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Abstract

Recent research on knowledge distillation has increasingly
focused on logit distillation because of its simplicity, effec-
tiveness, and versatility in model compression. In this pa-
per, we introduce Refined Logit Distillation (RLD) to ad-
dress the limitations of current logit distillation methods.
Our approach is motivated by the observation that even
high-performing teacher models can make incorrect predic-
tions, creating an exacerbated divergence between the stan-
dard distillation loss and the cross-entropy loss, which can
undermine the consistency of the student model’s learning
objectives. Previous attempts to use labels to empirically
correct teacher predictions may undermine the class corre-
lations. In contrast, our RLD employs labeling information
to dynamically refine teacher logits. In this way, our method
can effectively eliminate misleading information from the
teacher while preserving crucial class correlations, thus
enhancing the value and efficiency of distilled knowledge.
Experimental results on CIFAR-100 and ImageNet demon-
strate its superiority over existing methods. Our code is
available at https://github.com/zju-SWJ/RLD.

1. Introduction
Knowledge distillation utilizes pre-trained high-performing
teacher models to facilitate the training of a compact stu-
dent model [12]. Compared to other model compression
methods, such as pruning and quantization [5], knowledge
distillation exhibits fewer constraints on the model architec-
ture. This flexibility significantly broadens its applicability,
contributing to its increasing prominence in recent research.

Hinton et al. [12] were the first to introduce the con-
cept of logit distillation. It is designed to align the logits
of teacher and student models following the softmax op-
erations with the Kullback-Leibler (KL) divergence. Most
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subsequent research has maintained the original concept of
logit distillation, instead focusing on exploring feature dis-
tillation [3, 4, 18, 28, 37, 38] in more depth by selecting
and aligning intermediate-level features between teacher
and student models. However, the potential architectural
disparity between teacher and student models poses a sig-
nificant challenge for feature alignment. This is mainly
due to the fact that different architectures extract different
features [38]. Moreover, the extensive diversity in feature
selection further amplifies the complexity of feature distil-
lation and leads to an increase in training time in distilla-
tion [3]. Recently, by decoupling the classical logit distilla-
tion loss, Zhao et al. [48] demonstrate that logit distillation
can yield results that are on par with, or even superior to,
those of feature distillation. Consequently, logit distillation
garnered considerable attention in the research community,
thanks to its simplicity, effectiveness, and versatility.

Despite the impressive achievements, most of the recent
logit distillation approaches [15, 21, 34] overlook the im-
pact of teacher prediction correctness on the training pro-
cess. Specifically, incorrect teacher predictions lead to an
exacerbated divergence between teacher loss and label loss,
which may severely impede the potential enhancements of
the student models. Existing correction-based distillation
approaches [1, 20, 40] consistently modify the teacher logits
(target) using label information. They either exchange the
values between the predicted maximum class and the true
class [40] (the swap operation) or amplify the proportion of
the true class within the predicted probabilities [1, 20] (the
augment operation). We argue that such approaches may
alter the correlations among classes, as exemplified in Fig-
ure 1. This disruption can obstruct the transmission of “dark
knowledge” [12] and hinder performance improvements.

In this paper, we introduce Refined Logit Distillation
(RLD) to address these challenges. In classification tasks,
the true class probability dictates prediction correctness,
while class correlations capture high-level semantic rela-
tionships that influence classification tendencies. Accord-
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Figure 1. A toy example of existing correction-based distillation
approaches. Classes represented by the same color are highly
correlated and should be ranked closely. The image displayed
is a “lion”, yet the teacher model incorrectly classifies it as the
“forest”. Both the swap and augment operations disrupt the close
correlation between “lion” and “tiger”. A more detailed example
of class correlation is provided in the supplementary material.

