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Figure 1. We present EYE3, a framework that converts text, 2D images, and videos into high-quality light field display content with
strong 3D consistency. This innovation delivers rich, realistic naked-eye 3D effects, addressing a major barrier to the widespread use of
light field displays: the scarcity of 3D display content. The figure demonstrates the achieved effects: the left shows the original image and
the autostereoscopic 3D content generated by EYE3, while the right illustrates the actual effect on a light field display. Due to screen
calibration limitations and capturing equipment, slight color shifts and moiré patterns may be observed.

Abstract

Light Field Displays (LFDs), despite significant ad-
vances in hardware technology supporting larger fields of
view and multiple viewpoints, still face a critical challenge
of limited content availability. Producing autostereoscopic
3D content on these displays requires refracting multi-
perspective images into different spatial angles, with strict
demands for spatial consistency across views, which is tech-
nically challenging for non-experts. Existing image/video
generation models and radiance field-based methods can-
not directly generate display content that meets the strict
requirements of light field display hardware from a single
2D resource. We introduces the first generative framework
EYE3 specifically designed for 3D light field displays, ca-
pable of converting any 2D images, videos, or texts into
high-quality display content tailored for these screens. The
framework employs a point-based representation rendered
through off-axis perspective, ensuring precise light refrac-
tion and alignment with the hardware’s optical require-
ments. To maintain consistent 3D coherence across multiple
viewpoints, we finetune a video diffusion model to fill oc-

cluded regions based on the rendered masks. Experimental
results demonstrate that our approach outperforms state-of-
the-art methods, significantly simplifying content creation
for LFDs. With broad potential in industries such as enter-
tainment, advertising, and immersive display technologies,
our method offers a robust solution to content scarcity and
greatly enhances the visual experience on LFDs.

1. Introduction
Light Field Displays (LFDs) have experienced rapid ad-
vancements, offering a unique viewing experience distinct
from that of Virtual Reality (VR) head-mounted devices[4,
5, 17, 20]. By utilizing a combination of LCD screens
and cylindrical lens gratings, LFDs create a glasses-free
3D experience, directing different views to each eye and
thereby producing a natural perception of depth [23, 26, 30].
The demand for 3D light field display (LFD) content is
high, yet converting 2D media into compelling 3D rep-
resentations presents significant challenges. Key to suc-
cessful autostereoscopic 3D content creation are accurate
depth representation and spatial consistency across multiple
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viewpoints. Despite LFDs’ potential in sectors like enter-
tainment, advertising, and immersive technology, the lack
of high-quality autostereoscopic 3D content hampers their
widespread adoption. This paper explores methods for gen-
erating high-quality autostereoscopic 3D content for LFDs
from readily available 2D images, videos, or texts.

Previous research in video and image generation [21, 35]
has made progress in synthetic content production. How-
ever, the unique requirements for generating content suit-
able for LFDs pose additional challenges. Each frame must
be captured or rendered with precise camera poses to align
with the grating parameters of the display [8, 19], necessi-
tating a high degree of spatial consistency. Directly apply-
ing existing video and image generation techniques often
results in artifacts and inconsistencies when viewed from
varying angles, as these methods do not adequately consider
the specific optical properties of LFDs. This realization un-
derscores the need for a more tailored approach, which mo-
tivates our development of a generative framework designed
specifically for LFDs.

In this paper, we introduce EYE3, the first generative
framework explicitly crafted for 3D LFDs. Our method
employs a point-based representation rendered through off-
axis perspective techniques, ensuring precise light refrac-
tion and alignment with the optical requirements of the
hardware. We fine-tune a video diffusion model to fill in oc-
cluded regions based on the rendered mask, thereby main-
taining consistent 3D coherence across multiple viewpoints.
This approach effectively overcomes the limitations of ex-
isting methods, which struggle to meet the stringent require-
ments of LFD hardware when starting from a single 2D re-
source.

