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Abstract

Knowledge distillation (KD) enables a smaller “student”
model to mimic a larger “teacher” model by transferring
knowledge from the teacher’s output or features. However,
most KD methods treat all samples uniformly, overlook-
ing the varying learning value of each sample and thereby
limiting effectiveness. In this paper, we propose Entropy-
based Adaptive Knowledge Distillation (EA-KD), a sim-
ple yet effective plug-and-play KD method that prioritizes
learning from valuable samples. EA-KD quantifies each
sample’s learning value by strategically combining the en-
tropy of the teacher and student output, then dynamically
reweights the distillation loss to place greater emphasis
on high-entropy samples. Extensive experiments across di-
verse KD frameworks and tasks–including image classifi-
cation, object detection, and large language model (LLM)
distillation–demonstrate that EA-KD consistently enhances
performance, achieving state-of-the-art results with negligi-
ble computational cost. Our code is available at https:
//github.com/cpsu00/EA-KD.

1. Introduction
The growing size of state-of-the-art (SOTA) deep learn-

ing models poses challenges for deployment in resource-
constrained settings. Knowledge Distillation (KD) [11] of-
fers a solution by training a smaller “student” model to
mimic a larger “teacher” model, using both ground-truth
and the teacher’s “knowledge” (e.g. logits or feature rep-
resentations) to achieve similar performance in a compact
form. KD has been widely applied across domains, includ-
ing computer vision (CV) [1, 31, 40], large language models
(LLMs) [9, 13, 15, 35], and medical imaging [8, 21–23].

Advanced KD methods have explored diverse knowl-
edge forms and structural modifications to refine knowledge
transfer [2, 11, 14, 26, 30, 33, 47]. However, most methods
distill uniformly across all samples, operating under the as-
sumption that each sample has equal importance and over-
looking their varying learning value. Recent advancements,
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Figure 1. Training Time per Batch (ms) vs. Accuracy (%) of
EA-Methods and Baselines on CIFAR-100.

such as Instance-T [20], have shown that assigning unique
temperatures to each sample outperforms the uniform tem-
perature method Global-T. This highlighted the benefits of
adapting to each sample’s distinct characteristics. Build-
ing on this, we hypothesize that emphasizing samples rich
in valuable knowledge1 can further optimize the distilla-
tion process. This mirrors how human students learn better
when key points are highlighted by teachers. Such a strat-
egy enables the student model to focus on more informa-
tive samples, leading to improved performance. However,
as we will show, the uniform distillation scheme in most
KD methods often overlooks these critical samples, thereby
limiting the efficiency of knowledge transfer.

The question then arises: How can we identify the most
valuable samples for learning? Entropy, the core concept
in information theory that quantifies the uncertainty or in-
formation of a random variable [36], may be well-suited
for this role. Prior methods have incorporated entropy in
KD to adjust weighting [17] or refine logit predictions [49];
however, these approaches are typically restricted to spe-
cific scenarios (e.g., multi-teacher or logit-based KD) and
primarily rely on teacher entropy, leaving the broader poten-
tial of entropy in KD underexplored. Therefore, we propose
leveraging entropy to quantify the learning value of each

1Throughout this paper, we consider samples with high entropy as con-
taining valuable knowledge.
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(a) Accuracy vs. Entropy Segments. (b) t-SNE of Teacher.

Figure 2. High-Entropy Samples in KD. (a) Higher teacher en-
tropy correlates with larger accuracy gaps in KD, while EA-KD
maintains closer alignment. (b) The top 10% high entropy samples
(denoted by triangles) cluster near decision boundaries, represent-
ing critical knowledge essential for classification.

Table 1. Entropy-based Reweighting on KD. Reweighting with
entropy (HT and HS ) improves student’s performance, while in-
verted reweighting (Hub − w) reduces accuracy.

Reweighting Factor w

Loss Function HT HS

LKD [11] 73.33
wLKD 75.14 +1.81 74.76 +1.43
(Hub − w)LKD 72.73 -0.60 68.90 -4.43

sample in KD, as high-entropy outputs shall correspond to
greater information contents that are crucial for learning.
Our preliminary analysis reveals that higher entropy sam-
ples2 (i) correlate with larger teacher-student accuracy gaps
(Fig. 2a) and (ii) often lie near class boundaries in t-SNE
visualizations [41] (Fig. 2b), suggesting these informative
samples not only offer valuable learning opportunities but
are also pivotal in defining decision boundaries. Thus, en-
tropy can serve as a reliable metric for identifying the most
valuable samples in KD.

