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Abstract

Multimodal large language models (MLLMs) are increas-
ingly used to evaluate text-to-image (TTI) generation sys-
tems, providing automated judgments based on visual and
textual context. However, these “judge” models often suf-
fer from biases, overconfidence, and inconsistent perfor-
mance across diverse image domains. While prompt en-
sembling has shown promise for mitigating these issues in
unimodal, text-only settings, our experiments reveal that
standard ensembling methods fail to generalize effectively
for TTI tasks. To address these limitations, we propose a
new multimodal-aware method called Multimodal Mixture-
of-Bayesian Prompt Ensembles (MMB). Our method uses a
Bayesian prompt ensemble approach augmented by image
clustering, allowing the judge to dynamically assign prompt
weights based on the visual characteristics of each sample.
We show that MMB improves accuracy in pairwise prefer-
ence judgments and greatly enhances calibration, making it
easier to gauge the judge’s true uncertainty. In evaluations
on two TTI benchmarks, HPSv2 and MJBench, MMB out-
performs existing baselines in alignment with human anno-
tations and calibration across varied image content. Our
findings highlight the importance of multimodal-specific
strategies for judge calibration and suggest a promising
path forward for reliable large-scale TTI evaluation.

1. Introduction

Modern large vision-language models (LVLMs) and multi-

modal large language models (MLLMs) [3, 4, 15, 43, 46,

50, 71, 74] are rapidly advancing in their ability to under-

stand and respond to human-like instructions across various

tasks. In general, these models can interpret both textual

and visual content through a unified natural language inter-

face, such as image-captioning [41, 70], visual question an-

swering [2], visual dialogue [17], and more [37]. Similarly,

text-to-image (TTI) generators [6, 12, 51, 54] can invert this

process and render new images from textual prompts. Re-

cent efforts have even begun to consolidate diverse multi-

modal capabilities into low-technical barrier unified ecosys-

tems such as OpenAI-o1 [47] with DALL-E [12], or Gem-

ini [58] with Imagen [55]) which can do both analyses e.g.

Figure 1. A high-level comparison on the HPSv2 [65] dataset

between an average ensemble baseline (AVG.), current SOTA

BPE [59], and our MMB method. We show F1 Score (higher is

better ↑) and ECE (lower is better ↓). While BPE somewhat low-

ers the model’s discriminative ability (F1) relative to the baseline,

MMB both recovers that loss (+1.8% F1 vs. AVG.) and achieves

stronger calibration (-36% ECE vs. AVG.). All differences are sta-

tistically significant at 95% confidence via a permutation test.

“Please caption this photo” and generation e.g. “Draw me
an image of a space explorer!”

As a result, these models produce diverse and frequently

subjective multimodal outputs, which makes evaluating

them a significant challenge. Traditional metrics for text

(BLEU [49], ROUGE [40], SPICE [1]) and image gen-

eration quality (e.g., FID [27], Inception [57], Precision-

Recall [36]) often fail to capture the open-ended, cre-

ative nature of responses that generative models can pro-

duce [73]. TTI generation, in particular, must be judged on

aesthetic qualities, coherence with textual prompts, realism,

and creativity dimensions that are often subjective and diffi-

cult to evaluate using fixed metrics. A challenge that has led

to an array of preference scores, including CLIPScore [53],

PickScore [34], and PreferenceScore [65], that attempt to

generally capture the “goodness” of an image. On the other

hand, human evaluation—although more reliable for subtle
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qualities like image realism or appropriateness—can be too

costly or slow to be practical at scale.

A related trend in the unimodal (text-only) domain in-

volves using large language models (LLMs) themselves

as judges to evaluate text-generation quality [22, 38, 39].

This concept is also readily extended to LVLMs and

MLLMs being used as judges through frameworks like

GPT-4V(ision) [14, 72], X-IQE [10], MLLM-Bench [19],

ViGOR [67], and even Text-to-3D [64]. Yet while these

“judge” models can approximate human assessments of rel-

evance, clarity, and creativity, they still exhibit biases. For

instance, they may favor outputs from sharing their train-

ing lineage [44, 48], reward verbosity [56], or change their

evaluations when prompts are slightly altered [60]. They of-

ten struggle with commonsense reasoning [25, 29, 35] and

can inadvertently amplify social biases [38, 68]. Addressing

these pitfalls is crucial to ensuring fair and accurate assess-

ments of advanced multimodal model capabilities.

