manual annotation process, unclear images were removed.
As shown in Table I, AgroBench contains data with the
most diverse disease and crop variation categories and many
more crop/weed annotations.

Our main contributions are as follows;

* We developed AgroBench, a benchmark dataset for
VLM, to assess their broad agricultural knowledge of
VLMs and evaluate their applicability in practical appli-
cations.



In our AgroBench evaluation, VLMs tend to achieve high
performance in disease and crop management tasks; how-
ever, there is still room for improvement in weed and dis-
ease identification.

Our AgroBench enables error analysis by providing
broader category annotations, highlighting future direc-
tions for model training focus areas.

2. Related Work

2.1. Computer Vision for Agriculture

With the rise of computer vision techniques driven by ad-
vancements in deep learning, a wide range of agricultural
tasks have been explored over the past decade. In partic-
ular, dataset construction and benchmarking play an im-
portant role in developing models and practical applica-
tions in agriculture, while also paving the way for forward-
looking advancements. Disease identification is a key re-
search focus across various crops, such as rice [1, 34],
tomato [10], cacao [13], and sugarcane [47]. Multicrop
datasets have also been created [29, 41]. PlantDoc [41]
covers 13 species and 17 classes focused on leaf-based dis-
eases. Plant Village [29] offers 39 classes containing both
diseased and healthy leaf categories. In addition to crop dis-
ease identification, pest identification [49, 53], weed identi-
fication [12, 31, 42] have also been studied.

While most of the agricultural datasets primarily fo-
cus on visual data, few computer vision studies in agri-
culture investigate the potential of multi-modal approaches.
The PlantWild dataset [52] includes 56 plant-disease class
pairs, which are collected through image search engines.
They implement a CLIP-based model and show the pos-
sibility of training with combined text and image data.
In an instruction-based format, the CDDM [20] has cre-
ated 16 categories of crops and 60 categories of crop dis-
eases dataset, which generates instructional data using GPT.
While these synthetically created datasets explore the agri-
culture multi-modal models, there remains a lack of datasets
for comprehensive multi-modal model evaluation, validated
by human experts and covering a wide range of tasks and
categories.

2.2. Vision-Language Models

Models. Visual models in the computer vision field have
been accelerated by language modality with the data re-
source of sentence-level inputs and web-scale texts. Specif-
ically, CLIP [35] has made a significant contribution in this
context, by text and image feature alignment through con-
trastive learning. CLIP played a key role in introducing
more sophisticated visual representation into language ex-
planations e.g., Flamingo [2], BLIP [14, 15], Qwen [5],
PaLl [8], LLaVA [17, 18], CogVLM [50], and Emu [44,
45, 51]. Closed-source VLMs achieve state-of-the-art per-
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formance, such as GPT-40 [32] and Gemini Pro [46], which
are said to acquire human-level knowledge across diverse
fields on the Internet.

Benchmarks. Along this line, several recent studies intro-
duced benchmark datasets. Especially, the representative
examples in terms of universal knowledge benchmarking
includle MMMU [55], MMMU-Pro [56] and MMStar [6]
for multi-modal understanding. These benchmarks con-
tain highly diverse domains (e.g., natural, graph, illustra-
tion, medical images) and academic fields (e.g., science,
engineering, art, and medical fields) under the tasks of
vision language such as question-answering and reason-
ing. The series of MMMUs have been verified with foun-
dation models like GPT-4V, but they cannot answer the
questions perfectly. More specific domain datasets have
also been proposed, such as those for Medicine [27, 36],
Chart [26, 28, 40], and Video understandings [9, 16, 30],
contributing to the accurate evaluation of VLMs and guid-
ing future research directions.

3. AgroBench

This section introduces AgroBench, the first comprehensive
benchmark dataset to evaluate VLM models from the per-
spective of agricultural vision tasks. The benchmark con-
sists of seven tasks covering a wide range of tasks selected
from key agricultural engineering research areas, as well
as tasks that address real-world challenges faced by farm-
ers in real agriculture scenarios. AgroBench includes 682
disease categories, 134 pest categories, 203 crop categories,
and 108 weed categories, representing the largest number of
categories in each area to date, to the best of our knowledge.