We evaluated our method through experiments compar-
ing EYE3 with state-of-the-art view synthesis techniques,
using both quantitative metrics and user studies. The exper-
iments involved synthesizing autostereoscopic 3D content
from 2D images, videos, and texts, and assessing viewpoint
control accuracy and completion quality against baseline
methods. The results show that our approach outperforms
existing methods, simplifying content creation for LFDs. In
summary, our contributions are threefold:
1. We introduce EYE3, the first generative framework

meticulously designed to meet the specific demands of
3D Light Field Displays (LFDs). This approach aims to
contribute positively to the field of LFD content genera-
tion.

2. Our method combines a point-based representation with
off-axis perspective rendering, enabling precise control
over camera poses. Leveraging large video diffusion
models, it enhances spatial and temporal consistency in
multi-view synthesis, setting a new benchmark for con-
verting 2D media into immersive 3D experiences tai-
lored for LFDs.

3. Through extensive experiments and user studies, we val-
idate the effectiveness of EYE3, demonstrating its su-
perior performance and offering a promising solution to
the challenges of LFD content creation.

2. Related Work
In this section, we first introduce the imaging principles
of LFDs and highlight the challenge of content scarcity.
We then review previous research aimed at enhancing LFD
content, focusing on the conversion of 2D images into au-
tostereoscopic 3D content as a solution to this issue. Next,
we discuss advancements in novel view synthesis (NVS)
with video diffusion models [29]. Finally, we explore the
potential of using video diffusion models to generate au-
tostereoscopic 3D content for LFDs.

2.1. 3D Light Field Displays
Since the emergence of LFDs, hardware advancements have
significantly expanded their field of view and the number of
viewpoints [38]. However, the issue of insufficient display
content persists. LFDs work by refracting multi-perspective
images, captured through cylindrical gratings, across vari-
ous spatial angles, creating binocular parallax and a 3D ef-
fect. This process requires high spatial consistency among
the multi-perspective images. Early efforts to supply con-
tent for LFDs focused on efficiently rendering mesh mod-
els, with techniques like Efficient Rendering [6] enabling
real-time light field image processing on mid-range graph-
ics cards. More recent advancements in 3D reconstruction,
such as DirectL [34], have aimed to directly render NERF
[18] and 3DGaussian [14] onto LFDs, increasing content di-
versity. Nevertheless, most digital assets remain in 2D for-
mats. Our approach addresses this limitation by converting
any 2D image, video, or text into high-quality LFD content,
thereby alleviating the content scarcity issue.

2.2. Novel View Synthesis
With the development of diffusion models [11, 21, 25],
these models have demonstrated remarkable ability in syn-
thesizing high-quality images and generating new perspec-
tives from a single image. Zero-1-to-3 [16] trains diffusion
models on synthetic datasets with specific camera poses,
enabling the synthesis of novel perspective images from a
single view. However, this approach is limited to simple
single-object images. ZeroNVS [22] builds upon this by
incorporating real datasets, improving the model’s general-
ization and performance in more diverse scenarios. Yet, it
still encodes camera poses as text, limiting precise control
over camera movement and leading to suboptimal consis-
tency between synthesized images.

The integration of 3D modules into video diffusion mod-
els has improved view consistency but still lacks fine con-
trol over camera motion. MotionCtrl [28] attempts to con-
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Figure 2. Overview of EYE3. For any image, text-generated image, or video sequence frame, we perform depth estimation and use inverse
perspective projection to restore the point cloud representation of the image. We then perform off-axis rendering for the view angles of
LFDs to obtain multi-view images and their corresponding masks, and finally interlace according to the hardware parameters of LFDs to
get autostereoscopic 3D content that can be displayed on LFDs.

trol camera movement through extrinsic parameters, but its
reliance on 1D values does not allow for precise pose con-
trol. Methods like CamCo [31] and CameraCtrl [10], which
incorporate Plücker coordinates [13], offer better control
over camera movement but still struggle to handle extreme
cases, such as narrow field-of-view angles or densely ar-
ranged cameras typical in LFDs. These approaches provide
only basic control over the camera’s position and orienta-
tion and cannot adjust internal parameters to achieve com-
plex perspective effects, thus falling short of LFD-specific
requirements for autostereoscopic 3D content [8, 19].