ingly, RLD consists of two types of knowledge, sample con-
fidence (SC) and masked correlation (MC). Sample confi-
dence refers to the binary probabilities derived from logits.
As for the teacher model, SC comes from the probability as-
sociated with the predicted class and the probabilities of the
remaining classes. It encapsulates the teacher’s prediction
confidence for the current sample and is employed to guide
the student model. Considering the possible inaccuracies
in the teacher’s prediction, we align the student’s true class
probability with teacher’s predicted class probability. This
alignment not only mitigates the teacher’s mistakes, but also
guides the student model toward achieving a comparable
level of confidence for the current sample. Moreover, it ef-
fectively prevents over-fitting. Masked correlation denotes
our dynamic approach for selecting a subset of classes for
teacher-student alignment. It is designed to mitigate the in-
fluence of potentially incorrect teacher predictions on stu-
dent models while conveying essential class correlations.
More specifically, MC involves masking all classes within
the teacher logits that have equal or superior rankings com-
pared to the true class. In essence, fewer classes are used
for distillation when the teacher makes more mistakes, and
more classes are used when it makes fewer mistakes. Using
these two complementary types of refined knowledge, the
student can achieve better performance.

Our contributions are summarized as follows:
• We reveal that prevalent distillation approaches fail to ac-

count for the effects of incorrect teacher predictions, and
existing correction-based strategies tend to ruin the valu-
able class correlations.

• We introduce a novel logit distillation approach termed
Refined Logit Distillation (RLD) to prevent over-fitting
and mitigate the influence of incorrect teacher knowledge,
while preserving the essential class correlations.

• We conduct comprehensive experiments on CIFAR-100
and ImageNet datasets to verify the superior performance
of our proposed RLD method.

2. Related Work
The application of knowledge distillation historically con-
centrated on the image classification task, and progressively
extended to a wider range of tasks, including semantic seg-
mentation [23, 32, 36, 42] and image generation [25, 30, 35]
within the realm of computer vision. Traditional knowl-
edge distillation typically involves a single teacher and a
single student model. As the field evolves, a variety of
other paradigms have been proposed, such as online dis-
tillation [2, 41], multi-teacher distillation [43, 46], and self-
distillation [7, 17]. Since traditional knowledge distillation
remains the core foundation of research in this area, we will
focus solely on such methods in the discussion below.

In image classification task, existing algorithms can
be broadly classified into three categories: logit distilla-
tion [12, 15, 21, 34, 48], feature distillation [3, 4, 11, 16,
18, 37, 38], and relation distillation [22, 26, 27]. Logit dis-
tillation has become the main focus of current research be-
cause of its straightforwardness, effectiveness, and adapt-
ability. The initial logit distillation [12] leverages KL diver-
gence to align the softened output logits of the teacher and
student models, thereby significantly enhancing the perfor-
mance of the student models. DKD [48] revitalizes logit
distillation by decoupling this classical loss, enabling it to
perform comparably to feature distillation. MLKD [15]
leverages multi-level logit knowledge to further enhance
model performance. CTKD [21] introduces the curriculum
temperature, applying adversarial training and curriculum
learning to dynamically determine the distillation temper-
ature for each sample. LSKD [34] processes the logits to
adaptively allocate temperatures between teacher and stu-
dent and across samples, thereby achieving state-of-the-art
performance. However, the effect of incorrect teacher pre-
dictions on distillation is rarely considered.

Given that logits are intrinsically related to prediction
correctness, several methods leverage labels to adjust log-
its prior to the distillation process. LA [40] swaps the val-
ues of the true and predicted classes to correct the teacher
model’s predictions. RC [1] adds the maximum value in
the student’s output to the true class, thereby aiding the stu-
dent model in making accurate and confident predictions.
LR [20] combines one-hot labels with the teacher’s soft la-
bels to produce a new, precise target for distillation. How-
ever, as previously demonstrated in Figure 1, these meth-
ods may disrupt class correlations, which can hinder perfor-
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Figure 2. An overview of our proposed Refined Logit Distillation (RLD). In RLD, the teacher model imparts two types of knowledge,
denoted as “sample confidence” and “masked correlation”, to the student model. The binary sample confidence encapsulates the model
confidence for each sample, which helps the student model generate proper-confidence predictions for the true class. The masked correla-
tion denotes the probability distribution acquired after dynamically masking certain classes, which helps to remove misleading information
and preserve valuable class correlations during distillation. Both kinds of knowledge are obtained from logits, thus the distillation process
does not introduce intermediate layer features.

mance improvement.

3. Preliminaries

We provide an overview of concepts related to knowledge
distillation to facilitate readers’ understanding.

