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Query: white chair
Query: It would be helpful to have somewhere to 
sit while I organize all these tools and supplies.

Query: I need a little boost to reach 
the sink.

Conventional Visual Grounding Egocentric Visual Intention Grounding

Figure 1. Traditional visual grounding (left) vs. egocentric visual intention understanding (center and right). Traditional grounding identifies
the “white chair” by detecting specific objects from third-person perspectives. Egocentric visual intention understanding must infer user
needs in complex, first-person scenarios, e.g., seating in a workshop (center) or using a chair to reach the sink (right).

Abstract

Visual grounding associates textual descriptions with ob-
jects in an image. Conventional methods target third-person
image inputs and named object queries. In applications
such as AI assistants, the perspective shifts – inputs are ego-
centric, and objects may be referred to implicitly through
needs and intentions. To bridge this gap, we introduce
EgoIntention, the first dataset for egocentric visual intention
grounding. EgoIntention challenges multimodal LLMs to 1)
understand and ignore unintended contextual objects and
2) reason about uncommon object functionalities. Bench-
mark results show that current models misidentify context
objects and lack affordance understanding in egocentric
views. We also propose Reason-to-Ground (RoG) instruc-
tion tuning; it enables hybrid training with normal descrip-
tions and egocentric intentions with a chained intention
reasoning and object grounding mechanism. RoG signif-
icantly outperforms naive finetuning and hybrid training
on EgoIntention, while maintaining or slightly improving
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naive description grounding. This advancement enables uni-
fied visual grounding for egocentric and exocentric visual
inputs while handling explicit object queries and implicit
human intentions. Our code and model are available at
https://github.com/pengzhansun/EgoIntention.

1. Introduction
Consider the following scenarios: a person is looking for
a place to sit down for organizing tools in a messy work-
shop, or a kid is trying to reach the sink in a kitchen (refer
to Figure 1). A wearable artificial intelligent (AI) assistant
could enhance these tasks by identifying contextually rele-
vant objects (e.g., a chair) without explicit object references.
To achieve this, such an assistant must possess strong ego-
centric visual perception capabilities [11, 37, 43, 51]. This
would significantly improve task efficiency, reduce cognitive
load, and support hands-free, context-aware interaction in
dynamic environments.

Building on this vision, we introduce the egocentric vi-
sual intention grounding task. Given an egocentric visual
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Please locate an object from the image that match with this intention: 
I need to gather my phone and belongings before heading out.

Figure 2. Challenge of Visual Intention Grounding. The model
must infer the intended object from the full intention sentence,
rather than simply detecting explicitly mentioned objects. In this
example, “gather my phone and belongings” explicitly mentions
“phone” (highlighted in red) , which often misleads existing visual
grounding models to identify the wrong object (red box). The
correct target, a handbag (green box), is only implied.

input and a human intention query, a model must accu-
rately localize the intended object within the scene. This
task supports real-world applications where users locate
objects based on their needs. The object may not be di-
rectly named but can be inferred from the user’s intention.
Additionally, egocentric AI assistants operate from a first-
person perspective, introducing challenges such as occlu-
sions and dynamic viewpoints not present in conventional
third-person vision systems. Unlike conventional visual
grounding tasks [27, 30, 47], such as referring expression
comprehension [9, 10, 16, 28, 29, 38, 39], this task requires
reasoning about object affordance beyond explicit mentions
of the object. As shown in Figure 2, existing models often
misinterpret explicit mentions and fail to infer the actual in-
tended object, highlighting the need for contextual reasoning
in visual intention grounding.

Despite recent advancements in vision-language mod-
els [4, 6, 8, 17, 19, 31, 35, 36, 46, 48, 50], existing meth-
ods [1, 3, 5, 26, 40, 41] struggle to solve visual intention
grounding in diverse real-world scenarios. First, solving the
visual intention grounding task using two separate models,
such as a language model (e.g., GPT-4 [1]) for reasoning and
an object detector (e.g., GroundingDINO [23]) for localiza-
tion, yields suboptimal results. These off-the-shelf models
process visual and language information independently, of-
ten resulting in inconsistent associations between the two
modalities. Consequently, a model may hallucinate objects
by incorrectly identifying items that are not present in the
scene. Secondly, while multimodal large language models
(MLLMs) offer a unified approach, existing methods are
primarily designed for third-person visual grounding tasks.
Without datasets connecting egocentric visual data to inten-

tion sentences, these models struggle to adapt to and perform
well on first-person intention grounding.