Leveraging this insight, adapting the focus of KD to
valuable samples should fill the need for enhanced distil-
lation. To validate this, we conducted a preliminary exper-
iment that compared the performance of reweighting with
teacher (HT ) and student (HS ) entropy, along with their
linear-inverted variants (Hub−w), where high-entropy sam-
ples received lower weight. Here, Hub denotes the upper
bound of entropy (i.e., log 100 for CIFAR-100). As shown
in Tab. 1, reweighting with either HT or HS significantly
improved KD accuracy, while inverted reweighting led to
decreased performance. This supports our hypothesis that
focusing on samples with valuable knowledge enhances stu-
dent learning, with HT proving more effective due to the
teacher’s more reliable assessment of sample value.

Exploring deeper, we observed that HS exhibited in-
creasing variability across training epochs for the top 10%

2Results for high teacher entropy samples are shown here; high student
entropy plots are in the Appendix B.1.

Figure 3. Box Plot of HS vs. HT for Top 10% High HT Sam-
ples. HS shows notable variation, reflecting the student’s learning
dynamics and differing perspective from the teacher. EA-KD en-
hances mimicry with more stable and aligned entropy.

HT samples (Fig. 3). This suggests that while the teacher
finds these samples valuable, potentially due to the inher-
ent differences in architecture or capacity, the student’s as-
sessment fluctuates during training. Some samples remain
consistently challenging (high HS ), while others become
progressively simpler (low HS ) over time. This misalign-
ment reveals the limitation of reweighting solely with HT ,
as it remains constant throughout the epochs and thus fails
to capture the student’s evolving learning process.

In light of the above analysis, we introduce Entropy-
based Adaptive Knowledge Distillation (EA-KD), a simple
yet effective plug-and-play KD method that enhances dis-
tillation by reweighting the loss toward high-value samples.
Leveraging both teacher and student entropies, EA-KD em-
phasizes samples that encapsulate critical knowledge as
identified by the teacher, while dynamically adapting to the
student’s evolving needs. This method directly addresses a
fundamental limitation in standard KD frameworks, which
often overlook the unique learning value of each sample and
tend to bias towards simpler knowledge. Furthermore, EA-
KD can be seamlessly integrated into most KD frameworks,
enhancing their performance with negligible computational
cost (Fig. 1). Extensive experiments on image classifica-
tion, object detection, and LLM distillation demonstrate its
efficacy and versatility across diverse KD frameworks. Our
main contributions are summarized as follows:
• We reveal that high-entropy samples carry critical knowl-

edge in KD and propose an entropy-based reweighting
factor that integrates both teacher and student entropy to
provide a dynamic and tailored learning focus.

• We introduce EA-KD, a plug-and-play KD method that
adaptively reweights the distillation loss to prioritize
valuable samples, enabling more effective and efficient
knowledge transfer.

• We demonstrate that EA-KD consistently improves per-
formance across logit- and feature-based KD methods,
achieving SOTA results on both CV and LLM tasks with
minimal computational overhead.
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2. Related Work
Logit and Feature Distillation. Logit distillation [11, 14,
47] aligns the softened output logits of the teacher and
student, valued for its simplicity and broad applicability.
On the other hand, feature distillation minimizes diver-
gence in intermediate feature representations, offering en-
hanced learning but often with higher computational costs
[2, 26, 33]. Both pathways have achieved SOTA perfor-
mance across tasks and domains. However, most of them
typically adopt a static distillation scheme, such as treating
all samples uniformly. Adaptive distillation addresses this
limitation by introducing more dynamic knowledge transfer
processes [17, 20, 28, 38, 46, 48, 49]
Adaptive Distillation. These methods improve knowl-
edge transfer by dynamically adjusting knowledge at differ-
ent levels. For sample-level, RW-KD [28] employs meta-
learning to optimize weights for each sample, which intro-
duces high computational overhead. PAD [46] showed that
traditional hard-mining weighting is unsuitable for KD and
instead prioritizes samples with low uncertainty and small
teacher-student gaps. This shares similarities with EA-KD,
as we will show that high-entropy samples often exhibit
lower KLD. However, PAD relies on an auxiliary estimation
branch, whereas EA-KD offers a more interpretable and
efficient approach by directly utilizing entropy. For logit-
level, CTKD [20] and LS [38] dynamically adjust the tem-
perature parameter T to refine knowledge transfer, but re-
main limited to logit-based KD. Instead, EA-KD’s sample-
wise reweighting ensures broader compatibility across KD
frameworks. Importantly, EA-KD and these methods serve
distinct yet complementary roles, combining them could
further improve performance, as we will show.
Entropy in KD. Cheng et al. introduced an entropy-based
metric to quantify knowledge retention in KD [3]. In-
spired by this, we utilize entropy to identify valuable sam-
ples in KD. AKD [17] assign higher weights to low-entropy
teacher predictions in multi-teacher settings. However, such
weighting can degrade performance in the more common
single-teacher settings (Tab. 1). DynamicKD [49] refines
logit-level knowledge through entropy correction similar to
CTKD and LS, and is also constrained to logit-based KD.
TTM [48] removes the student temperature, revealing an
inherent Rényi entropy regularization, while WTTM fur-
ther emphasizes the uncertain samples. In contrast, EA-KD
actively leverages both teacher and student entropy for dy-
namic weighting, yielding stronger performance3.