3.1. Benchmark Tasks in Agricultural Scenes

The seven benchmark tasks encompass key research areas
in agricultural engineering as well as real-world challenges
faced by farmers. To facilitate VLM evaluation, we also
provide prompts to address each task in a question-answer
format. The details of each task are described below.

1) Disease Identification (DID). The DID task aims to
accurately diagnose and classify crop diseases. This is a
key task in agriculture to protect crop health and maximize
yields. Our benchmark provides 1,502 QA pairs that cover
370 disease categories, 160 crop categories and 682 crop-
disease combinations. To thoroughly evaluate the capabil-
ities of VLMs, we include four misleading disease labels
for each image, featuring diseases with similar symptoms
or common diseases affecting the target plant. VLMs are
required to diagnose the disease based on the image, con-
sidering both symptoms and the crop species. Figure 2a
illustrates example images.

2) Pest Identification (PID). The PID task aims to identify
pests to prevent infestations that can severely impact crop
health. Accurate identification reduces economic losses and
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Figure 2. Examples of labeled images for DID, PID, and WID tasks. Our dataset includes 682 crop-disease pairs, 134 pest categories,
and 108 weed categories. We prioritized collecting images from real farm settings.

crops. Figure 2b shows examples of labeled pest images.

3) Weed Identification (WID). The WID task aims to iden-
tify weed species. Our benchmark includes 609 images
of weeds with ground-truth bounding boxes, covering 108
weed species commonly found in farm fields. We assign

bounding boxes because multiple weed types often grow

Og, ers

Fruit closely together, and we want to clarify which one is the
Vegetable target. Specifically, VLMs are required to identify the weed
species within the provided bounding box on the image.

o Figure 2c shows examples of labeled weed images.
?&\e*“’\j% 4) Crop Management (CMN). Crop management focuses
] on optimizing farming practices to facilitate crop growth.

This involves making decisions on irrigation, fertilization,
planting times, and other cultivation practices. Our bench-
mark provides 411 question-answer pairs for this task.
VLMs are required to analyze images of crops and rec-
Figure 3. Seven benchmark tasks in AgroBench. AgroBench ommend appropriate management strategies by considering
includes multiple topics with a diverse range of categories.. .The factors such as crop health, growth stage, and environmen-
total accuracy is calculated by the average of each task to mitigate tal conditions visible in the images given five answer can-
the difference in QAs. didates. In Figure 4a and b, we show two examples of the
harvest timing for white and green asparagus, respectively.
Our dataset includes complex questions that take into ac-
count the differences in their harvest timing.

minimizes harm to the environment. Our benchmark pro-
vides 544 labeled images that cover 134 pest categories,
including insects, mites, and other organisms harmful to

plants. For categories where we obtain multiple images, we 5) Disease Management (DMN). Disease management
select multiple insect growth stages whenever possible. To aims to control and reduce diseases in crops. This involves
fully evaluate the VLMs, we assign alternative choices that informed decisions on interventions such as applying pes-
closely resemble or are commonly associated with the target ticides, adopting resistant crop varieties, or modifying cul-
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(a)‘ s »‘ 14 Question: Based on the timing shown in the image, what should (b) (9 "I\REEY Question: At approximately what length should the vegetable
b 340> + be done for white asparagus? shown in the image be cut?
Q A. Harvest the crop as it is at the ideal stage for collection. A.51t010 cm.

"4 B. Cover the crop with plastic to protect it from sunlight. B.10 to 15 cm.
C. Apply fertilizer to encourage the crop to grow more. C.20to 25 cm.
~ D. Wait longer to allow the crop to grow more. D. 25 to 30 cm.
E. Increase water supply to encourage faster growth. E. 40 to 50 cm.

& Ground truth: [ Labels: (S RETY

[BIVIYEZTEA Question: Based on the disease level of this plant, what action
should be taken?