To bridge the gap in egocentric visual intention grounding,
we introduce EgoIntention. EgoIntention is a comprehensive
dataset built upon Ego4D [11], the largest real-world egocen-
tric vision dataset. We inherit object bounding boxes annota-
tion from PACO-Ego4D [33], a dataset that annotates object
parts and attributes, and augment them with carefully curated
human intention descriptions. Additionally, we address the
inherent subjectivity in intention-object relationships by in-
corporating supplementary bounding box annotations for
alternative objects that could reasonably fulfill each stated
intention. Our EgoIntention dataset addresses two main gaps
in visual grounding research: 1) the lack of egocentric data,
and 2) the limited coverage of complex intentions arising
from first-person viewpoints. Comprising 26,384 images,
52,768 human intention descriptions, and 89,841 annotated
target object bounding boxes, this comprehensive dataset es-
tablishes a robust foundation for advancing visual intention
understanding in real-world egocentric applications.

Despite providing a rich benchmark for egocentric in-
tention grounding, EgoIntention also exposes significant
challenges for existing models. We identify two major lim-
itations. First, multimodal models rely on explicit object-
centric prompts (e.g., “Where is the white chair?”), directly
mapping object names to their locations. However, intention-
based queries require implicit reasoning. For example, when
assisting in a workshop, the model must infer that the user
needs a chair for sitting, rather than simply detecting a chair.
Second, models must reason beyond direct object matches,
recognizing alternative objects based on affordances. In the
case of a child trying to reach the sink, the model should
identify the chair as a suitable support, even though the query
does not explicitly mention “chair.” This requires a deeper
understanding of object functionality and context, which is a
challenge for current MLLMs.

To address the above challenges, we propose a model-
agnostic Reason-to-Ground (RoG) instruction tuning ap-
proach. RoG disentangles intention understanding from
object grounding to enhance multimodal models’ reasoning
capabilities. By doing so, RoG reduces spurious correlations
between unintended object mentions and the actual intended
object locations. On EgoIntention, our RoG instruction
tuning improves MiniGPTv2’s performance by 3.9 Preci-
sion@0.5 compared to naive finetuning and significantly
outperforms the off-the-shelf GPT-4 [1] + GroundingDINO
pipeline by 12.2 Precision@0.5.

Our contributions can be summarized as follows:
1. We construct the EgoIntention dataset for visual inten-

tion grounding. The dataset is the first egocentric visual
grounding dataset with multiple intention queries.

2. We benchmark and reveal that existing MLLMs struggle
with intention reasoning and egocentric visual grounding.
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Table 1. Comparison of intention-related visual grounding datasets.

Dataset #Images
Language
Query Ego-view

Multi-intention
annotations

ADE-Aff [7] 10,000 Verb ✗ ✗
PAD [25] 4,002 Verb ✗ ✗

COCO-Tasks [34] 39,724 Phrase ✗ ✗

RIO [32] 40,214
Template
language ✗ ✓

IntentionVG [42] 101,648
Free-form
language ✓ ✗

EgoIntention 26,384
Free-form
language ✓ ✓

These models misinterpret explicitly mentioned objects
as targets or hallucinate objects not present in the scene.

3. We propose Reason-to-Grounding (RoG) instruction tun-
ing, a model-agnostic training approach to enhance
MLLMs for egocentric intention grounding while retain-
ing their performances for normal visual grounding.

2. Related Work
2.1. Visual Grounding Datasets
Visual grounding [27, 30, 47] is a multimodal task that lo-
cates a target object in an image based on a given language
query. Early works focused on referring expression com-
prehension [9, 10, 16, 28, 29, 38, 39], which matches de-
scriptive phrases to objects within an image. Datasets such
as RefCOCO [16], RefCOCO+ [47], and RefCOCOg [27]
have played key roles in advancing this field. More recently,
the scope of language input has been widened to encompass
descriptions of object affordance [2, 18, 45]. This evolution
led to datasets using verbs or phrases, (e.g., ADE-Aff [7],
PAD [25], COCO-Tasks [34]) and full sentences in datasets
like RIO [32] and IntentionVG [42].