Consider an image classification task involving C
classes. We have a pre-trained teacher model and a stu-
dent model, denoted as θT and θS, respectively. For a single
input image x, the output logits z from teacher and student
models are denoted as zT = θT (x) and zS = θS (x), respec-
tively. By utilizing the softmax function σ (·), predicted dis-
tributions pT and pS are calculated as follows:

pi =
exp (zi)∑C
c=1 exp (zc)

, (1)

where pi represents the predicted value of the i-th class.
To train the student model, the first loss is computed as

the cross entropy between the student prediction and the
one-hot ground-truth label y:

LCE = −
C∑

c=1

yc log p
S
c. (2)

The second loss aligns the softened predictions p̂ =
σ (z/τ) of the teacher and student models using the KL di-

vergence:

LKD = τ2KL
(
p̂T, p̂S) = τ2

C∑
c=1

p̂T
c log

p̂T
c

p̂S
c

, (3)

where τ denotes the temperature for the softmax operation.
By combining Equations (2) and (3), we get the classical

logit distillation loss for stochastic gradient descent. Such
an approach has been experimentally shown to perform bet-
ter than training solely with labels.

4. Methodology
In this section, we delve into a detailed introduction of our
proposed RLD. An overview of RLD is shown in Figure 2.

4.1. Sample Confidence Distillation
Sample confidence (SC) represents the binary distribution
b derived from the logits. It encapsulates the model confi-
dence for each sample, thereby aiding the student model in
generating proper-confidence predictions for the true class,
without unduly restricting the distribution for other classes.

In the context of teacher knowledge, one component of
the SC is the maximum predicted probability value p̂T

max,
while the other component is the sum of the predicted prob-
abilities for the remaining classes. In contrast, the student
SC consists of two components: the predicted probability
for the true class p̂S

true, and the sum of the predicted proba-
bilities for the remaining classes. They can be summarized
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Figure 3. Toy examples elucidating the variances across meth-
ods when the corresponding losses are minimal. (a) Sample
confidence guarantees a proper probability for the true class and
eliminates the necessity for the student model to match the in-
tact class probability distribution to that of the teacher model. (b)
Masked correlation imposes fewer constraints on the student pre-
diction than traditional knowledge distillation. For the classes that
are masked, their probabilities can diverge entirely from those of
the teacher model.

in the following formulas:

bT = {p̂T
max, 1− p̂T

max}, (4)

bS = {p̂S
true, 1− p̂S

true}. (5)

To transfer this knowledge, we align bT and bS using the
KL divergence:

LSCD = τ2KL
(
bT, bS) . (6)

Figure 3(a) more vividly illustrates the aligned knowl-
edge of the teacher and the student when using SCD.

While both LCE and LSCD operate on the true class, gra-
dient analysis (temperature τ omitted) shows that their ef-
fects are not entirely identical:

∂LCE

∂zi
= pS

i − yi,

∂LSCD

∂zi
=

{
pS
i − pT

max, i = true,
pS
i(p

S
true−pT

max)

pS
true−1

, i ̸= true.

(7)

Consequently, RLD incorporates both, thereby endowing
the distillation process with greater flexibility.

4.2. Masked Correlation Distillation
Masked correlation (MC) denotes the probability distribu-
tion acquired after dynamically masking certain classes.
As shown in Figure 3(b), this masking operation relieves
the student model from aligning incorrect class rankings,

thereby allowing the student model to generate very differ-
ent output from the teacher without incurring a large loss.
Moreover, preserving partial class probabilities empowers
the student model to learn valuable class correlations, con-
sequently enhancing the model’s performance.

Specifically, the mask M is dynamically derived from
teacher logits and labels. We designate all classes whose
logit values are greater than or equal to (denoted as “ge”)
the logit value of the true class as the targets for the masking
operation, which can be represented as follows:

Mge = {i|zT
i ≥ zT

true, 1 ≤ i ≤ C}. (8)

After obtaining the mask, we compute the probability
distributions for alignment using the following formula:

p̃i =
exp (zi/τ)∑C

c=1,c̸∈Mge
exp (zc/τ)

, (9)

where 1 ≤ i ≤ C and i ̸∈ Mge are satisfied.
We summarize the distillation loss for the masked corre-

lation knowledge as follows:

LMCD = τ2KL
(
p̃T, p̃S) . (10)

When the teacher model makes a more accurate predic-
tion (ranking the true class higher), only a few classes are
subjected to the masking operation. It allows the majority of
class correlations to be preserved and transferred to the stu-
dent model. Conversely, if the teacher’s prediction is less
accurate, the majority of classes are masked. As a result,
the student model learns less knowledge, thereby reducing
the potential for misinformation to mislead the training pro-
cess. It also gives the student model more freedom to make
predictions for masked classes that differ significantly from
those of the teacher model.