A. Reduce sunlight exposure to slow disease progression.

B. Increase watering and apply additional fertilizers immediately.

C. Plant more of this plant to compensate for the loss.

D. Stop all cutting and harvesting until symptoms decrease.

E. Prompt cutting of the plant to reduce loss in yield and quality.

Ground truth: [@ Labels: (IEE EEE A0

" Ground truth: O Labels:

Question: Given the severity of the disease on this plant, what (d)
should be done?

R A. Immediately cut and harvest the entire field.

B. Continue monitoring every one to four weeks and remove affected leaves.
C. Stop examining plants until the disease becomes more severe.

D. Avoid removing any leaves, as this could stress the plant further.

E. Increase irrigation and fertilization to boost plant health.

Ground truth: [ Labels: (YZEY R E

Figure 4. Examples of QA pairs for CMN and DMN tasks. (a) and (b) Crop management QA types for white asparagus and asparagus,
respectively. Their difference in the harvest timing affects the answer’s difference correctly. (c) and (d) Disease management QA types
for the alfalfa bacterial leaf spot with the initial and severe symptoms, respectively. Based on the severity of the symptoms, the annotator
changes the answer.

tivation practices. Our benchmark provides 569 question- 3.2. Dataset Construction
answer pairs covering 141 crop-disease combination cate-
gories. Since many diseases share the same management
strategies regardless of the crop, we carefully select a di-
verse range of disease types and management strategies.
VLMs are required not only to identify the disease but also
to recommend appropriate management strategies based on
images of affected crops. In Figure 4c and d show example
QAs from the Disease Management tasks. Both images de-
pict Bacterial leaf spot on alfalfa, with ¢ showing the initial
stage of the disease and d showing the severe stage. Based
on the severity of the disease, we provide different answer
options and set different correct answers. The input prompt
consists of a question and five answer candidates.

Image Selection. To establish a high-quality benchmark
covering a wide range of crops, diseases, and pest categories
we initially curated around 50,000 agricultural images from
websites supervised by plant pathologists, either where re-
distribution was permitted or where we obtained redistribu-
tion permission. We selected images in real farm settings
as much as possible, as shown in Figure 2, to evaluate real-
world scenarios. When licensed images for a target category
were limited, we used laboratory setting images. For cura-
tion, we obtained images along with their corresponding la-
bels. The annotator is one of the authors, who holds a Ph.D.
in Agriculture. In the human evaluation conducted during
the experiment, other individuals with a Ph.D. or M.S. de-
gree in Agriculture reviewed questions to assess the quality

6) Machine Usage QA (MQA). Machine usage QA ad- of the QA pairs. The annotator selected images that cllearlly
dresses the correct use and choice of agricultural machinery represented target labels and removed those images with ir-
depending on the task and farming conditions. Selecting the relevant labels. For the Machine usage QA and Tr.adltlonal
appropriate machinery is essential for efficient farming. Our management, annotators manually created categories based
benchmark provides 303 question-answer pairs covering 98 on t.extbooks .and W?bS.ItCS,. and. searched for corres.ponq-
machine categories. Given that many crops share the same ing images with redistribution licenses. For Weed identi-
machinery (e.g., soil preparation and irrigation), the cover- ﬁcatlop, we use existing dataset [l_ I, 23, 247 42.]' For this
age of this category is comprehensive. VLMs are required Weed identification category, We.wﬂl provide a s.1mple code
to answer questions about machinery operation or select the to download the data and crop images and assign bound-

appropriate machine for a given scenario based on images ing boxes for Weed Identification, allowing users to work
of machinery or farming conditions. with the existing dataset without redistributing the images.

Through these image selection processes, the selected im-
ages are high-quality 4,218 representative images. The de-

7) Traditional Management (TM). Traditional manage- tailed distribution of tasks and categories for each task is
ment methods involve natural and sustainable approaches to summarized in Figure 3.