Compared to IntentionVG, where egocentric images are
captured with a fixed viewpoint centered on objects, our
dataset is constructed from Ego4D [11], introducing greater
visual challenges such as motion blur, small object sizes, and
perspective distortions inherent to first-person vision. For
language queries, our dataset provides multiple intention sen-
tences per object, reflecting the diverse ways an object can be
used to fulfill different needs. Similar to the RIO dataset, we
annotate each sample with both a context sentence, describ-
ing an object’s typical use in its expected environment, and
an uncommon sentence, which represents a less conventional
use case requiring creative object substitution.

2.2. Visual Grounding Models
Traditional visual grounding methods [20, 21, 24, 27, 44]
are specialized models explicitly trained to map language
queries to object locations. Models such as MDETR [14],
SeqTR [52], and Polyformer [22] leverage Transformer-

based architectures to enhance this association. Ground-
ingDINO [23], a recent advancement in open-set object de-
tection, extends DINO [49] with grounded pre-training, al-
lowing it to detect arbitrary objects given category names or
referring expressions. Recently, multimodal large language
models (MLLMs) have emerged as the dominant paradigm
for vision-language tasks [1, 3, 5, 15, 26, 40, 41]. By lever-
aging vast amounts of image-text data and instruction tuning,
these models achieve impressive generalization across vari-
ous multimodal benchmarks. While effective in conventional
visual grounding tasks, both specialist models and MLLMs
primarily perform word-by-word detection on the input lan-
guage query, rather than truly understanding the underlying
human intention. To address these challenges, we propose
Reason-to-Ground (RoG), a method that explicitly disentan-
gles intention reasoning from object localization, as detailed
in method Section 4.

3. Intention Grounding & EgoIntention Dataset

3.1. Task Description
We introduce visual intention grounding, a novel paradigm
that establishes a direct mapping between human intentions
and target objects in visual scenes. This approach bridges
the gap between natural language understanding and visual
object grounding. Formally, given an egocentric image I
and a human intention query Q, the task requires the model
to comprehend the underlying intention and localize the
target object O that satisfies the user’s need by predicting its
bounding box coordinates (x1, y1, x2, y2).

3.2. Dataset Collection
Our dataset, EgoIntention, sources its images from the
Ego4D dataset [11] and its associated object bounding box
annotations from PACO [33]. The key contribution of EgoIn-
tention is the collection of multiple intention queries per
object, reflecting the diverse ways objects are used in real-
world scenarios. Our systematic data collection pipeline
consists of three stages, as illustrated in Figure 3.

The initial stage generates intention descriptions. We use
GPT-4 [1]’s multimodal capabilities to analyze egocentric
visual inputs and generate contextually relevant human in-
tention sentences. To capture diverse real-world scenarios,
we design two types of intention descriptions:
• Context-aware intentions: These sentences reflect com-

plex object relationships and environmental cues from a
first-person perspective. For instance, a user might think,
“I noticed a wobbly table leg that needs fixing,” expressing
the need for a hammer.

• Uncommon intentions: These describe atypical object
uses, where users repurpose objects based on necessity.
For example, a backpack might be used as an improvised
umbrella during unexpected rain.
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Ground truth object and bounding boxes

Prompt

Human check 
instructions

Sentence 
candidate set

Qualified sentence: I need to 
cut some herbs for the recipe

Step 2.
MTurk

Step 1.
ChatGPT

Alternative bounding box 
collection instructions

Collected objects and bounding boxes

Step 3.
MTurk

Figure 3. Dataset collection pipeline for EgoIntention. Our data collection process consists of three key stages. (1) Intention Sentence
Generation: We use GPT-4 to generate egocentric human intention sentences based on visual input, covering both context-aware and
uncommon intention scenarios. (2) Human Validation via MTurk: Annotators assess the semantic validity and real-world applicability of
generated sentences, filtering out low-quality or ambiguous descriptions. (3) Alternative Object and Bounding Box Collection: Given the
inherent subjectivity of human intentions, additional valid object candidates are identified by human annotators, supplementing the original
ground truth annotations with alternative bounding boxes.

These sentences are generated using carefully crafted
prompts through an in-context learning approach as shown
in Appendix.