4.3. Refined Logit Distillation
By combining Equations (2), (6) and (10), we obtain the
final loss for RLD, which is:

LRLD = LCE + αLSCD + βLMCD, (11)

where hyper-parameters α and β adjust the importance of
sample confidence and masked correlation, respectively.

Relevance to DKD. Although RLD and DKD [48] con-
sider logit distillation from distinct perspectives, they be-
come equivalent when the teacher model consistently makes
accurate predictions. Besides, DKD does not explicitly ex-
plain why transferring non-target class knowledge (i.e., the
probability distribution when the true class is masked, re-
ferred to as NCKD) can significantly enhance model perfor-
mance. Beyond the idea that the class relationships embed-
ded in this knowledge facilitate training, RLD offers a new
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Type
Teacher ResNet32×4 VGG13 WRN-40-2 ResNet56 ResNet110 ResNet110

79.42 74.64 75.61 72.34 74.31 74.31

Student ResNet8×4 VGG8 WRN-40-1 ResNet20 ResNet32 ResNet20
72.50 70.36 71.98 69.06 71.14 69.06

Feature

FitNet 73.50 71.02 72.24 69.21 71.06 68.99
AT 73.44 71.43 72.77 70.55 72.31 70.65
RKD 71.90 71.48 72.22 69.61 71.82 69.25
CRD 75.51 73.94 74.14 71.16 73.48 71.46
OFD 74.95 73.95 74.33 70.98 73.23 71.29
ReviewKD 75.63 74.84 75.09 71.89 73.89 71.34
SimKD 78.08 74.89 74.53 71.05 73.92 71.06
CAT-KD 76.91 74.65 74.82 71.62 73.62 71.37

Logit

KD 73.33 72.98 73.54 70.66 73.08 70.67
CTKD 73.39 73.52 73.93 71.19 73.52 70.99
DKD 76.32 74.68 74.81 71.97 74.11 71.06
LA 73.46 73.51 73.75 71.24 73.39 70.86
RC 74.68 73.37 74.07 71.63 73.44 71.41
LR 76.06 74.66 74.42 70.74 73.52 70.61
RLD (ours) 76.64 74.93 74.88 72.00 74.02 71.67

Table 1. Top-1 accuracy (%) on the CIFAR-100 validation set when the teacher and student models are homogeneous. The best and second
best results of logit distillation are highlighted in bold and underlined text, respectively. For the case where the best result of feature
distillation is better than the best result of logit distillation, we highlight it with italic text. The reported results are the mean of three trials.

explanation: when the alignment constraint on target class
knowledge (TCKD) is weak, masking the true class during
distribution alignment offers the student model greater flex-
ibility to adjust the ranking of the true class. This, in turn,
mitigates the negative impact of incorrect teacher knowl-
edge, enabling more accurate predictions.

5. Experiments
5.1. Settings
Datasets. We conduct the experiments on two standard
image classification datasets: CIFAR-100 [19] and Ima-
geNet [29]. CIFAR-100 comprises 100 distinct classes,
with a total of 50,000 images in the training set and 10,000
images in the validation set. Each image in this dataset
is of size 32×32 pixels. ImageNet presents a larger and
more complex dataset, encompassing 1,000 classes. It in-
cludes 1.28 million images in the training set and 50,000
images in the validation set, with each image resolution be-
ing 224×224 pixels after pre-processing.

Models. Models used by teachers and students include
ResNet [9], WideResNet (WRN) [45], VGG [33], Shuf-
fleNet (SHN) [24, 47], and MobileNet (MN) [14, 31].