A further complication is that many of the most perfor-

mant and accessible MLLMs are closed-source and avail-

able only through restricted APIs. This limitation curtails

researchers’ ability to fine-tune or directly inspect the judge

for a given use case. Recent work proposes ensembling

and reweighting prompts [28, 31, 59, 63] to partially mit-

igate these issues by improving calibration and accuracy in

black-box large language models. At a high level, a cali-

brated model’s probabilities align with actual outcome fre-

quencies [23]. In other words, it reduces the frequency of

high-confidence but incorrect and low-confidence but cor-

rect outcomes in these models. While a calibrated model

can be more accurate than an uncalibrated model, the main

goal is to reduce these extreme misclassifications and align

a model’s confidence with the actual frequency of correctly

predicted outcomes. Hence, a low-confidence judgment

from a calibrated model can be deferred to another model

or human reviewers and a high-confidence judgment can be

accepted with lower risk of it being a false-positive, com-

pared to an uncalibrated model. Yet it remains unclear how

to reliably apply such techniques to multimodal tasks like

text-to-image (TTI) generation, which require a judge to

produce outputs based on both visual and textual context.

These subtleties remain relatively underexplored in current

research. Moreover, prior work often assumes ideal condi-

tions (e.g., all prompts are equally performant, prompting is

“free” to perform ad infinitum), assumptions that rarely hold

in real-world multimodal evaluations. Consequently, many

challenges in MLLM-based evaluation remain unsolved.

In this paper, we study text-to-image generation as an ex-

emplar of these open-ended vision-language tasks and ad-

dress the problem of producing a well-calibrated judge, en-

suring that the MLLM-based judge accurately appraises its

uncertainty and delivers stable, contextually coherent TTI

evaluations. Achieving robust calibration in the multimodal

domain not only leads to fair and trustworthy metrics for

TTI tasks, but also lays the groundwork for future applica-

tions—such as selective classification [26] or partial human

oversight [45] of automated judgments—if so desired.

Contributions. Put briefly, in this work we —

• Identify limitations of standard prompt ensemble meth-

ods when applied to multimodal evaluation, demonstrat-

ing their failure to generalize effectively to TTI judgment.

• Propose Multimodal Mixture-of-Bayesian Prompt En-

sembles, a novel method incorporating image clusters

to condition prompt selection, improving calibration and

judgment consistency in MLLM-based TTI evaluation.

• Conduct extensive experiments on HPSv2 and MJBench,

showing that MMB significantly improves calibration and

alignment with human preferences compared to SOTA.

• Analyze the practical implications of MMB, demonstrat-

ing its benefits for cost-aware evaluation pipelines, where

low-confidence judgments can be selectively accepted or

deferred to human reviewers for more precise review.

2. Related Work

(M)LLM-As-a-Judge. (M)LLM-as-a-judge has seen much

interest in recent years, serving as an economical and scal-

able alternative to human evaluation. Proprietary mod-

els such as GPT-4(V) have been used as general-purpose

judges for various use text-only and multimodal judg-

ments. To this end, several benchmarks have been re-

cently proposed in both text-only evaluations, such as

LLaVA-Bench [43], GAVIE [42], LAMM [69], and VisIT-

Bench [7], and multimodal evaluations, such as X-IQE [10],

MLLM-Bench [19], ViGOR [67] etc. Open-source alterna-

tives to these proprietary models have also been recently

introduced [66], aiming to improve MLLMs in their capac-

ity to act as judges. Our work is complementary to these

developments. We seek to improve the calibration of these

(M)LLMs when they’re used as judges so that we can prop-

erly quantify when they are less confident in their evalua-

tion. This helps improve the reliability, fairness, and accu-

racy of these models when used as judges and can also act

as a filter, whereby only the less confident judgments need

to be verified by humans.

Model Calibration. We tackle model calibration, a well-

established subfield in ML literature, e.g., [23]. A calibrated

model allows selective prediction of outputs [16, 20], or se-

lectively defer [45] or abstain [62] from producing an output

when the model is not confident that it can produce a correct

output. Contrary to our work, these works introduce various

statistical and post-training interventions to improve the cal-

ibration of ML models. Our work tackles improving the cal-

ibration of black-box models, including proprietary models

where we do not have access to the models’ weights.
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Prompt Ensembles. As LLMs are highly sensitive to

prompt engineering [32, 61], researchers have explored var-

ious prompt ensembling techniques to mitigate this sensi-

tivity and improve calibration. For example, [31, 63] inves-

tigated methods to generate diverse prompts aimed at en-

hancing calibration, treating all prompts within the ensem-

ble as equally important. In contrast, Hou et al. [28], Tono-

lini et al. [59] assign different weights to prompts within

the ensemble and optimize these weights using a validation

set. Unlike Hou et al. [28] approach, Tonolini et al. [59]

does not require modifying the prompts themselves, mak-

ing it more practical for real-world applications. To achieve

this, the authors in [59] proposed Bayesian Prompt Ensem-

bles (BPE), a Bayesian approach to learning the varying

importance of different prompts. This technique is partic-

ularly relevant when an LLM acts as a judge with multiple

task instruction prompts that are assumed to be equally rel-

evant. However, in multimodal evaluations, such assump-

tions might not always hold, as the relevance of a prompt

can also depend on the image itself. This paper aims to ad-

dress this issue and propose a more generalized solution.