The second stage involves human validation via Amazon
Mechanical Turk (MTurk). Annotators assess each gener-
ated sentence using detailed guidelines to ensure semantic
correctness and real-world plausibility. Since multiple valid
intentions may exist for a given scenario, we do not use
inter-annotator agreement as a filtering criterion. Instead,
one annotator selects and, if necessary, refines a suitable sen-
tence. This selection is then verified by a second annotator
and a GPT-4-based checker, both of which independently
assess whether the sentence expresses a genuine need for the
target object. Only those passing both checks are retained.

To account for the subjectivity of human intentions, we
include additional object annotations. A single intention
may be satisfied by various objects (e.g., flower pots, bottles,
or cups for desktop decoration). Annotators identify such
alternatives, which are added as supplementary bounding
boxes. As before, only those passing both human and GPT-4
verification are included.

We observed that GPT-4 performs more reliably as a ver-
ifier than as a generator. While context-aware sentences
passed human checks at 97.2%, uncommon intentions had
a lower pass rate of 74.1%, often due to generic outputs or
object name leakage. However, as a verifier, GPT-4 achieved
92% agreement with human judgments in a 500-sample
study, supporting its role as an auxiliary checker. To further
validate our pipeline, we conducted an inter-annotator study
on 500 verified samples, yielding agreement rates of 98.6%
for context-aware and 91.2% for uncommon intentions. The
maintained or slightly improved RefCOCO performance
after joint training further supports the quality of our annota-
tions.

3.3. Dataset Statistics

Image Context BBox Uncommon BBox

Train 15,667 25,772 25,933
Val 825 1,402 1,366
Test 9,892 17,699 17,669

Table 2. Number of images and bounding boxes (BBox) in the
EgoIntention dataset. Context BBox refers to bounding boxes
associated with objects commonly used in the given scene, align-
ing with expected human intentions based on environmental cues.
Uncommon BBox represents bounding boxes for objects used in
unconventional ways, where the intended action requires creative
or atypical object usage.

Our EgoIntention dataset builds upon PACO’s image
splits, comprising 15,667 training, 825 validation, and 9,892
test samples. For each image, we annotate two types of
intention queries: context-aware intentions that leverage en-
vironmental cues, and uncommon intentions that capture
alternative object uses. Following our multi-stage annotation
pipeline, we enrich the dataset with supplementary bounding
box annotations to accommodate the inherent diversity of ob-
ject choices for each intention. The distribution of bounding
box annotations across different splits and intention types is
summarized in Table 2.

4. Method

This section begins with an observational study of off-the-
shelf hybrid models in Section 4.1, highlighting key limi-
tations in their reasoning and detection pipeline. Based on
these findings, we propose Reason-to-Ground (RoG) to en-
hance multimodal large language models for visual intention
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grounding in Section 4.2. We then detail our supervised
fine-tuning approach in Section 4.3.

4.1. Observation of Off-the-Shelf Hybrid Models

A straightforward approach to visual intention grounding is
to leverage two off-the-shelf models separately for reasoning
and detection. Specifically, we use ChatGPT for intention
reasoning and GroundingDINO for object detection. From
our observation study (detailed in Section 5), we identify two
key findings: Performing reasoning first improves accuracy.
Narrowing the search space before detection leads to more
precise object localization. Hybrid off-the-shelf models suf-
fer from inconsistent representations. These models operate
in distinct visual and language spaces, causing discrepan-
cies that hinder effective grounding. Motivated by these
findings, our main method introduces Reason-to-Ground, an
instruction tuning approach for multimodal large language
models.

4.2. Reason-to-Ground Instruction Tuning

We propose a novel training strategy, Reason-to-Ground In-
struction Tuning (RoG). Our method decomposes the task
into two essential components: human intention understand-
ing and visual grounding. Existing approaches [3, 5] directly
feed implicit intention sentences with a task-specific token
<ref>, which prompts the MLLM to output the bounding
box corresponding to the input language query. In contrast,
RoG employs a two-stage process. In the first stage, we facil-
itate human intention understanding by querying the MLLM
with a <reason> token followed by the implicit intention
sentence. This prompts the model to output the target object
category. In the second stage, we perform <ref> token and
the explicit object description derived from the first stage.
These two stages are illustrated with an example in Figure 4.