Inspired by 3D-Photo-Inpainting [24], which uses a
mesh-based 3D representation to ensure multi-view consis-
tency, we propose a point cloud-based 3D representation
that allows for precise camera control, enhances perspective
consistency, and satisfies the unique perspectival require-
ments of multi-view images on LFDs.

3. Method

3D-Photo-Inpainting [24] uses meshes as explicit 3D rep-
resentations, but converting images into meshes often leads
to adhesion between regions of different depths due to the
continuous nature of mesh surfaces. While edge detection
can help separate these regions, achieving complete and
reliable separation remains challenging. In contrast, our
method uses point clouds, whose inherent discreteness pre-
vents such adhesion. This structure allows for more accu-
rate and flexible rendering of masks for missing informa-
tion, providing clearer guidance for inpainting and ensuring
better consistency in the generated content. Furthermore,
current commercial LFDS typically have a viewing field of
less than 90 degrees, meaning they do not require the re-
construction of information from the rear or extreme an-
gles. This limitation simplifies the inpainting task, as our
approach focuses only on completing the visible portions of

the scene, improving both efficiency and quality. By lever-
aging point clouds, we can effectively manage depth vari-
ations, ensuring high-quality, precise autostereoscopic 3D
content tailored to these displays.

EYE3 consists of three main steps (see Fig. 2): (1) First,
monocular depth estimation and inverse perspective projec-
tion are used to convert the image into a point cloud for
3D representation (see Sec. 3.1). (2) Next, off-axis per-
spective rendering is applied to generate multi-view images
and corresponding masks within a specified angular range
(see Sec. 3.2). (3) Finally, a fine-tuned video model is em-
ployed to fill in gaps in the rendered multi-view images and
masks (see Sec. 3.3). The completed multi-view images are
then interlaced to produce the 3D display content required
for LFDs, with the interlacing process following the method
outlined in DirectL [34].

3.1. Image expansion and conversion to point cloud
For images, depth estimation is performed using Depth
Anything V2 [33], and for videos, DepthCrafter [12] is
used. During the conversion to point clouds, we assume
the camera’s principal point is at the image center. The ex-
act focal length is not required; consistency with the focal
length employed in Sec. 3.2 is sufficient. The spatial coor-
dinates of each pixel are calculated using Eq. (1), (2), (3).

pointz =
z × Zmax

max(Zall)
+ Znear, (1)

pointx =
(W − 2× u)× pointz

2× fx
, (2)

pointy =
(H − 2× v)× pointz

2× fy
, (3)

pointx, pointy , and pointz respectively represent the x,
y, and z coordinates of a point in space. The variable z rep-
resents the depth of the current point as obtained through
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Figure 3. In off-axis perspective, cameras with the same focal
length are positioned on the same horizontal plane, and each cam-
era has a different optical center, allowing all cameras to simul-
taneously capture the same area of a specific horizontal plane in
space. When displayed on a LFDs, areas of this plane that are far-
ther from the cameras appear behind the screen space, while areas
closer to the cameras are projected in front of the screen space.

depth estimation. Zall denotes the collection of all points’
depth values, and Znear represents the depth of the cam-
era’s near plane. W and H respectively denote the width
and height of the original image, while u and v represent
the coordinates of the current point within the image. fx
and fy represent the camera’s focal lengths on the x and y
axes, expressed in pixels. Zmax represents the maximum
depth after normalizing the point cloud, which is related to
the depth of entry and exit shown on the LFDs; the larger
the value, the greater the depth of entry and exit, and vice
versa [7]. The empirical formula we have derived from our
experiments is: 6.2 × the metric depth of field can achieve
relatively satisfactory performance on the screens used in
the experiments.

By converting images into colored point clouds, we can
obtain a preliminary explicit representation of the three-
dimensional scene. Although relying on point clouds to
capture multi-view images may face challenges such as
voids and artifacts, this method can present complex per-
spective effects, fulfilling the special requirements of LFDs
for off-axis perspective multi-view images. Moreover, be-
cause it provides highly consistent 3D information, it funda-
mentally ensures the 3D consistency of multi-view images.