3. Preliminaries
One fundamental requirement for reliable model judge de-

ployment is calibration: the idea that a model’s predicted

probabilities should accurately reflect the true likelihood

that its predictions are correct. Given an input x (e.g., an

image pair), a predicted label ŷ, and a ground truth label y∗

(e.g., a known preference), a well-calibrated model satisfies:

P (y∗ = ŷ | f(ŷ | x) = p) = p (1)

where f(ŷ | x) denotes the model’s predicted probability

for label ŷ given input x. In other words, if a model out-

puts a 90% probability of being correct on some sample,

we should find that—over many samples assigned that same

90% confidence—it is indeed correct about 90% of the time.

3.1. Bayesian Prompt Ensembles (BPE)
Our work builds on Bayesian Prompt Ensembles (BPE)

[59], originally proposed to improve calibration in black-

box language models. Although BPE was introduced for

purely textual (NLP) classification tasks, our goal is to

generalize its principles to multimodal model evaluation—

where images, prompts, and model outputs all interact. To

apply this framework to our MLLM setting, we assume:

• A set of N semantically equivalent task prompts a =
{a1, . . . , aN}. Each prompt describes the same classifica-

tion or preference task (e.g., “Which of these two images
is more realistic?”) in slightly different wording.

• A small validation set Dval={(xj , y
∗
j )}Mj=1. Here, xj are

inputs (which could be text, images, or both), and y∗j are

ground truth labels (e.g., human preferences).

• A fixed black-box model (e.g., an MLLM) providing class

probabilities p(y|x, a) given input x and a prompt a.

Prompts as Latent Variables. BPE treats each prompt a
as a latent variable in a Bayesian sense. For an (M)LLM-

based classifier, the desired predictive distribution is:

p(y | x,Dval) =

∫
p
(
y | x, a) p(a | Dval

)
da. (2)

Since p(y|x, a) is fixed once the (M)LLM and prompt are

chosen, the goal is to approximate the posterior p(a|Dval).

Variational Inference. BPE introduces a variational distri-

bution q(a) to approximate p(a|Dval), minimizing the KL:

q∗(a) = argmin
q(a)

KL
[
q(a) ‖ p(a | Dval)

]
. (3)

By standard variational arguments (see, e.g., [21]),

q∗(a) = argmax
q(a)

(
Eq(a)[logp(y

∗ | x, a)] (4)

− KL[ q(a) ‖ p(a) ]
)
.

Intuitively, q(a) places higher density on prompts that ex-

plain the validation data well.

Discrete Reparameterization. In practice, we only have

a finite set a = {ai}Ni=1. BPE thus represents q(a)
with discrete weights wa≥0 such that

∑
a wa=1 and

wa=q(a)/NC. Assuming a uniform constant prior p(a) ≈
C, this yields:

argmax
w

∑
a

wa

[ M∑
j=1

log p
(
y∗j | xj , a

)]
(5)

−
∑
a

wa logwa,

where the first term rewards prompts whose likelihood on

Dval is high, and the second term is an entropy term that

prevents the solution from collapsing onto a single prompt

unless it decisively outperforms the rest.

Inference. Once the weights w∗
a are learned, the final class

probability for a new sample x becomes:

p(y | x) ≈
∑
a

w∗
a p

(
y | x, a). (6)

Hence BPE combines the model outputs from multiple task

prompts, reweighting them for better calibration.

3.2. Limitations & Our Multimodal Generalization
BPE focuses on textual classification, assuming all task

prompts are equally relevant a priori. Multimodal judging

tasks, however, may demand different prompts for differ-

ent types of images: for example, a prompt that references
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Figure 2. Overview of our MMB for multimodal prompt ensembles. 1 Train: We query an MLLM with multiple prompts and discount

the resulting log-probabilities inverse to a relevance function that scores how well each image fits a learned embedding-based group.