By disentangling intention reasoning and object
grounding, RoG prevents the model from naively associat-
ing explicitly mentioned objects with target bounding boxes,
leading to more accurate intention-driven visual grounding.

4.3. Supervised Fine-tuning

We propose a unified grounding framework that can pro-
cess exo- and egocentric visual inputs while handling ex-
plicit object queries and implicit human intentions. To
achieve this comprehensive capability, we leverage tradi-
tional exocentric datasets (RefCOCO [16], RefCOCOg [27],
and RefCOCO+ [47]) alongside our proposed EgoIntention
dataset during training. Our method RoG effectively extends
MLLMs’ visual grounding capabilities to accommodate ego-
centric image inputs and implicit human intention queries
through LoRA [12] supervised fine-tuning.

<reason>Which item in the image meets 
the need: I need to gather my phone and 
belongings before heading out.</reason>

<ref>Where can I locate handbag?</ref>

Handbag

{<x1><y1><x2><y2>}

Reason-to-Ground Pipeline

Figure 4. Overview of Reason-to-Ground Instruction Tuning (RoG):
The model first infers an explicit object category from an implicit
intention sentence (intention reasoning), then localizes the object
in the image (object grounding).

5. Experiments

5.1. Implementation Details
We conducted supervised finetuning using a comprehen-
sive dataset that combines traditional referring expression
comprehension datasets (RefCOCO, RefCOCO+, and Re-
fCOCOg) with our proposed visual intention grounding
dataset, EgoIntention. For our experiments, we evalu-
ated five state-of-the-art multimodal large language models
(MLLMs), all with 7B parameters: MiniGPTv2, Groma,
CogVLM-grounding, and Qwen-VL. All model training was
performed on 4 NVIDIA A40 GPUs. To maintain compu-
tational efficiency while preserving model performance, we
employed Low-Rank Adaptation (LoRA) [12] for parameter-
efficient finetuning.

5.2. Models
5.2.1. Hybrid Model Baselines
A straightforward approach to visual intention grounding
is to use off-the-shelf state-of-the-art models to separately
address the vision and language components of the task. For
vision, we adopt GroundingDINO, a popular open-set object
detector that accepts a set of object category queries and
returns the corresponding bounding boxes. For language un-
derstanding, we use ChatGPT, a large-scale language model
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developed by OpenAI, to reason about the user’s intention
and infer the target object category.

As detailed in Section 4, we implement this two-stage
framework in two variants: (1) first GPT-4 then Ground-
ingDINO (Reasoning–Detection baseline, R-D), and (2) first
GroundingDINO then GPT-4 (Detection–Reasoning base-
line, D-R).

D-R baseline. We begin by applying GroundingDINO
to detect a comprehensive set of candidate object bounding
boxes in the egocentric image. To ensure broad coverage,
we use all object categories provided by the PACO dataset
as text queries. GroundingDINO returns bounding boxes
along with associated logits and predicted phrases. We then
pass these predicted phrases, along with the human intention
sentence, to GPT-4. GPT-4 performs reasoning over the tex-
tual descriptions to identify the object category most aligned
with the expressed intention.

R-D baseline. In contrast, this variant begins with GPT-4.
Given the egocentric image and a prompt listing all candi-
date object categories, GPT-4 reasons about the intention
and outputs the predicted object category. This output is then
used to filter the query space for GroundingDINO, which
subsequently predicts the bounding box for the inferred ob-
ject by focusing only on the categories identified through
GPT-4’s reasoning.

5.2.2. Multimodal Large Language Models

We evaluate our approach on several state-of-the-art MLLMs,
categorized into two groups based on their specialized capa-
bilities:

Grounding Specialist MLLMs excel at visual ground-
ing tasks including grounded captioning, referring expres-
sion generation, referring expression comprehension, and
grounded visual question answering:
• CogVLM-grounding incorporates a trainable visual ex-

pert module within the attention and FFN layers, effec-
tively bridging the gap between the frozen pretrained lan-
guage model and image encoder.

• Groma demonstrates exceptional region-level grounding
capability by integrating region tokens into both user in-
structions and model responses, enabling precise localiza-
tion of described language queries.
Compared to grounding specialists, Generalist MLLMs

exhibit enhanced reasoning abilities—a critical capability
for solving visual intention grounding tasks:
• MiniGPT-v2 provides a unified interface for numerous

vision-language tasks, employing unique task identifiers
during model training to facilitate multi-task learning.