3. Methodology
3.1. Preliminaries
Information Theory. Entropy quantifies the uncertainty or
information content of a random variable [36]. For a given

3See Appendix A.1 for a more detailed comparison.

sample xn, the entropy Hn is computed as follows:

Hn = −
C∑
i=1

σ(zn,i) log(σ(zn,i)) , (1)

where σ(·) denotes the softmax function, zn,i is the logit for
class i of sample xn, and C is the number of classes.
Knowledge Distillation. The goal of vanilla KD is to trans-
fer the knowledge encapsulated in the teacher’s softened
probability outputs to the student [11]. In classification
tasks, the probabilities p are softened using the temperature-
scaled softmax function:

pi(T ) = σ(z, T )i =
exp( ziT )∑C

k=1 exp(
zk
T )

, (2)

where pi(T ) denotes the softened probability for class i, and
σ(zi, T ) is the temperature-scaled softmax function. The
temperature T controls the smoothness of the distribution,
revealing the subtle inter-class relationships.

The core of KD is to minimize the Kullback-Leibler di-
vergence (KLD) between the teacher’s and student’s soft-
ened probabilities, the KD loss is defined as:

LKD = KLD(pT (T )∥pS(T )) · T 2

=

C∑
i=1

pTi (T ) log

(
pTi (T )

pSi (T )

)
· T 2 ,

(3)

where pT and pS denote the teacher’s and student’s softened
outputs, respectively. For simplicity of theoretical analysis,
we set T = 1 in this section. LKD then simplifies to:

LKD =

C∑
i=1

pTi log

(
pTi
pSi

)
. (4)

3.2. EA-KD
Limitations in Standard KDs. Most logit- and feature-
based KD methods [2, 11, 14, 26, 33, 47] treat all sam-
ples uniformly, overlooking their unique learning value.
This oversight can cause the model to over-prioritize sim-
pler samples at the expense of more valuable, high-entropy
ones. Taking KLD—the main loss function for logit-based
methods—as an example, consider a student initialized with
a uniform distribution pS where pSi = 1

C ∀ i. For a low-
entropy sample with a teacher output pTlow where pTlow,j ≈ 1

and pTlow,i ≈ 0 (i ̸= j), the KLD becomes:

KLD(pTlow∥pS) ≈ pTlow,j · log

(
pTlow,j

pSj

)

= log

(
1

pSj

)
= log(C).

(5)

733



Figure 4. Illustration of the Uniform Distillation Scheme in Standard KD (Left) and Entropy-based Reweighting in EA-KD (Right).
Standard KD not only overlook the varying learning value of individual samples but also bias toward low-entropy (easier) ones. In contrast,
EA-KD effectively guides learning toward valuable samples based on both teacher and student assessments.

For a high-entropy distribution pThigh ≈ 1
C ∀ i, the KLD is:

KLD(pThigh∥pS) ≈
C∑
i=1

1

C
· log

(
1/C

1/C

)
= 0.