Compared Methods. We emphasize that the experimen-
tal results in this paper are presented after exhaustive read-

ing of the papers and codes of existing works, and with a
focus on fair comparisons between methods. Therefore,
MLKD [15] is excluded from the comparison due to dif-
fering experimental settings. The compared methods in-
clude feature distillation (FitNet [28], AT [18], RKD [26],
CRD [37], OFD [10], ReviewKD [4], SimKD [3], and
CAT-KD [8]) and logit distillation (KD [12], CTKD [21],
DKD [48], LA [40], RC [1], and LR [20]) methods. The
performance metrics of all comparison methods, except for
the latter three correction-based approaches (LA, RC, and
LR), are sourced directly from LSKD [34]. To ensure ex-
perimental fairness, we implemented these three correction-
based approaches and our proposed RLD method following
the experimental setups commonly used in prominent stud-
ies (e.g., LSKD [34], DKD [48], and CRD [37]). Additional
implementation details are provided in the supplementary
material.

5.2. Main Results
CIFAR-100. The top-1 validation accuracy (%) compar-
ison results of RLD and other distillation approaches are
reported in Table 1 (homogeneous distillation pairs) and
Table 2 (heterogeneous distillation pairs). We can see that
RLD is either the optimal or suboptimal logit distillation al-
gorithm in all cases, and is optimal in most cases. This un-
derscores the superiority of RLD and accentuates the signif-
icance of making corrections to teacher predictions. While
feature distillation can sometimes outperform logit distilla-
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Type
Teacher ResNet32×4 ResNet32×4 WRN-40-2 WRN-40-2 VGG13 ResNet50

79.42 79.42 75.61 75.61 74.64 79.34

Student SHN-V2 WRN-40-2 ResNet8×4 MN-V2 MN-V2 MN-V2
71.82 75.61 72.50 64.60 64.60 64.60

Feature

FitNet 73.54 77.69 74.61 68.64 64.16 63.16
AT 72.73 77.43 74.11 60.78 59.40 58.58
RKD 73.21 77.82 75.26 69.27 64.52 64.43
CRD 75.65 78.15 75.24 70.28 69.73 69.11
OFD 76.82 79.25 74.36 69.92 69.48 69.04
ReviewKD 77.78 78.96 74.34 71.28 70.37 69.89
SimKD 78.39 79.29 75.29 70.10 69.44 69.97
CAT-KD 78.41 78.59 75.38 70.24 69.13 71.36

Logit

KD 74.45 77.70 73.97 68.36 67.37 67.35
CTKD 75.37 77.66 74.61 68.34 68.50 68.67
DKD 77.07 78.46 75.56 69.28 69.71 70.35
LA 75.14 77.39 73.88 68.57 68.09 68.85
RC 75.61 77.58 75.22 68.72 68.66 68.98
LR 76.27 78.73 75.26 69.02 69.78 70.38
RLD (ours) 77.56 78.91 76.12 69.75 69.97 70.76

Table 2. Top-1 accuracy (%) on the CIFAR-100 validation set when the teacher and student models are heterogeneous. The same convention
is used as in Table 1.

Teacher/Student Res34/Res18 Res50/MN-V1

Accuracy Top-1 Top-5 Top-1 Top-5

Teacher 73.31 91.42 76.16 92.86
Student 69.75 89.07 68.87 88.76

AT 70.69 90.01 69.56 89.33
OFD 70.81 89.98 71.25 90.34
CRD 71.17 90.13 71.37 90.41
ReviewKD 71.61 90.51 72.56 91.00
SimKD 71.59 90.48 72.25 90.86
CAT-KD 71.26 90.45 72.24 91.13

KD 71.03 90.05 70.50 89.80
CTKD 71.38 90.27 71.16 90.11
DKD 71.70 90.41 72.05 91.05
LA 71.17 90.16 70.98 90.13
RC 71.59 90.21 71.86 90.54
LR 70.29 89.98 71.76 90.93
RLD (ours) 71.91 90.59 72.75 91.18

Table 3. Top-1 and top-5 accuracy (%) on the ImageNet validation
set. The best and second best results are highlighted in bold and
underlined text, respectively. The reported results are the mean of
three trials.

tion, its optimal method varies across teacher-student pairs,
and its longer training time and complex algorithm design
may hinder practical applicability.

ImageNet. The top-1 and top-5 validation accuracy (%)
comparison results of RLD and other distillation ap-
proaches are reported in Table 3. On this more challenging
dataset, RLD successfully outperforms all existing feature
and logit distillation algorithms, consistently achieving op-
timal performance and demonstrating its superiority.