• Qwen-VL, built upon the Qwen-LM foundation, tran-
scends conventional image description and question-
answering capabilities by incorporating robust visual
grounding functionality.

5.3. Evaluation Metrics
Our evaluation accounts for multiple alternative ground-truth
boxes. We calculate each sample’s score by computing the
IoU between the predicted box and all ground truth boxes
and then take the maximum IoU. A prediction is correct if
its IoU with any ground truth box exceeds a threshold of 0.3
or 0.5 (Precision@0.3 or @0.5).

5.4. Zero-shot Evaluation
We first test all the 6 above mentioned methods in a zero-shot
setting in Table 3. Our experiments reveal that the order
of using the reasoner and detector significantly impacts
results, despite the D-R and R-D baselines using the same
models. For visual context-aware intention understanding,
the D-R baseline correctly understands and accurately de-
tects only 21.1% of samples. In contrast, the R-D baseline
improves P@0.5 accuracy to 46.6%. We attribute this dif-
ference to GroundingDINO’s limitations when processing
numerous language queries. When used first, it must handle
all the object categories from the EgoIntention dataset and
omits many object candidates. However, by using GPT-4 for
initial reasoning, we narrow the target objects to one or two
categories. This focused input allows GroundingDINO to
perform 25% better than in the D-R baseline. For uncommon
intention understanding, we observe a similar trend. The R-
D baseline (23.6%) outperforms the D-R baseline (14.6%),
but P@0.5 improves by only 9%. This smaller improvement
stems from GPT-4’s lower reasoning accuracy for uncom-
mon intentions, failing to provide GroundingDINO with the
correct object category for detection.

Grounding-specialist MLLMs, such as CogVLM-
grounding and Groma, perform poorly on EgoInten-
tions. This can be attributed to human intention reasoning
being crucial for solving the visual intention grounding task.
However, these specialist models are primarily aligned with
grounding-related tasks and lack the necessary reasoning
capability to infer which object should be grounded. Con-
sequently, they fail to identify the intended object, leading
to suboptimal results. In contrast, generalist MLLMs such
as MiniGPT-v2 and Qwen-VL demonstrate more reason-
able grounding performance when given an intention query.
Despite reasoning capabilities learned from pretraining and
alignment, generalist MLLMs’ overall performance remains
limited. MiniGPT-v2 achieves an overall Precision@0.5
score of 19.9%, while Qwen-VL reaches 21.7%; both are
significantly lower than the R-D GPT4-GroundingDINO
baseline (35.1%). This performance gap highlights the im-
portance of integrating strong intention reasoning with visual
grounding for improved results.

5.5. RoG Supervised Finetuning Results
In addition to the EgoIntention training set, we incorporate
RefCOCO, RefCOCO+, and RefCOCOg (RefCOCO/+/g) to
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Table 3. Benchmark comparison on EgoIntention across various methods, including two-stage pipeline approaches, grounding-specialist
MLLMs, and generalist MLLMs. Performance is evaluated using Precision@0.3, Precision@0.5, and mIoU, reported for both the Context
Split and Uncommon Split. The Overall P@0.5 metric summarizes the general performance across splits.

Method Context Split Uncommon Split Overall P@0.5
P@0.3 P@0.5 mIoU P@0.3 P@0.5 mIoU

D-R GroundingDINO-GPT4 30.1 21.1 0.217 20.6 14.6 0.150 17.8
R-D GPT4-GroundingDINO 54.3 46.6 0.402 31.7 23.6 0.242 35.1

CogVLM-grounding 8.0 5.9 0.057 6.3 4.9 0.042 5.4
Groma 9.6 7.4 0.074 8.9 6.9 0.070 7.2

MiniGPT-v2 31.3 21.7 0.224 25.5 18.0 0.186 19.9
Qwen-VL 27.9 21.4 0.225 27.3 22.0 0.228 21.7

Table 4. Comparison of instruction tuning methods on RefCOCO, RefCOCO+, RefCOCOg, and EgoIntention datasets. Naive SFT refers to
LoRA-based supervised fine-tuning, while RoG SFT represents LoRA-based fine-tuning with our Reason-to-Ground Instruction Tuning
(RoG) instruction tuning approach. We report Precision@0.5 as the evaluation metric across different validation and test splits.