(6)

Thus, we obtain:

KLD(pTlow∥pS) > KLD(pThigh∥pS). (7)

This inequality highlights KLD’s inherent bias toward low-
entropy samples, which dominate the loss over the valuable,
high-entropy ones. Similarly, the MSE loss in feature-based
KD also biases learning toward high-magnitude activations,
which typically correspond to low-entropy samples. Such
imbalance shifts the learning focus toward simpler samples,
hindering the transfer of knowledge crucial for learning, es-
pecially during early training stages (refer to the overshad-
owing effect in the left part of Fig. 4).

Entropy-based Reweighting. As discussed in Sec. 1, en-
tropy can serve as a measure of the sample learning value
in KD. In practice, we soften the entropy with an alternative
temperature T ′ to better reflect sample value:

Hn = −
C∑
i=1

pn,i(T
′) log(pn,i(T

′)) , (8)

where pn,i(T
′) is the temperature-scaled probability of

class i for sample xn.
To dynamically emphasize valuable samples, EA-KD’s

reweighting factor wEA is formulated using two compo-
nents: a base term wbase and an interaction term winteract.
The base term captures the inherent value of each sample
based on the teacher’s output entropy, defined as:

wbase,n = HT
n , HT

n ∈ [0, Hub] , (9)

where HT
n denotes the entropy of the teacher’s prediction

for sample xn, and Hub = log(C) is the upper bound of

entropy for C classes. The interaction term winteract, on the
other hand, captures the interplay between the teacher and
student perspectives by taking the normalized product of
their entropies:

winteract,n =
HT

n ·HS
n

Hub
, winteract,n ∈ [0, Hub] . (10)

where HS
n is the student’s entropy. Finally, the EA-KD

reweighting factor wEA,n is defined as the average of the
base and interaction terms:

wEA,n =
wbase,n + winteract,n

2
, wEA,n ∈ [0, Hub] . (11)

By integrating both the teacher’s evaluation and the stu-
dent’s evolving understanding, wEA effectively prioritizes
valuable samples while dynamically adjusting the focus
throughout training.

Reformulation. To better illustrate the influence of the stu-
dent’s perspective in wEA,n, we reformulate Eq. (11) as:

wEA,n =
HT

n +
HT

n ·HS
n

Hub

2

=
1

2
HT

n

(
1 +

HS
n

Hub

)
.

(12)

This reformulation expresses wEA,n as the product of HT
n

and a scaling factor that depends on the HS
n . Thus, wEA,n

can be regarded as the teacher’s assessment of sample value,
adaptively adjusted based on the student’s perspective. De-
pending on the entropy values, wEA behaves as follows:

wEA,n =



Hub if HT
n → Hub ∧HS

n → Hub (13a)
Hub

2
if HT

n → Hub ∧HS
n → 0 (13b)

0 if HT
n → 0 ∀HS

n (13c)
wEA,n otherwise.

When the teacher considers a sample highly valuable for
learning (HT

n → Hub), the scaling factor adjusts wEA,n
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Table 2. Results on CIFAR-100. Accuracy (%) of EA-methods vs. baselines across teacher-student pairs, with relative improvements
highlighted. Avg. ∆ shows average improvement across methods and model pairs. Best results are bolded, and second-best are underlined.

Type
Teacher ResNet32×4 WRN-28-4 WRN-40-2 VGG13 VGG13 ResNet50 ResNet32×4

79.42 78.60 75.61 74.64 74.64 79.34 79.42

Student ResNet8×4 WRN-16-2 WRN-40-1 VGG8 MN-V2 MN-V2 SN-V2
72.50 73.26 71.98 70.36 64.60 64.60 71.82 Avg. ∆

Logit

KD [11] 73.33 75.04 73.54 72.98 67.37 67.35 74.45
EA-KD 75.46 +2.13 75.79 +0.75 74.38 +0.84 74.08 +1.10 69.17 +1.80 69.67 +2.32 75.91 +1.46 +1.48

CTKD [20] 73.91 75.29 73.93 73.52 68.46 68.47 75.31
EA-CTKD 75.18 +1.27 75.72 +0.43 74.03 +0.10 73.79 +0.27 69.19 +0.73 69.38 +0.91 76.02 +0.71 +0.63

DKD [47] 76.32 76.45 74.81 74.68 69.71 70.35 77.07
EA-DKD 76.80 +0.48 76.74 +0.29 74.98 +0.17 75.07 +0.39 70.39 +0.68 70.98 +0.63 77.72 +0.65 +0.47