We optimize the image-conditional prompt weights by minimizing negative log-likelihood on validation data, balanced by an entropy

regularizer. 2 Infer: Learned prompt weights then mix MLLM outputs at test time for more accurate, calibrated predictions.

lighting or artistic style might be more reliable for photos

than for abstract digital art. Consequently, BPE can be sub-

optimal when the best prompt for a given validation sample

varies by image category or other visual attributes.

In the remainder of this paper, we propose a multimodal
generalization of BPE that conditions on an image embed-

ding to cluster or group related images. Each group can

then favor the prompts best suited for that group. Our

method thus preserves BPE’s variational formulation but

learns more image-specific weights, significantly improving

both accuracy and calibration in MLLM-based evaluation.

4. Multimodal Bayes. Prompt Ensembles

We now propose Multimodal Mixture-of-Bayesian Prompt

Ensembles (MMB), a technique for learning image-aware
prompt weights that generalize BPE into the multimodal

domain. Our key idea is model an underlying group struc-

ture based on image embeddings — allowing the model to

learn group-specific prompt weights and individual samples

to be classified by their combination based on group affin-

ity. This helps address scenarios where different prompts

may be more reliable for certain types of images. See Fig. 2

for a high-level graphical overview.

Soft Image Grouping. To model this group structure, we

presume the image space can be partitioned into K groups

which may each have different prompt weights that are

more appropriate for the image in group. More formally,

we introduce random variables z|x to denote the member-

ship of image x in group z ∈ {1, ...,K}. To realize this

grouping, we assume access to an unlabeled image set Dsup

drawn i.i.d from the image generator we seek to evalu-

ate (i.e. G : ∗ → x) and an image embedding function

φI : X → R
d (for instance, via a pretrained image en-

coder). Applying a grouping algorithm (e.g., k-means) to

image embeddings, we can partition Dsup into K groups

g1, ..., gK . For a similarity function sim(φI(x), gi) between

the image embedding of x and group gz , we can define the

probability of z | x as p(z|x) ∝ exp(sim (φI(x), gz) /τ),
where τ is a temperature scale hyperparameter. For τ → 0,

p(z|x) approaches a one-hot hard assignment and a uniform

distribution for τ → inf . This distribution can be viewed as

a soft assignment of x to each of the K groups.

4.1. Learning Objective
Given this group structure, we can derive the evidence lower

bound for the log likelihood of Dval. To start, the log like-

lihood for a given point x, y can be written as:

log p(y|x) = log
∑
a

∑
z

p(y|x, a)p(a|z)p(z|x) (7)

where conditional independencies a⊥x|z and y⊥z|a are ap-

plied. For these, recall that we assume prompt weights

are determined entirely by group assignment and our un-

derlying model’s output depends only on the input and

prompt. Introducing a variational distribution q(a|z) to

model the unknown group-specific prompt weights and fol-

lowing standard manipulations yields an evidence lower

bound of log p(y|x) equal to

log p(y|x) ≥ Ep(z|x)
[
Eq(a|z) log p(y|x, a)

− KL(q(a|z)||p(a|z))
]

(8)

Note that the terms inside Ep(z|x) mirror BPE in Eq. (4)

but now have group-specific weights q(a|z) and priors

p(a|z). As we’ve defined it, the expectation over p(z|x)
serves to weigh point x’s per-group contribution based on

similarity to each group. See Appendix C for full derivation.

Setting a uniform prior p(a|z) ∀z and parameterizing the

variational distribution q(a|z) via learnable weights wza,

the training objective for our MMB formulation is then to
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find weights which maximize the following:

M∑
j=1

∑
z

Soft Group

Assignment︷ ︸︸ ︷
p(z|xj)

Per-Group

Log Likelihood︷ ︸︸ ︷[∑
a

wza log p(y
∗
j |xj , a)

−
∑
a

wza logwza

]
︸ ︷︷ ︸

Per-Group Entropy

Regularizer

(9)

With our complete objective written, it is worth revis-

iting our temperature hyperparameter τ used in defining

p(z|x). We note that extreme settings will map the above

objective to either (i) independent BPE per group when all

p(z|xi) become one-hot (τ → 0) or (ii) one single over-

parameterized BPE for all data when all p(z|xi) become

uniform (τ → inf). For intermediate settings, data points

can selective share partial membership across image groups

based on their semantic or visual similarity.

4.2. Inference
Solving Eq. 9 for w∗

za, enables us to evaluate new inputs x
as an expectation over group assignments and prompts,

p(y | x) ≈
∑
z

p(z|x)
∑
a

w∗
za p

(
y|x, ai

)
, (10)

where p(z|x) is computed based on x’s group similarities.