farming, such as the use of organic fertilizers, terrace farm- QA Annotation. For the DMN, CMN, MQA, and T™M
ing, and agroforestry. Recent computer vision studies have tasks, all question-answer pairs were created manually, in-
not focused on these traditional practices, although many dependent of any LLMs or VLMs. Annotators used GPT
are still used by certain local farmers. Our benchmark in- only for sentence rephrasing, but they were prohibited from
cludes 404 question-answer pairs, including 77 traditional using any knowledge from GPT for QA creation. Annota-
management practices. VLMs are required to identify the tors were allowed to refer to textbooks, academic journals,
management method or explain its effectiveness, given five and other authoritative sources in the field to ensure the ac-
answer choices. curacy and depth of the dataset. This took around 150 man-
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Model DID DMN PID WID CMN MQA TM Overall Overall
(all) (subset)

Random Choice 21.77 15,64 2040 1790 16.06 22.11 19.31 19.03 19.11

Human 25.00 22.50 45.00 20.00 3625 57.50 51.25 - 36.79
Closed-Source Vision Language Models (VLMs)

GPT-40 mini [33] 53.60 80.67 60.04 35.14 6423 7096 69.80 62.06 69.65

GPT-40 [32] 64.18 87.35 7776 44.17 7543 8284 8243 7345 79.26

Geminil.5-Flash [46] | 55.06 79.96 70.04 5090 64.72 7822 7327 6745 68.82
Geminil.5-Pro [46] 62.92 81.55 7445 55.17 71.05 8284 771772 72.24 69.74

Open-Source Vision Language Models (VLMs)

EMU2Chat [44] 42.01 4833 4375 2381 4039 37.62 47.77 40.53 33.84
LLaVA-Next-8B [19] | 4547 7258 43.01 30.05 5426 56.11 5746 51.28 57.84
LLaVA-Next-72B [19] | 5495 80.00 49.81 2698 6692 66.11 7038 59.31 64.36
QwenVLM-7B [5] 51.26 80.49 63.97 33.17 6642 7624 7748 64.15 66.41
QwenVLM-72B [5] 57.99 87.87 7335 3448 7591 80.86 84.16 70.66 72.45
CogVLM-19B [50] 29.16 53.78 5239 2545 54.01 71.62 66.09 50.36 44.27
LLaVa-7B [18] 36.02 62.74 38.79 24779 53.77 46.53 5520 4541 46.14
LLaVA-13B [18] 40.21 6889 44.49 2479 5937 54.13 5842 50.04 55.31

Table 2. Results for the seven benchmark tasks with images. We provide results for Random Choice, Human Validation, four closed-
source VLMs, and open-source VLMs. Human validation was conducted by 28 people on a subset of 80 samples per task as a reference.

| DID DMN PID WID CMN MQA TM Overall

GPT-40 [32] 193 7258 1875 1.00 4039 2508 4827 29.71
LLaVA-Next-8B [19] | 26.10 70.30 21.88 19.70 53.77 30.36 40.35 37.49

Table 3. Results for the seven benchmark tasks with text only. We additionally evaluate the model without image inputs, and the overall
performance is close to random.

hours. We carefully annotate various types of questions. mentary material.
Examples of QAs that require expert knowledge are shown
in Figure 4. All questions were carefully created so that
image reference is necessary for answering.

Dataset Statistics. Following the dataset annotations and
selections, our AgroBench comprises seven tasks with
4,342 QA pairs, as shown in Table 1. All tasks comprise
a wide range of categories for detailed evaluation. Please
refer to the supplementary materials for more details and
examples.

Human Results. We also present results from human par-
ticipants for reference. We surveyed 28 students, each hold-
ing at least a bachelor’s degree in agriculture, and asked
them to answer 20 questions each. This created a test sub-
set of 280 questions, with each question answered by two
participants, resulting in a total of 560 responses. We av-
eraged the results per task and reported the accuracy. Each
participant was permitted to use a book or translator to look
up word meanings but was prohibited from using the inter-
net for searches. If participants were unsure of the answer,