3.2. Off-axis rendering based on point clouds
Due to the design of LFDs and the physiological structure
of the human eye, the multi-view images required for au-
tostereoscopic 3D content need to adopt an off-axis per-
spective. However, since the training data for video dif-
fusion models rarely include off-axis perspective data, it
is almost impossible to directly generate the required off-

axis perspective content using large video diffusion models.
Moreover, controlling the generation of dense viewpoints is
also challenging. To address these, we use point clouds as
the display representation and employ video models to fill
in gaps after rendering the point clouds. During the render-
ing process, the cameras are positioned along the same line,
and by adjusting the principal point parameters along the x-
axis, all camera optical axes intersect at the same point as
shown in Fig. 3. The camera’s displacement at specified
angles and the transformation of the x-direction principal
points can be calculated using Eq. (4), (5).

Cx = (1 +
tan(θ)

tan(FOVx

2 )
)× W

2
, (4)

T = T +

d× tan(θ)
0
0

 , (5)

In this context, CX represents the camera’s principal
point along the x-axis, expressed in pixels. θ represents the
camera’s rotation angle around the y-axis. W indicates the
width of the imaging frame, d denotes the distance from the
camera line to the center of the point cloud, T represents the
camera’s extrinsic matrix, and FOVx denotes the camera’s
horizontal field of view. The relationship between FOVx

and fx as mentioned in Sec. 3.1 is given by Eq. (6).

FOVx = 2× arctan(
W

2× fx
). (6)

3.3. Video inpainting based on large video models
Through the point cloud construction and rendering de-
scribed in Sec. 3.1 and Sec. 3.2, we obtained off-axis
perspective renderings of the point cloud and their corre-
sponding masks. These renderings accurately represent the
perspectival relationships between views with high 3D con-
sistency. However, there are still issues with missing in-
formation in occluded regions. To improve the quality of
multi-view images, our objective is to learn the conditional
probability distribution x ∼ p(x|R,M) and generate high-
quality multi-view images x = {x0, . . . , xn} based on the
point cloud renderings R and their corresponding mask im-
ages M . Inspired by the exceptional quality and consis-
tency of video diffusion models, we train a video diffu-
sion model conditioned on the point cloud renderings and
masks to approximate this distribution. The synthesis of
new views can be interpreted as the inverse process, repre-
sented as x ∼ pθ(x|R,M), where θ represents the model
parameters.

The point cloud image completion model based on video
diffusion, as illustrated in Fig.2, builds upon the LDM ar-
chitecture [21]. It incorporates a VAE encoder ϵ and de-
coder D for image compression, a denoising U-net net-
work equipped with spatial and temporal layers, and an IP-
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Figure 4. Three video clips from different sources are shown(from left to right is in the order of painting, AI, and photography.), with the
first row being the first frame of the original video and the rows below representing three different moments. The left and right images are
the new perspectives generated by our method for the three video clips, along with the corresponding masks produced by the point cloud
rendering.

Adapter [36] for understanding reference images. After the
rendered point cloud images are encoded by the VAE en-
coder ϵ, the encoded features are concatenated along the
channel dimension with noise and the corresponding mask,
and then passed into the denoising U-net network.

We fine-tune the open-source video model AnimateD-
iff V3 [9] by adding a mask dimension to the input of the
denoising U-net network, enabling mask-guided control for
completion. However, due to the scarcity and difficulty of
creating point cloud-to-video datasets, alternative methods
are required to generate datasets with similar data distribu-
tions for training.

We observed that missing regions in the multi-view im-
ages rendered from point clouds typically occur along the
edges of the image content. To simulate this phenomenon,
we first perform edge detection on videos and then apply
dilation to the detected edges, thereby approximating the
missing content distribution in multi-view images rendered
from point clouds. These two distributions exhibit a high
degree of similarity.

Using an 8-card A800 GPU setup, we fine-tuned the
model on a dataset constructed with RealEstate10K [39].

Notably, compared to video inpainting models without
mask guidance, such as Viewcrafter [37], our approach
avoids the undesired redrawing of darker, non-missing re-
gions, which often leads to low-quality results deviating
from the original image.