5. Experimental Setup
We conduct experiments on two contemporary benchmarks:

HPSv2: Discriminative Power and Calibration [65].
HPSv2 is a large-scale dataset capturing human preferences

among images generated from the same textual prompts;

it encompasses ∼800k preference choices over ∼430k im-

ages. Of these, 400 groups (each containing 9 images) serve

as a test set, and 108k groups (each containing 4 images)

comprise the training pool. We focus on pairwise pref-

erences drawn from these groups. For calibration (i.e.,

learning our ensemble weights), we randomly select a small

number of pairwise comparisons—one per training group

as needed—ensuring that each validation sample is distinct.

We denote this validation set by Dval and from the remain-

ing training data for Dsup. After calibration, we evaluate
the final models on all

(
9
2

) × 400 = 14.4k pairwise com-

parisons from the test set. We systematically explore sev-

eral experimental factors, including the number of prompts

used (a; 5, 10, or 15) and the number of validation samples

(Dval; 5, 10, 20, or 50). Our support set (Dsup) is always

composed of 256×K samples, where K denotes the num-

ber of groups used in MMB. Across each configuration, we

repeat experiments with multiple random seeds for train-

ing (3), data sampling (50), and clustering (5) for a total

of 52.2k unique experimental configurations. This yields

a broad factorial design allowing for thorough comparisons

of calibration and discriminative ability. We provide a sum-

mary of the experimental configurations in Appendix A.

MJBench: Visually Salient Human Social Bias [11].
MJBench-Bias is a targeted evaluation set for measuring de-

mographic biases in multimodal judge models. It comprises

images of subjects from diverse backgrounds (e.g., different

ages, genders, or socioeconomic statuses) with prompts de-

scribing occupations or educational pursuits. The goal is to

assess whether a judge model’s scoring or ranking of how

well an image aligns with a prompt is free from systematic

demographic bias. Because MJBench-Bias provides pools

of similar images per prompt—rather than pairs—and lacks

a standard training set, we construct one to facilitate exper-

imentation. Specifically, we create a lower-preference vari-

ant of each image by applying aesthetically degrading trans-

formations (such as extreme contrast, motion blur, bright-

ness shifts, random occlusions, and noise). We then form an

artificial training set by pairing each original image with its

transformed counterpart, chosen from images generated un-

der the same prompt. We adopt a 10-fold, leave-one-group-

out procedure stratified by prompt: in each fold, the remain-

ing nine folds serve as the validation (Dval) and support

(Dsup) sets—containing distorted pairs—while the held-out

fold is reserved for testing. On the test set, we generate all

image pairs sharing a caption; under the assumption of no

bias, neither image should be more or less preferable. Con-

sequently, we argue that an unbiased model in this scenario

should predict with the lowest possible confidence—50%.

See Appendix F for synthetic preferences examples.

Models. Throughout all experiments, we select GPT-4o

[30] as our judge model. GPT-4o is a state-of-the-art,

closed-source MLLM that is frequently employed in multi-

modal judge scenarios due to its high performance. We con-

sider text-conditioned image generators G : text × noise→
image as the underlying image producers for our datasets

dataset which can be used to generate Dsup. The embed-

ding function φI is implemented using a pretrained CLIP-

ViT-B16 [52], chosen for its strong alignment with natural

language and visual content understanding. To form our K-

group relevance function Z , we perform spherical k-means

clustering on image embeddings via FAISS [33] with cosine

similarity based distance between image pairs (x1, x2):

dist(x1, x2) = 1− φ(x1)
Tφ(x2) / ‖φ(x1)‖‖φ(x2)‖

We take the cosine similarity between each image and the

K cluster centroids as our similarity function sim(·, ·).
Baselines. We benchmark our proposed MMB approach

against two single prompt and two ensemble baselines:

17228



pr
om

pt
s

sa
m

pl
es

Expected Calibration Error (↓) Max Calibration Error (↓) AUC Precision-Recall (↑)

STD.
(single)

BEST
(single)

AVG.
(ensemble)

BPE
(ensemble)

MMB
(ensemble)

STD.
(single)

BEST
(single)

AVG.
(ensemble)

BPE
(ensemble)

MMB
(ensemble)

STD.
(single)

BEST
(single)

AVG.
(ensemble)

BPE
(ensemble)

MMB
(ensemble)