4. Experiments
P they were asked to provide the response they believed to be

4.1. Experimental Settings most accurate.

Baseline Models. We use four closed-source models: Evaluation Protocol. Importantly, our dataset evaluation is
GPT-40 [32], GPT-40 mini [33], Geminil.5-Pro [46], conducted per task, and overall scores are averaged based
and Geminil.5-Flash [46]. GPT-40 mini and Geminil.5- on the number of tasks, not the number of QAs. This pre-
Flash are down-scale versions of GPT-40 and Geminil.5- vents categories with a large number of evaluations from
Pro, respectively. We use eight open-source mod- becoming dominant. We adopt an exact matching ap-

els: EMU2Chat [44], LLaVA-Next-8B [19], LLaVA- proach for our five-option questions. If the model’s re-
Next-72B [19], QwenVLM-7B [5], QwenVLM-72B [5], sponse matches the option’s letter or the answer sentence,
CogVLM-19B [50], LLaVa-7B [18], and LLaVa-13B [18]. we consider it correct. If the model’s answer does not match
For the details of these models, please refer to the supple- any option, including cases where there is no answer or mul-
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Figure 5. Results of seven benchmark tasks with Chain of Thought (CoT). Baseline indicates results without CoT. In the one-shot,
two-shot, and three-shot settings, we provide one, two, and three CoT examples per task, respectively, to guide the model.
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Figure 6. Error analysis on seven benchmark tasks with GPT-40. We extract a maximum of 15 errors per task from the zero-shot CoT

result. We manually analyze how they conclude the incorrect answer.

tiple answers, we consider it incorrect.

4.2. Main Results

Here, we discuss the main results of our AgroBench eval-
uation performance. We evaluate our AgroBench using
eight open-source VLMs and four closed-source VLMs
with APIs.

Challenges of the AgroBench. We show the main re-
sults in Table 2. The most difficult task is Weed Identifi-
cation (WID), on which most open-source VLMs perform
at around the random score. The highest WID accuracy,
55.17%, was achieved by Gemini 1.5-Pro. This suggests
that the knowledge about weeds is not as fully trained as that
of crops. All models’ Disease Identification (DID) results
are lower than their Disease Management (DMN) results.
This means that VLM models can gain contextual informa-
tion, but there is still room for perceptual improvement.
Model Comparison. Overall, closed-source VLMs achieve
better results than open-source VLMs and achieve higher
performance than humans. GPT-40 model achieved the
highest score in overall performance. Among the open-
source models, QwenVLM-72B achieves the best result
in overall accuracy, which is comparable or even supe-
rior to open-source VLMs in some tasks. QwenVLM-

72B achieves satisfactory results on both identification and
question-answering benchmarks on AgroBench.

4.3. Ablations

Context Reliance. We further evaluate the results on
AgroBench using text-only input to determine whether vi-
sual information is necessary to answer the questions. Ta-
ble 3 presents the experimental results across seven bench-
mark tasks on AgroBench. With text-only input, perfor-
mance drops across all models, confirming the reliance on
visual information. However, for both models, the DMN,
CMN, and TM tasks maintain significantly higher accuracy
than random selection. Although we ensured that our ques-
tions do not include disease names or appearance-related
traits, models tend to infer answers based on estimation.
This suggests that many disease types share common man-
agement strategies, such as avoiding humidity, preferring
cooler temperatures, or pruning infected parts, allowing
models to predict the most likely option. A similar pattern
is observed in the CMN and TM tasks, where models can
make educated guesses based on contextual cues. (See the
supplementary material for further detailed examples.)

Chain of Thought. We evaluate the effectiveness of Chain
of Thought (CoT) reasoning. In the one-shot setting, we
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(a) Lack of Knowledge
Q: What disease is affecting the plant?

W”« 7|y GPT-40: ..., **Sclerotinia blight**:

I/ Characterized by white, cottony
mycelium and black sclerotia on

. stems. The image does not show these
symptoms. (not enough knowledge)

[ ..., the plantis likely affected by **D.
Cylindrocladium black rot**. (This is
more common on root)

A: Sclerotinia blight

(b) Perceptual Error
Q: What activity is being performed using the tractor-pulled

machine shown in the image?
GPT-40:The machine seems to be

designed to lift plants from the soil,
..., and there are plants being lifted
el ¥ from the ground (There are no
harvested ctops).... the activity being
performed is: D. Harvesting potato
tubers from the soil using a tractor-

% pulled harvesting machine.