MLD [14] 77.08 76.83 75.35 75.18 70.57 71.04 78.44
EA-MLD 77.65 +0.57 77.47 +0.64 75.77 +0.42 75.28 +0.10 70.72 +0.15 71.43 +0.39 78.85 +0.41 +0.38

MLD+LS [38] 78.28 77.20 75.56 75.22 70.94 71.19 78.76
EA-MLD+LS 78.38 +0.10 77.60 +0.39 75.78 +0.22 75.38 +0.16 70.67 -0.27 71.36 +0.17 79.13 +0.37 +0.16

Feature

ReviewKD [2] 75.63 76.39 74.45 74.45 70.37 69.89 77.78
EA-ReviewKD 76.10 +0.47 76.95 +0.56 75.43 +0.98 74.56 +0.11 70.55 +0.18 69.80 -0.09 78.22 +0.44 +0.38

FCFD [26] 76.62 77.00 75.46 75.22 70.65 71.00 78.18
EA-FCFD 77.50 +0.88 77.15 +0.15 75.30 -0.16 75.36 +0.14 71.02 +0.37 71.97 +0.97 78.75 +0.56 +0.42

Avg. ∆ +0.84 +0.46 +0.37 +0.33 +0.52 +0.76 +0.66 +0.56

based on the student’s view. If the student aligns (Eq. (13a)),
the weight is maximized to emphasize this sample. Con-
versely, if the student is confident (Eq. (13b)), the weight
reduces to half for moderate focus. However, when the
teacher considers the sample simple (Eq. (13c)), the weight
remains low regardless of HS

n , as the teacher considers it
lacks valuable knowledge.
Loss Integration. As shown in Fig. 4, the flexible nature
of wEA allows it to be plug-and-play into most distillation
frameworks by reweighting the contribution of each sample
based on its learning value. For instance, when integrated
with vanilla KD, the loss is defined as:

LEA-KD =

N∑
n=1

wEA,n · LKD,n, (14)

where LKD,n is the distillation loss for sample xn. As a
result, EA-KD enhances standard KD methods by facili-
tating a more nuanced and adaptive transfer of knowledge,
ensuring that informative samples receive increased focus
throughout training.

4. Experiments
4.1. Experimental Setup
Datasets. We used CIFAR-100 [16] (50k training, 10k
validation images; 100 classes), Tiny-ImageNet [18] (100k
training, 5k validation images; 200 classes), and ImageNet
[6] (1.28M training, 50k validation images; 1,000 classes)
to evaluate our method for image classification. For ob-
ject detection, we adopted MS-COCO [25] (118k training,

5k validation images; 80 classes). Furthermore, for LLM
distillation, we employed five instruction-following datasets
following [9]: Dolly [5], SInst [42], Vicuna [4], S-NI [43],
and UnNI [12].
KD Frameworks. We evaluated EA-KD across represen-
tative SOTA logit-based (KD [11], CTKD [20], DKD [47],
MLD [14], MLD+LS [38]) and feature-based methods (Re-
viewKD [2], FCFD [26]), reweighting their distillation loss
while preserving each framework’s original structure. For
fair comparisons, no hyperparameter was tuned for the EA-
variants, except for the KD weight of MLD+LS [38] was
reduced from 9.0 to 4.0 to avoid over-penalizing.
Implementation Details. EA-KD and other variants were
evaluated on various CNNs (VGG [37], ResNet [10],
WideResNet [44], MobileNet [34], ShuffleNet [29]), trans-
former teachers (ViT [7], DeiT [40], Swin [27]), and GPT2
[32] for LLM distillation. We used the training settings
of [39] for vanilla KD and the respective settings of each
framework for classification, [2] for detection, and [45] for
LLMs. We set T ′ = 3 based on our ablation study, except
T ′ = 2 for ImageNet and transformer teachers. All results
averaged over five runs, and analyses were conducted using
ResNet32×4-ResNet8×4 pair on CIFAR-100.

4.2. Results
CIFAR-100. Tab. 2 presents results of various EA-methods
and their baselines on CIFAR-100. EA-KD consistently im-
proves both logit- and feature-based KD frameworks across
most teacher-student pairs, with an average gain of 0.56%.
The logit-based EA-MLD+LS achieved SOTA results in
most pairings, while EA-FCFD excelled in two heteroge-
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Table 3. Results on Tiny-ImageNet. Accuracy (%) of the ResNet32×4 teacher and ResNet8×4 student.