Analysis. Examining the experimental results detailed in
Tables 1 to 3, it is clear that the performance improvement
brought about by RLD is more substantial on the ImageNet
dataset than on the CIFAR-100 dataset. We presume that
this discrepancy stems from the varying accuracy levels
of the teacher models on the respective training sets. As
shown in Figure 4, the teacher model exhibits high training
accuracy on the CIFAR-100 dataset, while it shows com-
paratively lower accuracy on the ImageNet dataset. Given
that RLD aligns with DKD when the teacher predictions
are accurate, the high training accuracy on the CIFAR-100
dataset might hinder substantial divergence between these
two methods. Conversely, on the ImageNet dataset, where
the training accuracy is lower, RLD outperforms DKD by
achieving a more substantial improvement.

5.3. Extensions
Reversed Knowledge Distillation. We explore a unique
scenario termed reversed knowledge distillation [44], where
the teacher performs worse than the student. This study in-
vestigates the feasibility of using an inferior teacher model
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(a) CIFAR-100       (b) ImageNet

~2% ~22%

Figure 4. Proportion of predictions from teacher models on the
training set. (a) ResNet56. (b) ResNet50.

Teacher ResNet56 ResNet110 VGG13
72.34 74.31 74.64

Student WideResNet-40-2
75.61

KD 76.72 77.37 76.86
DKD 77.34 77.70 77.45
RLD (ours) 78.03 78.28 77.88

∆ +0.69 +0.58 +0.43

Table 4. Top-1 accuracy (%) on the CIFAR-100 validation set
when distilling with inferior teachers. Optimal results are high-
lighted in bold. The reported results are the mean of three trials.

to enhance the performance of a superior student model,
particularly in situations where sourcing a more capable
teacher model proves challenging. As shown in Table 4,
among all distillation pairs, RLD achieves the best perfor-
mance, and shows a large performance gap compared to
DKD. Moreover, the accuracy difference ∆ between RLD
and DKD shows that poorer teacher model performance
leads to greater RLD improvement over DKD. This can be
attributed to two main factors: firstly, the use of the in-
ferior teacher allows RLD to be better distinguished from
DKD; secondly, the unique setup of reversed knowledge
distillation imposes more stringent demands on the quality
of knowledge transferred, thereby underscoring the effec-
tiveness of RLD in refining distilled knowledge.

Logit Standardization. We investigate the efficacy of
each method when supplemented with logit standardization
technique LSKD [34]. The results are shown in Table 5.
The optimal results achieved by RLD underscore its su-
perior performance and the vast potential of its integration
with other methodologies.

Logit Discrepancy Visualization. We calculate the mean
absolute error (MAE) of logits for each class between
teacher and student models obtained via DKD and RLD,
visualizing these results using the heat map in Figure 5.
Despite RLD outperforming DKD, it is observed that the

Teacher WRN-40-2 VGG13 ResNet50
75.61 74.64 79.34

Student MobileNet-V2
64.60

KD 69.23 68.61 69.02
CTKD 69.53 68.98 69.36
DKD 70.01 69.98 70.45
RLD (ours) 70.35 70.63 71.06

Table 5. Top-1 accuracy (%) on the CIFAR-100 validation set
when training with logit standardization technique LSKD [34].
The optimal results are highlighted in bold text. The reported re-
sults are the mean of three trials.

(a) DKD                                      (b) RLD

Larger

Smaller

Figure 5. Visualized teacher-student logit discrepancy learned by
DKD and RLD on the CIFAR-100 validation set. For better vi-
sualization, 100 classes are reshaped into a 10×10 matrix. The
teacher is ResNet32×4, and the student is ResNet8×4.

logit discrepancy yielded by RLD is larger than that of
DKD. This observation aligns with our anticipation, given
that RLD rectifies certain inaccuracies in teacher knowledge
and provides students with greater autonomy in formulating
their own predictions. This finding underscores that an un-
considered alignment with teacher knowledge may not be
the optimal strategy, and we believe that correction-based
approaches deserve more attention and research.