5

5 .238 .155 .155 .127 .113 .399 .351 .286 .305 .245 .731 .812 .835 .830 .835
10 .239 .132 .155 .121 .108 .406 .320 .286 .304 .239 .731 .841 .835 .847 .838
20 .243 .130 .155 .120 .108 .411 .313 .286 .308 .241 .724 .842 .835 .849 .838
50 .261 .122 .155 .121 .107 .424 .310 .286 .307 .236 .708 .853 .835 .853 .839

10

5 .271 .150 .142 .121 .092 .409 .346 .250 .291 .201 .694 .818 .844 .835 .844
10 .260 .134 .142 .120 .095 .401 .328 .250 .293 .196 .702 .842 .844 .837 .844
20 .260 .127 .142 .114 .091 .401 .317 .250 .285 .189 .702 .847 .844 .848 .845
50 .267 .121 .142 .116 .088 .408 .301 .250 .289 .188 .696 .854 .844 .851 .845

20

5 .263 .153 .133 .111 .080 .422 .342 .210 .274 .172 .716 .812 .849 .841 .847
10 .265 .135 .133 .117 .082 .422 .324 .210 .288 .169 .713 .835 .849 .841 .848
20 .270 .126 .133 .114 .080 .426 .311 .210 .279 .160 .708 .847 .849 .844 .848
50 .267 .117 .133 .113 .076 .422 .291 .210 .275 .154 .708 .855 .849 .851 .849

Table 1. Expected Calibration Error (ECE) and Max Calibration Error (MCE) are shown (lower is better ↓), along with AUC Precision-

Recall (higher is better ↑) on HPSv2 [65]. We compare STD. (single)—a random single prompt, BEST (single)—the single prompt with

highest validation accuracy, AVG. (ensemble)—an unweighted average, BPE (ensemble)—the current state of the art, and MMB (ensem-
ble)—our proposed method. Bold entries are either the BEST score or not significantly different from the BEST at ≥95% confidence via a

permutation test. We account for Type I error inflation across multiple tests per metric using the Benjamini–Yekutieli FDR procedure [5].

Model NLL↓ Brier↓ Kappa↑ Acc↑ ROC↑ F1↑

S
in

g
le STD. 1.002 .271 .315 .667 .780 .526

BEST .618 .152 .610 .812 .897 .763

E
n
se

m
b
le AVG. .473 .151 .600 .804 .897 .764

BPE .547 .147 .602 .810 .897 .753

MMB .430 .135 .627 .820 .900 .778

Table 2. Performance on HPSv2 [65] showing NLL and Brier

score (lower is better ↓) alongside Kappa, Accuracy (Acc), ROC-

AUC (ROC), and F1 (higher is better ↑). We compare two single-

prompt baselines (STD. and BEST) against three ensemble meth-

ods: AVG. (unweighted average), BPE (SOTA), and MMB (ours).

Methods insignificantly different from the best method by column

at 95% confidence from a permutation test are in bold. We con-

trol for Type I error from multiple testing with the Benjamini–

Yekutieli FDR procedure [5]. 10 prompts, 20 validation samples.

• Standard: A single randomly chosen prompt.

• Best: The single prompt with greatest Dval accuracy.

• Average: A simple average over all available prompts.

• BPE: A state-of-the-art Bayesian method originally devel-

oped for text-only prompt ensembling [59].

We draw all prompts from a pool of 100 diverse and se-

mantically equivalent instructions, combining manual defi-

nitions, structured templates, and LLM-driven rephrasings.

See Appendix B for further prompt generation details.

Metrics. Following standard practice, we use the Expected
Calibration Error (ECE) and Maximum Calibration Error
(MCE) [23] to measure calibration. In short, these methods

summarize the discrepancy between model confidence and

actual correctness across bins in a reliability diagram. Dis-

criminative ability and alignment with human annotations

are measured using Cohen’s Kappa (Kappa) [13], ROC-
AUC [8], and AUC Precision-Recall (PR) [18], along with

traditional metrics such as Accuracy (Acc), F1-score, Brier

score [9] and test-set NLL [24]. To succinctly summarize

our methods’ discriminative power and calibration across

conditions, we present detailed results primarily for ECE,

MCE, and AUC-PR. Results for additional metrics are fully

reported for one representative setting (10 prompts, 20 val-

idation samples). For MJBench, we report average confi-

dence on our synthetic equal-preference task by method.