Teacher Student KD EA-KD MLD EA-MLD MLD+LS EA-MLD+LS FCFD EA-FCFD

64.41 55.25 56.00 59.39 +3.39 61.91 62.65 +0.74 61.36 62.41 +1.05 60.12 60.51 +0.39

Table 4. Results on ImageNet. Accuracy (%) of the ResNet34 teacher and ResNet18 student, averaged over three runs.

Teacher Student KD [11] EA-KD KD+LS [38] DKD [47] EA-DKD DKD+LS [38] EA-DKD+LS PAD [46]

73.31 69.75 71.03 71.79 +0.76 71.42 71.70 71.96 +0.26 71.88 71.99 +0.11 71.71

Table 5. Results on Tiny-ImageNet with Transformers. Accu-
racy (%) of transformer-based teachers and a ResNet8×4 student,
averaged over three runs.

Teacher Student KD EA-KD

ViT-B 71.12 ResNet8×4
55.25

54.70 57.53 +2.83
DeiT-B 85.55 56.30 58.36 +2.06
Swin-B 86.30 56.15 59.58 +3.43

Table 6. Results on MS-COCO. AP (overall), AP50, and AP75

are reported using Faster R-CNN with FPN.

R-101 & R-18 R-50 & MV2

AP AP50 AP75 AP AP50 AP75

Teacher 42.04 62.48 45.88 40.22 61.02 43.81
Student 33.26 53.61 35.26 29.47 48.87 30.90

KD 33.97 54.66 36.62 30.13 50.28 31.35
EA-KD 34.78 56.14 37.19 31.81 53.18 33.18

∆ +0.81 +1.48 +0.57 +1.68 +2.90 +1.83

neous pairs. Additionally, EA-MLD and EA-FCFD se-
cured most second-best results, outperforming the previous
SOTA, MLD+LS [38]. These findings highlight EA-KD’s
broad applicability and effectiveness in enhancing knowl-
edge transfer across diverse types of KD frameworks.

Tiny-ImageNet and ImageNet. Tab. 3 and Tab. 4 show
that EA-methods consistently outperform their baselines on
both Tiny-Imagenet and ImageNet. On Tiny-ImageNet,
EA-KD improves KD by 3.39% and achieves performance
comparable to the novel FCFD [26]. On ImageNet, EA-KD
surpasses other adaptive KDs, including logit-level adap-
tive LS [38] and sample-level adaptive approach PAD [46].
These results highlight EA-methods’ scalability on larger,
more diverse datasets. Furthermore, Tab. 5 underscores
EA-KD’s advantage in distilling valuable knowledge from
vision transformer-based teachers to CNN students. Un-
like standard KD, which plateaued when using DeiT-B as
the teacher, EA-KD consistently improved student perfor-
mance, mitigating the capacity gap and utilizing the guid-
ance of stronger teachers more effectively.

MS-COCO. Extending to object detection, Tab. 6 presents
the performance of EA-KD and KD on the MS-COCO
dataset. EA-KD consistently outperforms KD across AP
metrics for both model pairings, with particularly notable

Table 7. LLM Distillation Results. Rouge-L [24] scores averaged
over five seeds on each dataset are reported. SFT denotes a student
supervised fine-tuned on the dataset.

Dataset

Method Dolly SInst Vicuna S-NI UnNI Avg.

Teacher
GPT2-XL 27.19 14.64 16.30 27.55 31.42 23.42

SFT
GPT2-S 22.94 10.11 15.17 16.21 18.68 16.62

KD 24.54 10.43 15.66 17.24 20.28 17.63
RKLD 24.38 10.73 15.71 17.31 20.96 17.82

JSD 23.86 10.20 15.50 16.20 19.17 16.98

EA-KD 24.95 10.59 16.41 18.27 21.46 18.34
∆ to KD +0.41 +0.16 +0.75 +1.03 +1.18 +0.71

gains in AP50. This highlights EA-KD’s ability to effec-
tively guide the student with valuable knowledge in a more
complex visual task, thereby enhancing its performance.