In the process of converting videos to autostereoscopic
3D content, we handle each frame individually. Although
there is no dedicated module to ensure the continuity of
the inpainted content between frames, the explicit 3D repre-
sentation conversion and rendering methods based on point
clouds, as described in Section 3.1 and Section 3.2, en-
sure consistency across most areas. Furthermore, by in-
troducing mask control during the completion process and
considering the characteristics of the areas that need to be
completed, we can still achieve stable and flicker-free au-
tostereoscopic 3D content, as shown in Fig. 4.

4. Experiments
4.1. Experimental Setup and Implementation
We compared multiple state-of-the-art NVS methods with
our approach. For SV3D [27], we utilized the sv3d p
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 Original SV3D CameraCtrl ViewCrafter
(original)

ViewCrafter
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Figure 5. Qualitative Comparison of Multi-view Image Generation. The leftmost column shows the original reference images, while
the two rows on the right sequentially display the leftmost and rightmost viewpoints of the generated multi-view images. From top to
bottom, the four images represent different sources: AI-generated text-to-image, real-world photography, hand-drawn illustrations, and 3D
modeling/rendering in games. To facilitate the observation of differences, we have marked and magnified certain details in the figures.
Since the results of 3D-Photo-Inpainting have inconsistencies compared to other methods, the marked positions are also different.

weights for custom camera trajectory inference. For Cam-
eraCtrl [10], we employed the pretrained model on SVD
[2]. For Viewcrafter [37] (original), we used the highest-
quality weights at a resolution of 576x1024. Since these
three methods do not support off-axis rendering, we em-
ployed a circular camera trajectory to uniformly capture 40
viewpoints within a range of -20° to 20°. We modified the
official code of Viewcrafter [37] (off-axis & fine-tuned) and
3D-Photo-Inpainting [24] to implement off-axis perspec-
tive. In this process, 3D-Photo-Inpainting adopted Depth
Anything V2 [33] for depth estimation to achieve more ac-
curate depth results, and Viewcrafter(off-axis & fine-tuned)
is fine-tuned on our dataset. Both Viewcrafter (off-axis &
fine-tuned), 3D-Photo-Inpainting, along with our method
captured 40 viewpoints within the same range of -20° to
20° using off-axis rendering.

Due to the challenges of collecting real-world off-axis
perspective data, we constructed an evaluation dataset com-

prising 10 indoor and 10 outdoor scenes. Using Blender,
we rendered these scenes into multi-view images to evaluate
different methods using PSNR and SSIM metrics. However,
on LFDs, achieving high 3D consistency across multi-view
images is crucial, as any inconsistency significantly de-
grades the viewing experience. Consequently, while PSNR
and SSIM provide some indication of the quality of the gen-
erated autostereoscopic 3D content, they cannot fully reflect
the performance of the content on LFDs. Evaluating visual
quality from a user perspective better aligns with the core
principle of 3D display: if it looks correct, then it is correct.

To this end, we conducted a user study involving 30 un-
biased participants. Although subjective to some extent,
this approach more accurately reflects the actual display
performance on LFDs. Participants evaluated each 3D im-
age based on three criteria: (1) 3D Effect (the perception
of objects moving in and out of the screen), (2) Comfort
(the presence or severity of symptoms such as dizziness,
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Table 1. PSNR and SSIM on Blender-Rendered Dataset, and Warp-e Metric for autostereoscopic 3D content Conversion from AI-
Generated, Hand-Drawn, Photographic, and Game-Rendered Images.

Indoor Outdoor warp-e
PSNR SSIM PSNR SSIM real text draw game(3D render)

3D-Photo-Inpainting 15.3975 0.4102 12.6267 0.2581 2.38 2.25 2.57 1.62
SV3D 16.2388 0.5172 13.7280 0.3097 31.48 33.00 40.06 31.49

CameraCtrl 17.4618 0.5177 15.7407 0.4492 34.29 36.88 56.12 29.31
ViewCrafter (original) 19.5513 0.6188 15.8142 0.3969 76.14 22.59 30.69 31.57

ViewCrafter(off-axis & fine-tuned) 19.8743 0.6224 17.1147 0.4461 66.15 20.41 25.30 30.31
OURS 22.3988 0.7335 20.3076 0.5407 11.38 11.3 12.77 11.74

visual fatigue, or nausea), and (3) Image Quality (the sim-
ilarity between the naked-eye 3D image on LFDs and the
original 2D image, including consistency in key details and
subjects). Each criterion was rated on a scale of 0 to 10.
The final user-perceived quality score was calculated using
a weighted formula based on these criteria (0.4, 0.3, 0.3).