6. Results
For each nprompt×nsample prompt-ensemble configura-

tion, we perform a paired permutation test on the mean dif-

ference in performance between the best-performing model

and each other method. To control for Type-I error inflation

from multiple testing, we apply the Benjamini–Yekutieli

False Discovery Rate correction [5] on a per-metric ba-

sis. As shown in Tab. 1, MMB outperforms both single-

prompt approaches (STD. and BEST) and existing prompt

ensembling techniques (AVG. and BPE) in our multimodal

setup overall. Looking deeper into the specific 10 prompt

20 sample configuration, Tab. 2 shows additional evidence

that MMB consistently delivers improved calibration (e.g.,

ECE, Brier) and stronger discriminative metrics (e.g., AUC-

PR), across a variety of measures. Notably, MMB performs

well even when the number of prompts and validation sam-

ples is low, though performance generally improves as we

increase either of those information sources.
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Figure 3. Error–coverage curves on HPSv2 [65] with 10 prompts across varying numbers of validation samples (5, 10, 20, 50). Each curve

represents an average over multiple runs, with 95% confidence intervals (shaded regions) from bootstrapped sampling of the mean. Our

MMB approach consistently achieves the lowest error across coverage levels and displays the narrowest intervals, indicating more stable

and reliable performance. We show similar curves across additional experimental configurations in Appendix D Fig. 5.

K ECE↓ NLL↓ Brier↓ Kappa↑ Acc↑ ROC↑ F1↑

4 .090 .432 .140 .627 .819 .899 .777

8 .090 .430 .135 .627 .820 .899 .778

16 .091 .430 .135 .627 .820 .900 .779
32 .091 .430 .135 .627 .820 .900 .778

64 .091 .430 .135 .627 .820 .900 .778

Table 3. Effect of varying MMB cluster count K on HPSv2 [65]

using 10 prompts and 20 validation samples, showing NLL and

Brier score (lower is better ↓) alongside Kappa, Accuracy (Acc),

ROC-AUC (ROC), and F1 (higher is better ↑). Performance im-

proves slightly as K increases, then saturates at around 32 clusters.

K’s insignificantly different from the best by column at 95% con-

fidence from a permutation test are in bold. Type I error from mul-

tiple testing controlled with the Benjamini–Yekutieli [5] method.

Qualitative Observations. In order to understand bet-

ter why MMB is successfully, we visualize several clus-

ters alongside their highest weighted prompt when running

MMB in exceptionally favorable settings. That is to say,

with many clusters (64) and a large number of validation

samples (200). In this scenario, most clusters which are

meaningful tend towards the best prompt for that cluster

as entropy is essentially dropped over the increasing NLL

sum. Interestingly, we find that there is good correspon-

dence between the personas mentioned in the best perform-

ing prompts and the images they’re judging. For example

in Fig. 4, our pastel drawings of fields and plains are best

judged by the landscape artist persona, and the vibrant sci-fi

renderings of galaxy and space are best rated by the graphic

designer persona. See Appendix E for additional examples.

Comparison Across Clusters. Tab. 3 further examines the

effect of the number of clusters in MMB. Even a relatively

small number of clusters (e.g., 8 or 16) already confers most

of the performance advantage, beyond which performance

starts to saturate. Hence, MMB is robust to a range of clus-

ter granularities and does not require an excessively large

K to achieve benefits. These results also suggest that ex-

cessively values of k (>64) may degrade performance.

prompts samples STD.
(single)

BEST
(single)

AVG.
(ensemble)

BPE
(ensemble)

MMB
(ensemble)

5

5 .838 .830 .683 .738 .726
10 .838 .831 .683 .739 .727
20 .838 .831 .683 .742 .727
50 .838 .832 .683 .744 .728

10

5 .839 .831 .656 .713 .704
10 .839 .831 .656 .714 .705
20 .839 .831 .656 .715 .705
50 .839 .832 .656 .720 .705

20

5 .834 .831 .654 .711 .702
10 .834 .831 .654 .711 .703
20 .834 .832 .654 .712 .703
50 .834 .832 .654 .715 .703

Table 4. Average confidence (lower is better ↓) on our synthetic

MJBench no-preference test split. The best and second best mod-

els in each row are in bold and italics, respectively.

MJBench Results. Tab. 4 reports the average confidence of

each method on our synthetic MJBench-Bias no-preference

test split. The Average ensemble consistently produces the

lowest confidence scores, suggesting it is the most cautious

judge in scenarios where no preference should exist. How-

ever, this comes at the cost of lower overall performance in

discriminative tasks, as seen in our main results. In contrast,

MMB achieves the second-lowest confidence scores while

maintaining strong overall performance, making it the most

balanced method. This suggests that MMB is the most fair

method that remains performant enough for real-world use,

mitigating overconfidence in ambiguous cases without sac-

rificing accuracy in general evaluation tasks.