Ablation Study. We perform an ablation study on the
components of RLD, and the results are shown in Table 6.
The results demonstrate that each component of RLD effec-
tively contributes to enhanced performance. Notably, while
masking all classes with values greater than (denoted as
“g”) those of the true class would similarly eliminate mis-
information and preserve class correlations, this masking
strategy (denoted as Mg) inadvertently integrates true class-
related knowledge into both masked correlation and sample
confidence. This overlap may create conflicts between the
resulting losses, thereby hindering performance improve-
ment. Figure 6 presents a toy example for illustration. Af-
ter applying Mg, the distillation objective of MCD requires
that the probabilities of classes B, C, and D be close. This
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LCE LSCD
LMCD Accuracy

Mg Mge

✓ 72.50

✓ ✓ 73.55

✓ ✓ 75.50
✓ ✓ 75.64

✓ ✓ ✓ 75.53
✓ ✓ ✓ 76.64

Table 6. Ablation study on the importance of each component
in RLD. Top-1 accuracy (%) on the CIFAR-100 validation set
is reported. The teacher is ResNet32×4, and the student is
ResNet8×4. The reported results are the mean of three trials.

A B C D

Teacher

B

True
Class

Other
Classes

0.4
≈0.2 ≈0.2 ≈0.2

0.4
0.6

B C D C D

Distillation
Target

Conflict

≈ ≈ ≈

Figure 6. A toy example illustrates how the Mg masking strat-
egy can lead to loss conflict. In this example, the probabilities of
classes B, C, and D in the teacher distribution are close, and the
value corresponding to B is slightly larger than those of C and D.

conflicts with the objective of SCD, which enforces a prob-
ability of 0.4 for class B, since the sum of class probabilities
cannot exceed 1. In contrast, this issue does not arise when
using Mge. Therefore, we opt for Mge as the masking strat-
egy.

Hyper-parameter Analysis. We investigate the impact of
the hyper-parameters α and β, which correspond to the im-
portance of LSCD and LMCD, respectively. As shown in
Figure 7, a more detailed hyper-parameter search can sig-
nificantly enhance the effectiveness of RLD. Notably, the
optimal hyper-parameter configurations vary significantly
across different distillation pairs, which fundamentally ex-
plains why existing studies [34, 48] do not adopt fixed
hyper-parameter settings. Additionally, we reveal an im-
portant phenomenon: unlike DKD, where optimal perfor-
mance is achieved at α = 1 [48], RLD generally prefers
larger α values. This difference may stem from the follow-
ing mechanism: when the teacher model makes incorrect
predictions, smaller α values in the DKD loss can mitigate
the negative impact of incorrect teacher knowledge but also

(a) Teacher: ResNet32x4, Student: ResNet8x4

(b) Teacher: WRN-40-2, Student: ResNet8x4

Figure 7. Impact of the hyper-parameters α (LSCD) and β (LMCD)
on the CIFAR-100 validation set. By default, for both distillation
pairs, α = 1 and β = 4 (corresponding to the accuracies reported
in Section 5.2, marked with dashed lines). The reported results are
the mean of three trials.

limit the transfer of knowledge to some extent. In contrast,
RLD refines the knowledge to effectively eliminate inter-
ference from incorrect information, allowing it to adapt to
larger α values and further improve model performance.

6. Conclusion
Existing knowledge distillation methods do not consider the
impact of incorrect teacher predictions on students. Alter-
natively, teacher outputs are arbitrarily corrected, disrupt-
ing class correlations. In this paper, we introduce Refined
Logit Distillation (RLD) to address these issues. RLD en-
ables teacher models to impart two distinct forms of knowl-
edge to the student models: sample confidence and masked
correlation. It effectively mitigates over-fitting and elim-
inates potential misinformation from the teacher models,
while maintaining class correlations. Experimental results
demonstrate the superiority of RLD.

Future Work. There are a few directions to improve our
proposed RLD. For instance, dynamic temperature [21] and
meta-learning [13] techniques can be used to tune the hyper-
parameters. Additional strategies such as data augmenta-
tion [6] and sample selection [20] can be employed to distill
high-quality samples. Besides, combining RLD with state-
of-the-art feature distillation methods may be a promising
avenue of exploration to further improve the distillation per-
formance. We consider extending correction-based knowl-
edge distillation to the feature domain, utilizing techniques
such as Class Activation Mapping [39].
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