Model RefCOCO RefCOCO+ RefCOCOg EgoIntention

val testA testB val testA testB val test context uncommon overall

Zero-shot MiniGPTv2 87.4 91.3 83.7 79.0 85.1 72.8 83.5 84.1 21.7 18.0 19.9
Naive SFT 86.6 91.0 83.0 79.0 84.9 72.0 82.6 84.2 46.0 40.9 43.4
RoG SFT 87.8 91.4 84.0 79.8 85.4 73.8 84.3 85.2 49.9 44.7 47.3

Zero-shot Qwen-VL 89.3 92.4 85.4 83.2 88.2 77.2 85.3 85.6 21.4 22.0 21.7
Naive SFT 89.5 92.8 85.7 83.4 88.8 77.8 85.9 86.3 32.1 26.1 29.1
RoG SFT 89.3 92.5 85.3 83.3 88.8 77.4 86.2 86.4 35.5 31.7 33.6

maintain model performance on referring expression compre-
hension while also leveraging these datasets to enhance in-
tention grounding performance. As a result, our training data
consists of three components: RefCOCO/+/g, RefCOCOIn-
tention/+/g, and EgoIntention. The RefCOCOIntention/+/g
dataset is generated automatically using GPT-4, applying
the same prompt used for collecting EgoIntention, to create
human intention queries.

While Naive SFT improves EgoIntention performance,
it slightly degrades the model’s capability in referring ex-
pression comprehension as shown in Table 4. In contrast,
our RoG instruction tuning strategy not only further
enhances performance on EgoIntention but also leads
to improved results on the RefCOCO series datasets.
After fine-tuning with our RoG strategy, the generalist
MLLM MiniGPT-v2 surpasses the best off-the-shelf two-
stage method (R-D GPT4-GroundingDINO) by 12.2% ac-
cording to Precision@0.5, demonstrating the effectiveness of
our approach in bridging intention reasoning and grounding.
Unlike R-D GPT4-GroundingDINO, which treats these as
two independent sub-tasks, our method jointly models the
reasoning and grounding processes, leading to more coherent
and accurate results. Additionally, we observe that RoG SFT

performs better on MiniGPT-v2 than on Qwen-VL. This dis-
crepancy arises because MiniGPT-v2 exhibits stronger adapt-
ability to new task-specific tokens, enabling it to integrate
hierarchical reasoning instructions more effectively. In con-
trast, Qwen-VL demonstrates weaker instruction-following
capabilities during supervised fine-tuning, limiting its per-
formance gains under the same strategy. See visualization
examples in Appendix.

5.6. Ablation Study

5.6.1. Impact of Supervised Finetuning Datasets
We analyze the performance gains from different datasets
used during the SFT stage in Table 5. Finetuning exclu-
sively on EgoIntention hurts generalization, dropping Ref-
COCO validation performance from 87.4% to 66.5%. Com-
bining RefCOCO/+/g with EgoIntention maintains REC per-
formance while improving EgoIntention metrics. Specifi-
cally, context intention performance improves from 42.8% to
45.9%, and uncommon intention performance increases from
39.2% to 40.8% (see Table 5). This suggests that conven-
tional REC datasets contribute additional gains, particularly
in object grounding.

We explore whether adding human intention annotations
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Table 5. Ablation study of training datasets used for MiniGPT-v2 fine-tuning and their impact on visual grounding datasets.

SFT Datasets Method RefCOCO RefCOCO+ RefCOCOg EgoIntention

RC/+/g RCInt./+/g EgoInt. Val TestA TestB Val TestA TestB Val Test Con Unco Ave. Obj.