7. Discussion

One motivation for a well-calibrated MLLM-based judge is

to enable selective or cost-aware evaluation pipelines. For

instance, a system can elect to trust automatically produced

ratings only for samples on which it is sufficiently confident,

and refer low-confidence cases for human review. In Fig. 3,

we show coverage-error curves to illustrate how MMB be-

17230



(a) “You are a landscape artist skilled in assessing
lighting, color and composition [...]”

(b) “You are a graphic designer with experience in
visual clarity and technical image quality [...]”

(c) “You are a photographer skilled in assessing
lighting, focus, and exposure [...]”

Figure 4. Clusters from MMB’s grouping, each matched to its best-performing prompt by largest weight in wk. In (a), a prompt posing

the user as a “landscape artist” is weighted highest for images featuring fields and skies, while in (b), a “graphic designer” prompt better

suits the cosmic artwork. This demonstrates MMB’s prompt utilization aligning with each cluster’s style. See Appendix E for more.

haves in such a scenario. Here, coverage is the fraction of

examples whose confidence surpasses a chosen threshold.

Error is the misclassification rate among just those cov-

ered samples. Ideally, as coverage increases, accuracy re-

mains high. We see that MMB consistently yields the low-

est error across coverage levels and exhibits narrower confi-

dence intervals (shaded regions in the plot) than either sin-

gle prompts or prior ensemble methods. This consistency

implies that one can safely raise the confidence threshold

(thus covering more samples automatically) without a large

spike in error. Notably, error-coverage curves are created

independent of the confidence thresholds which would gen-

erate each point. A well-calibrated model allows a devel-

opers to effectively select confidence thresholds which map

to points on the error-coverage diagram due to alignment

between the y-axis error and confidence values. Together,

this means MMB produces desirable error-coverage curves,

and allows for trustworthy threshold selection to align with

developer needs. See Appendix D for additional plots.

Behavior Under Extreme Settings. We note special cases

reducing the behavior of MMB to a simpler alternative:

• No validation data (|Dval| = 0): MMB reduces to an av-

erage ensemble, without any ground-truth labels to distin-

guish prompt performance, the weights remain uniform.

• Excessive validation data (|Dval| → ∞): MMB con-

verges on the best single prompt for each cluster, provided

the validation set covers a wide variety of image content.

• Degenerate clustering (K = 1): MMB collapses to BPE.

As K grows large, each cluster becomes more specialized,

but may also have fewer supporting samples in the valida-

tion set, leading to potential overfitting or redundant clusters

whose weights remain near uniform. Empirically, we find

(K ≈ 16) obtains a good specialization-stability trade-off.

Extensions. MMB readily generalizes beyond TTI quality

evaluation. In VQA, it can prioritize prompts whose se-

mantics align with the scene’s content, style, or latent struc-

ture, leading to better-calibrated answer probabilities with-

out fine-tuning the base model. The same mechanism can

highlight domain-specific cues–such as distinguishing car-

toon from photographic violence–in content moderation to

reduce false positives while still leveraging closed-source

models. For ordinal outputs like Likert ratings, the MMB

scaffold remains unchanged; the task’s threshold function

can instead return an error interval rather than confidence.

Limitations. MMB inherits the typical limitations associ-

ated with clustering-based approaches. primarily introduc-

ing additional hyperparameters–most notably, the choice of

cluster count K. Although our experiments indicate that

the method is robust to a wide range of values for K, exces-

sively large or small values can still impact performance.

Additionally, MMB has greater computational complexity

than the original Bayesian Prompt Ensembles due to the em-

bedding of images into clusters and larger number of param-

eters. However, the computational cost is primarily incurred

during the embedding of images in Dsup rather than the op-

timization and inference of additional prompt parameters.

After extracting embeddings, we train and test MMB on a

consumer laptop and have found it only takes 1-2s to train

and test our method in a single experiment.

8. Conclusion
Assessing multimodal models is an important challenge in

LVLM research, especially for text-to-image generation,

where subjective factors complicate reliable scoring with

automated methods and manual evaluation is costly. Ex-

isting MLLM judge models provide a potential alterna-

tive but also struggle with inconsistencies, overconfidence,

and biases, limiting their usefulness as reliable automated

evaluators. This work introduced Multimodal Mixture-of-

Bayesian Prompt Ensembles, a novel approach to enhance

judge accuracy and calibration by conditioning prompt en-

semble weights on clustered image features. Our experi-

ments on HPSv2 and MJBench demonstrate that MMBPE

outperforms choosing a single-prompt as well as SOTA

ensemble-based methods, achieving stronger calibration

and better human alignment in TTI evaluation.
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