LLM Distillation. To explore the full potential of EA-
KD, we extended our experiments to LLM distillation, ap-
plying the reweighting at the sequence level of the model
outputs. As shown in Tab. 7, EA-KD consistently outper-
forms standard KD across datasets. Moreover, EA-KD also
surpasses two recently emerging methods in this field, Re-
verse KLD (RKLD) and Jensen-Shannon divergence (JSD),
which aim to address KLD’s limitation of forcing the stu-
dent to cover all modes of the complex LLM teacher dis-
tribution [9]. In this scenario, EA-KD’s dynamic prioriti-
zation of the most critical knowledge performed effectively
in such complexity. This highlights EA-KD’s versatility be-
yond visual tasks, showcasing its ability to target valuable
knowledge across diverse domains.

4.3. Empirical Analysis
In this section, we conduct ablation studies to evaluate

two key components of EA-KD: T ′ and the reweighting
factor. We then compare EA-KD and vanilla KD from mul-
tiple perspectives, showing how EA-KD improves teacher-
student alignment and class separability. Additionally, we
discuss the synergy between EA and DKD, demonstrating
enhanced robustness in both the loss surface and hyperpa-
rameter stability. Finally, we highlight EA-methods com-
putational efficiency across diverse KD frameworks.
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Table 8. Impact of T ′. Setting T ′ to 3 yields the best results
across architectures, demonstrating its robustness and consistency.

Teacher Student
T ′

2 3 4

ResNet32×4 ResNet8×4 73.90 75.46 75.22
WRN-28-4 WRN-16-2 74.89 75.79 75.62

ResNet32×4 SN-V2 75.51 75.91 75.72

Table 9. Impact of Reweighting Factors. The proposed wEA

outperforms the single-sided wbase, while winteract, lacking teacher
base guidance, shows limited improvement.

Method Acc.
Reweighting Factor

wbase winteract wEA

KD [11] 73.33 75.14 ↑ 74.76 ↑ 75.46 ↑
MLD [14] 77.08 77.47 ↑ 77.45 ↑ 77.65 ↑
MLD+LS [38] 78.28 78.30 ↑ 78.20 ↓ 78.38 ↑
FCFD [26] 76.62 77.50 ↑ 77.42 ↑ 77.44 ↑

Ablation Study. Two experiment were performed to eval-
uate the sensitivity of T ′ and the effect of each reweighting
components in wEA. (i) Tab. 8 shows that a T ′ of 3 consis-
tently delivers optimal performance across model combina-
tions, highlighting its robustness in reflecting sample value.
(ii) As shown in Tab. 9, wbase enhances KD by emphasiz-
ing valuable samples under the teacher’s guidance. While
winteract integrates student dynamics, it may introduce noise
and dilute the teacher’s guidance, reducing effectiveness.
However, when integrated into wEA, HS acts as a scaling
factor for HT (Eq. (12)). This ensures early training, where
HS is mostly high and the scaling near 1, is mainly guided
by HT . As training progresses, HS adaptively adjusts and
tailors the weighting, leading to superior performance.

Distillation Loss and Sample Value. In Fig. 5, we analyze
the distribution of distillation loss across samples grouped
by low- to high-entropy quartiles (Q1–Q4) for KD and EA-
KD on CIFAR-100 and Tiny-ImageNet. Notably, KD loss
is dominated by low-value samples throughout training on
both datasets. The overshadowing effect in KD’s uniform
distillation scheme hinders the transfer of critical knowl-
edge from high-value samples, as discussed in Sec. 3, ulti-
mately leading to more significant accuracy gaps (Fig. 2a).
In contrast, EA-KD emphasizes the focus on valuable sam-
ples (Fig. 5), bringing holistic performance improvements
across entropy segments (Fig. 2a).

Student’s Unique Perspective. Fig. 6 compares the t-SNE
visualizations [41] of KD and EA-KD with the high HS

and wEA samples highlighted4. Similar to Fig. 2b, high
HS samples also lie near decision boundaries in the KD-
student. This suggests that, despite having a different view

4See Appendix B.1 for further t-SNE visualizations showing the stu-
dent’s evolving sample focus over training epochs.

Figure 5. Loss Distribution vs. Entropy Quartiles over Epochs.
Low-value samples (Q1, Q2; blue) dominate the KD loss, whereas
EA-KD places more focus on high-value ones (Q3, Q4; red).