A: Cutting and chopping the stems and leaves using a
tractor-pulled leaf chopper.

Figure 7. Error examples of GPT-40. Examples illustrate the two
main error types: Lack of Knowledge and Perceptual Error.

provide a single CoT reasoning example along with an im-
age and the corresponding prompt for each task to guide the
model in answering the question. We select 100 QAs per
task for evaluation and use GPT-4 as the VLM. Figure 5
presents the accuracy of CoT reasoning with the baseline
results. While CoT achieves slightly higher accuracy, the
improvement is not significant compared to the baseline.
However, CoT demonstrates effectiveness in certain tasks,
such as PID, WID, CMN, and TM. For instance, in PID,
the VLM performs step-by-step and careful reasoning (see
the supplementary material for more detailed examples). In
WID, the most challenging task, CoT provides useful ex-
amples that may help the model make predictions. Overall,
CoT contributes to accuracy, but we observe performance
saturation in the three-shot setting. For further detailed ex-
amples, please refer to the supplementary material.

4.4. Error Analysis

Here, we analyze the mistake types that occur depending on
the agricultural tasks. We bring out up to 15 failure exam-
ples per task from the zero-shot CoT results and manually
analyze how they reached the incorrect answers.

Lack of Knowledge (51.92%). This includes cases where
VLM can’t accurately describe the appearance or relevant
knowledge of a choice (e.g., VLM fails to describe disease
symptoms or insect characteristics) or lacks context (e.g.,
VLM doesn’t know how to treat diseased crops or manage
crops for high yield). Figure 7a shows an example of a Lack
of Knowledge case. When the VLM analyzes the correct
answer option for Sclerotinia blight, it fails to describe the
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symptoms of discoloration and wilting. Additionally, its in-
correct answer choice is more commonly associated with
the root rather than the stem. These errors are based on a
Lack of Knowledge, suggesting VLMs need more detailed
categories and domain-specific training.

Perceptual Error (32.69%). This indicates that VLM
can’t pay attention or recognize the answer-related part in
the image (e.g., can’t recognize the green insect on the leaf),
and VLM misunderstands the image, leading to incorrect
answers. Figure 7b shows an example of the model hal-
lucinating and misunderstanding the situation. First, the
VLM incorrectly identifies the machine as one used for lift-
ing plants from the soil. Then, it describes the scene as if
there are harvested crops, even though no harvested crops
are present. These errors can be mitigated by enhancing
the VLM’s perception abilities for domain-specific classes.
Additionally, improving general perception capabilities, in-
cluding reducing hallucinations, can further contribute to
VLM performance.

Reasoning Error (7.6%). Reasoning error involves the
VLM can describe the options correctly, but can’t compare
them step by step and conclude the wrong answer. This
error is relatively low compared to the existing work [55]
since AgroBench requires more specific knowledge and
doesn’t include reasoning relying on problems (e.g., math).
Other Errors (7.79%). For the other errors, we observe
Shortcut Error (The VLM can pick up the two candidate op-
tions correctly but conclude the answer without comparing
the candidates), Double Answer Error (Concluding two an-
swers are correct), Interpretation Misunderstanding (VLM
misleading the question and conclude wrong answer), and
Reject to Answer (VLM conclude there is no answer).

5. Conclusion

In this paper, we develop AgroBench, a comprehensive
benchmark dataset for VLMs in the agricultural domain,
covering a state-of-the-art range of categories. Our dataset
comprises seven benchmark tasks encompassing key re-
search areas in agricultural engineering as well as real-
world challenges faced by farmers. AgroBench contributes
to agricultural VLM research by addressing the lack of
datasets for comprehensive multi-modal model evaluation,
validated by human experts.

In our evaluation, VLMs exhibit strengths across differ-
ent tasks. However, in several tasks such as weed identi-
fication and disease identification, all models show room
for improvement. Our error analysis reveals that most fail-
ures are due to a lack of knowledge (51.92%), suggest-
ing that VLMs require more specialized agricultural knowl-
edge. Our dataset will facilitate agricultural VLM research,
enabling broad category and task evaluation to support sus-
tainable, automated agriculture.
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