Additionally, to quantify the consistency between multi-
view images, we employed the warp error (warp-e) metric
[15] using optical flow calculations.

4.2. Baseline Comparisons

Qualitative Analysis
The results are depicted in the Fig. 5, with the reference

original image on the far left. 3D-Photo-Inpainting [24]
uses meshes as explicit representations, but as mentioned
in Sec.3,there are difficult-to-resolve mesh adhesion prob-
lems. Also, the completion effects on geometry and texture
of mesh missing regions are low quality. SV3D [27], due to
its training on the Objaverse dataset which primarily con-
sists of data captured by circling around a single object, has
limited capability for novel view generation in non-single
object scenes and with small viewing angles. It is unable to
maintain scene consistency and has incorrect camera poses.
CameraCtrl [10], due to its control of the camera using only
Plücker coordinates, simply maintains the relative poses be-
tween cameras and cannot ensure the absolute pose of the
camera in the scene. In actual generation, the camera may
appear reversed left-to-right, and the rotation angles may
not reach the set angles, leading to imprecise camera control
issues. ViewCrafter [37], whether using off-axis perspective
and fine-tuned or not, due to the lack of mask control dur-
ing image inpainting, it redraws the entire image, leading to
spatial inconsistency in areas that already possess high spa-
tial consistency, especially in darker regions, resulting in
issues such as object movement and distortion. In contrast,
our method can accurately control camera poses and imple-
ment complex perspective relationships while maintaining
high spatial consistency in the completed image, avoiding
issues like motion.

Quantitative Analysis
Firstly, we evaluate the accuracy of viewpoint control and

the effectiveness of completion by calculating the PSNR
and SSIM between the rendered results of the 3D mesh
model and our outputs. Higher PSNR and SSIM values in-
dicate that the viewpoints are closer to the camera views
used for rendering in Blender and that the inpainted infor-
mation aligns better with the rendered results. From Table
1, it is evident that our method significantly outperforms
other approaches in both indoor and outdoor scenes.

For images obtained from photographs, hand-drawn
sketches, or AI-generated graphics, where clear ground
truth is unavailable, we use an optical flow-based warp er-
ror (warp-e) to evaluate the consistency between multiple
views and measure the conversion quality. As shown in Ta-
ble 1, our method is still better than most other methods
except 3D-Photo-Inpainting. 3D-Photo-Inpainting [24] has
high 3D consistency as it completes geometry and texture
on the mesh and then renders it from different views. But
3D consistency is not the only factor of LDFs’ display ef-
fectiveness. In our user study, Table 2, multi-view consis-
tency and viewing comfort are directly related. But depth
restoration and missing content filling are also key to LDFs’
display.

Based on user feedback, in 3D-Photo-Inpainting, the
multi-plane approach results in a weak 3D effect, also, low-
quality mesh adhesion and filling make users feel the image
quality is poor. SV3D [27] suffers from inaccurate cam-
era pose control and poor 3D consistency, leading to weak
3D effects and discomfort during viewing. CameraCtrl [10]
maintains relatively high 3D consistency but fails to achieve
precise camera pose control, such as aligning to specific an-
gles or following a designated sequence, which weakens the
overall 3D effect. Viewcrafter [37], while capable of ac-
curately controlling both off-axis and on-axis perspective
camera poses, lacks explicit control over regional comple-
tion. Its reliance on global redrawing results in poor 3D
consistency in the inpainted images, causing discomfort for
viewers. In contrast, our method excels in both camera pose
control and 3D consistency, achieving significantly higher
user study scores than other methods.
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Table 2. User Study Average Score, with the total score for each item indicated in parentheses.