Figure 6. t-SNE of Students. Top 10% high HS samples for KD
(left) and wEA samples for EA-KD (right) are highlighted with tri-
angles. High HS samples cluster near decision boundaries, under-
scoring their learning value for the student.

from the teacher (Fig. 3), the student’s evolving capacity en-
ables HS to capture the samples crucial for its own learn-
ing progress. In EA-KD, integrating both HT and HS in
wEA captures both the teacher’s informed assessment and
the student’s dynamic learning needs. As a result, EA-KD
achieves superior class separability as reflected by a higher
Calinski-Harabasz (CH) index.

Consistency in Entropy Levels. As shown in Fig. 3, EA-
KD mitigates the increasing entropy variation across epochs
observed in KD, enabling the student to maintain more sta-
ble HS and align more closely to HT . This stability creates
a feedback loop in EA-KD, where a steady HS leads to a
stable wEA, promoting a more focused learning process. As
a result, the student more effectively mimics the teacher’s
response and achieves improved performance.

Loss Landscape and Synergy in EA-DKD. Visualizing
the loss landscape [19] offers insights into the student’s ro-
bustness against noise and generalization. As illustrated in
Fig. 7, DKD shows narrow and fluctuating contours with
significantly higher variance across epochs (e.g. 366.26 at
epoch 240), indicating instability in the loss surface and
weaker generalization. In contrast, EA-DKD consistently
produces a smoother surface with more stable contours (e.g.
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Figure 7. Loss Surface and Differences in Area@1.6 for DKD and EA-DKD Students Across Epochs. The mean and variance for
the surface, along with the contour areas at level 1.6 (Area@1.6), are provided for each subplot. The line plot (lower right) tracks the
differences in Area@1.6 between the teacher and students over epochs. EA-DKD consistently shows larger contours with less fluctuation,
signifying smoother learning surfaces and a more robust generalization process compared to DKD.

Figure 8. Comparison of DKD and EA-DKD Performance
Across Varying β Values. EA-DKD consistently outperforms
DKD and significantly reduces performance variance over β (0.10
vs. 0.31), highlighting EA-DKD’s enhanced robustness.

variance of 178.20 at epoch 240) and broader low-loss re-
gions (Area@1.6) compared to DKD, suggesting improved
generalizability. In addition, the Area@1.6 comparison
(Fig. 7, lower right) underscores EA-DKD’s closer align-
ment with the teacher’s surface throughout training.

The enhanced generalization in EA-DKD also extends
to hyperparameter robustness. DKD was introduced to de-
couple target class KD (TCKD) and non-target class KD
(NCKD) in vanilla KD, balancing them with hyperparame-
ters α and β. While α remains stable around 1.0, adjusting
β from 1.0 to 10.0 leads to fluctuating performance [47],
with a variance of 0.31 (see Fig. 8). Notably, EA-DKD ef-
fectively reduces this fluctuation to a variance of 0.10 and
consistently improves the performance. This enhanced ro-

bustness may be attributed to the synergy between DKD
and EA in handling different aspects of knowledge transfer:
DKD prevents NCKD from being overshadowed by TCKD
at the class level, while EA ensures valuable samples—
often rich in NCKD—are not dominated by simpler ones
at the sample level. Additionally, the dynamic focus in EA
compensates for the static nature of β. Together, EA-DKD
facilitates a nuanced and balanced knowledge transfer pro-
cess, both class-wise and sample-wise.

Computational Efficiency. Fig. 1 illustrates the efficiency
of EA-methods, showing significant performance improve-
ments across various SOTA KD frameworks with negligi-
ble cost. This remarkable efficiency, combined with its
streamlined integration into both logit- and feature-based
KD methods, underscores the potential of our method as a
versatile and practical enhancement for KD.

5. Conclusion
In this paper, we revisited existing KD methods from a

novel perspective and revealed a key limitation in their in-
herent uniform distillation strategy, which often hinders the
transfer of high-entropy samples that carry critical knowl-
edge. To address this, we proposed EA-KD, a plug-and-
play KD approach that dynamically reweights the distil-
lation loss, directing the learning focus toward valuable
samples. EA-KD consistently enhances representative KD
baselines across image classification, object detection, and
LLM distillation, all with negligible cost. We believe EA-
KD showcases a great paradigm of the meticulous handling
of knowledge transfer, adapting KD to the varying learning
value of samples while accounting for the student’s evolv-
ing learning dynamics throughout the distillation process.

738



References
[1] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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