- 0-shot 87.4 91.3 83.7 79.0 85.1 72.8 83.5 84.1 21.7 18.0 19.9 40.8

✓ Naive SFT 87.6 91.3 84.4 80.0 85.3 73.8 84.8 85.2 23.7 19.4 21.5 38.1
✓ Naive SFT 66.5 71.5 60.4 60.2 66.6 51.8 64.6 65.8 42.8 39.2 41.0 46.2

✓ ✓ Naive SFT 87.5 91.5 84.6 79.9 85.6 73.5 84.7 85.4 45.9 40.8 43.3 48.6
✓ ✓ ✓ Naive SFT 86.6 91.0 83.0 79.0 85.0 72.0 82.6 84.2 46.0 40.9 43.4 51.3
✓ ✓ ✓ RoG SFT 87.8 91.4 84.0 79.8 85.4 73.8 84.3 85.2 49.9 44.7 47.3 52.2

to REC datasets improves EgoIntention performance. We
create RefCOCOInt/+/g by collecting intention sentences
for RefCOCO/+/g training sets. This augmentation yields
only slight improvements. Without human verification, data
quality remains a bottleneck. These limited gains suggest
high-quality annotations are crucial for advancing intention
grounding.

The best overall performance comes from applying
our RoG strategy across all training datasets, demonstrat-
ing the effectiveness of our approach in jointly improving
REC task and visual intention grounding task.

5.6.2. RoG Improves Explicit Object Grounding
As shown in Table 5, we further evaluate the model’s per-
formance on EgoIntention with explicit object queries, as
indicated in the last column labeled “object”. Compared
to Naive SFT, RoG SFT disentangles visual intention un-
derstanding from object grounding, preventing the model
from being misled by explicitly mentioned but unintended
objects in the intention query. Our approach also leads to
a significant improvement in egocentric visual grounding
with explicit object queries, boosting the accuracy from
51.3% with Naive SFT to 52.2% with RoG SFT.

5.6.3. Hallucination and Misleading Errors.
Failure cases are due to hallucination (object is neither men-
tioned in the query nor present in the image) and object
reasoning. The latter can be divided into misleading lan-
guage (object mentioned in the query but not intended) and
misleading vision (object appears in the image but is not
intended). We use RAM++ [13] to extract all object tags
in the image to check for misleading vision errors. RoG
fine-tuned MiniGPTv2 achieves a lower error rate across
three categories as shown in the table 6.

Table 6. Error rates (%) for hallucination and reasoning failures
across context and uncommon splits.

Model
Context Split Uncommon Split

Language
Mislead

Vision
Mislead

Hallucination
Language
Mislead

Vision
Mislead

Hallucination

Zero-shot 3.4 8.4 30.1 6.9 7.5 58.2
Naive SFT 1.4 6.4 23.4 3.9 7.5 44.0
RoG SFT 2.1 3.8 12.0 2.4 6.6 24.3

5.6.4. Uncommon Intention Coverage
Uncommon intentions are inherently subjective and underex-
plored. Prior work like RIO [32] offers limited uncommon
cases with 4,826 test samples only for testing and none for
training. We curated five diverse, uncommon samples per
object category as in-context learning GPT-4 prompts to con-
struct the first large-scale training set for this setting. Table 7
shows that removing our uncommon split from training leads
to a clear drop in Precision@0.5 on EgoIntention uncommon
test set. Training with our uncommon intention data also
improves zero-shot performance on RIO uncommon set for
both naive and RoG SFT models.

Table 7. Impact of training with uncommon intentions on EgoIn-
tention and RIO benchmarks.

Methods
Training w/

EgoInt. Uncommon
EgoInt. Uncommon

Zero-shot on
RIO Uncommon

Naive SFT
– 33.0 21.4
✓ 40.9 22.1

RoG SFT
– 33.7 23.8
✓ 44.7 26.0

6. Conclusion
We introduce egocentric visual intention grounding, where
AI assistants infer and localize intended objects based on
implicit human intentions. To support this research, we
construct EgoIntention and benchmark state-of-the-art
large vision-language models (LVLMs). Our results reveal
that LVLMs struggle with implicit intention inference
and egocentric visual grounding. For improvements, we
propose Reason-to-Ground Instruction Tuning (RoG),
a model-agnostic approach that disentangles intention
reasoning from visual grounding, reducing spurious
correlations and improving alignment with human in-
tent. By applying RoG in supervised fine-tuning with
hybrid data from normal visual grounding and intention
grounding tasks, LVLMs retain strong performance on
conventional visual grounding while achieving significant
improvements in egocentric visual intention ground-
ing, offering a promising approach for both object and
intention queries in exo- and ego-centric visual environments.
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