3D Effect Comfort Image Quality Weighted Score
3D-Photo-Inpainting 4.767(143) 7.367(221) 2.833(85) 4.967

SV3D 3.533(106) 2.900(87) 1.833(55) 2.833
CameraCtrl 4.733(142) 5.667(170) 6.067(182) 5.413

ViewCrafter (original) 5.233(157) 5.167(155) 4.400(132) 4.963
ViewCrafter (off-axis & fine-tuned) 5.567(167) 5.667(170) 4.833(145) 5.377

OURS 6.833(205) 8.000(240) 8.167(245) 7.583

4.3. Ablation Studies
Exploring the Impact of Multi-View Image Inpaiting on
Autostereoscopic 3D Content Quality. Our pipeline em-
ploys a fine-tuned video diffusion model to perform multi-
view image completion. To evaluate the improvement in
point cloud rendering image completion brought by mask-
guided fine-tuning of the video diffusion model, we calcu-
lated PSNR and SSIM for indoor and outdoor scenes under
three conditions: no inpainting, inpainting using a model
without mask guidance, and inpainting using a fine-tuned
model with mask guidance. The results are shown in Table
3.

The analysis reveals that models without mask guidance
struggle to accurately preserve content outside the masked
regions during inpainting. While the point cloud gaps are
filled, the PSNR and SSIM metrics are even lower than
those of the no inpainting condition. In contrast, the fine-
tuned model with mask guidance not only effectively re-
tains content outside the masked regions but also performs
reasonable inpainting within the masked areas, achieving
significantly higher scores.

Exploring the Impact of Depth Estimation Methods
on Autostereoscopic 3D Content Quality. In our ap-
proach, any monocular depth estimation model can be used
to estimate the depth of input images. We replaced the orig-
inal monocular depth estimation module with three alter-
natives: DepthAnything [32], MiDaS V3.1 [1], and Depth
Pro [3], and calculated the PSNR and SSIM for indoor and
outdoor scenes. The results are presented in Table 4.

In indoor scenes, where depth variations are relatively
small, all methods achieve comparable accuracy in depth
estimation, resulting in similar scores. However, in out-
door environments characterized by large depth variations
and open spaces, more precise depth estimation signifi-
cantly improves the results, enhancing the quality of con-
verting single images into autostereoscopic 3D content on
the LFDs.

5. Conclusion
We propose a novel method that converts a single image
into a 3D representation for display using monocular depth

Table 3. Using PSNR and SSIM to Evaluate the Impact of Multi-
View Image Inpainting on Autostereoscopic 3D Content Quality
in Our Blender-Rendered Dataset

Indoor Outdoor
PSNR SSIM PSNR SSIM

base(no inpainting) 22.1539 0.6979 18.7026 0.4892
base + no mask guid inpainting 20.7986 0.6842 17.8287 0.4305

base + finetuned mask guid inpainting(OURS) 22.3988 0.7335 20.3076 0.5407

Table 4. Using PSNR and SSIM to Evaluate the Impact of Depth
Estimation Methods on Autostereoscopic 3D Content Quality in
Our Blender-Rendered Dataset

Indoor Outdoor
PSNR SSIM PSNR SSIM

base + MiDaS V3.1 22.2424 0.7013 18.7840 0.4887
base + Depth Pro 22.2008 0.7162 18.5279 0.5034

base + DepthAnything 22.3497 0.6797 19.2035 0.5371
base + DepthAnythingV2(OURS) 22.3988 0.7335 20.3076 0.5407

estimation. This approach enables precise control of cam-
era poses and achieves complex perspective effects. Ad-
ditionally, we leverage a fine-tuned video model to fill in
missing regions of the image, generating dense multi-view
images for synthesizing encoded patterns to be displayed on
the LFDs. Our method addresses the limitations of existing
approaches and provides a feasible solution to the scarcity
of 3D resources for LFDs, contributing to its development
and broader adoption.

5.1. Limitations and Future works

While our method ensures accurate 3D consistency and
achieves complex perspective relationships through point
cloud-based representation, meeting the content require-
ments of LFDs, it still has certain limitations. Its effective-
ness is highly dependent on the accuracy of depth estima-
tion, and in cases of inaccurate depth estimation, the results
may fall short of expectations. Additionally, the use of a
video model to inpaint multi-view images rendered from
point clouds requires multiple iterations of denoising, which
demands significant computational resources and results in
longer inference times.
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