
LayerD: Decomposing Raster Graphic Designs into Layers

Tomoyuki Suzuki1 Kang-Jun Liu2 Naoto Inoue1 Kota Yamaguchi1

1CyberAgent 2Tohoku University

Output: LayersInput

Recolor Change layout

Replace
object

Add
effect

Application

LayerD

Figure 1. LayerD effectively decomposes raster graphic design images into layers, where the input design contains various elements such
as typographic entities, embellishments, vector shapes, or even image materials. Once decomposed, one can apply image editing operations
such as color conversion or translation at the layer level, or further apply other post-processing such as OCR to vectorize each raster layer.

Abstract

Designers craft and edit graphic designs in a layer repre-
sentation, but layer-based editing becomes impossible once
composited into a raster image. In this work, we propose
LayerD, a method to decompose raster graphic designs into
layers for re-editable creative workflow. LayerD addresses
the decomposition task by iteratively extracting unoccluded
foreground layers. We propose a simple yet effective refine-
ment approach taking advantage of the assumption that lay-
ers often exhibit uniform appearance in graphic designs. As
decomposition is ill-posed and the ground-truth layer struc-
ture may not be reliable, we develop a quality metric that
addresses the difficulty. In experiments, we show that Lay-
erD successfully achieves high-quality decomposition and
outperforms baselines. We also demonstrate the use of Lay-
erD with state-of-the-art image generators and layer-based
editing. Code and models are publicly available 1.

1https://github.com/CyberAgentAILab/LayerD

1. Introduction

In the creative workflow, designers create and edit graphic
designs at the layer level, which is a basic unit of visual ob-
jects, such as text or images, and is commonly seen in de-
sign authoring tools like Adobe Photoshop or PowerPoint.
Once the workflow is complete, authoring tools composite
these layers into a final image and deliver it to a display de-
vice or print media, such as social media posts, flyers, and
posters. Composite raster images do not retain layer infor-
mation, making it difficult for designers to edit or retouch a
raster graphic design. Precise decomposition of raster art-
work into layers, i.e., the inverse problem of composition,
addresses this situation and enables a workflow that uses
existing raster artwork assets to create new artwork.

In this work, we investigate graphic layer decomposi-
tion, aiming to automatically decompose a raster graphic
design into a composable sequence of raster layers. Since
designers create graphic designs in a layered format, we can
view this task as restoring the original layered representa-
tion. Layer decomposition involves several computer vi-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17783

sion tasks, such as object localization, segmentation, order
estimation, and image inpainting. Unlike natural images,
graphic design is a mixture of various elements, including
typography, embellishments, vector art, illustrations, and
even natural image materials (Fig. 1). Naively applying im-
age decomposition approaches [51, 59, 61] tuned for the
natural image domain results in unintended decomposition
(e.g., objects in a photo material are decomposed) or un-
desirable artifacts (e.g., background lighting affects solid-
color vector-art), which are prohibitive for creative work.
Graphic layer decomposition is also inherently ill-posed;
there are multiple possible solutions, and a layer can be ar-
bitrarily divided into multiple layers. This can be problem-
atic, particularly when ensuring consistent evaluation.

We propose a method for fully automatic graphic layer
decomposition, LayerD, which we formulate as iterative
top-layer matting and background completion. We define
a top-layer by objects appearing on the front without oc-
clusion in the raster image, and in graphic designs, they
typically contain typography at the beginning, followed by
embellishment behind texts or photo materials in later it-
erations. We learn a top-layer matting model from a high-
quality graphic design dataset to ensure that the layer granu-
larity aligns with humans, and together with an off-the-shelf
inpainting model and a simple-yet-effective heuristic refine-
ment to remove artifacts, we build a complete layer decom-
position pipeline for graphic designs. There have been a
few similar attempts at fully automatic image decomposi-
tion into layer representations [5, 51], where they build a
modular decomposition pipeline consisting of components
for each subproblem, such as object detection [27, 57],
segmentation [38], ordering [22, 37], and inpainting [41].
While the stacked pipeline approach can take advantage of
pre-trained models at each stage, component stacking can-
not avoid error accumulation throughout the pipeline; e.g.,
segmentation can fail when object detection contains over-
lapping bounding boxes or there is a large hall in the region.
LayerD unifies detection, segmentation, and layer ordering
by an iterative matting model to reduce the error accumula-
tion while improving the efficiency. In addition, we intro-
duce a refinement approach for both foreground and back-
ground layers utilizing the domain prior that graphic design
often consists of texture-less flat regions, which improves
the final decomposition quality.

As layer decomposition can have multiple solutions and
even humans are not consistent on the granularity of lay-
ers, we propose qualitative metrics for evaluation based on
edit distance and visual quality between layer sequences
aligned by dynamic time warping (DTW) [34], which ac-
count for the inconsistency of the ground truth layers. We
compare LayerD with several baselines and demonstrate
that our method achieves the highest quality.

We summarize our contributions as follows:

• We propose LayerD, a fully automatic framework for
layer decomposition from raster graphic designs. LayerD
unifies the subtasks inherent in layer decomposition into
iterative top-layer extraction and leverages domain priors
to improve the final decomposition quality.

• We propose a consistent evaluation protocol for layer de-
composition based on the edit distance and appearance
quality between aligned layer sequences, which accounts
for the ambiguity in the ground truth layer structure.

• We empirically show that LayerD achieves the highest
quality compared to baselines and decomposed layers can
be used for downstream graphic design editing.

2. Related Work

2.1. Image Layer Decomposition

Image layer decomposition is a task to decompose an im-
age into a sequence of layers, which are composable with
a specific compositing function (e.g., alpha compositing) to
reproduce or approximate the original image [36]. Color
segmentation represents an image with semi-transparent
color layers, targeting digital paintings [49] and natural im-
ages [1, 2, 50]. Koyama et al. [19] propose to handle non-
linear color blending functions, followed by the efficient
deep learning-based extension [12].

There have been many studies on decomposing natural
scenes at the object level [15, 30, 33, 51, 59, 61]. For in-
stance, PCNet [59] decomposes a scene image into object
layers by estimating the order of objects and the RGB of oc-
cluded parts. While PCNet assumes the object modal mask
is given, Zhang et al. [61] create layered data including oc-
cluded parts in indoor scenes and decompose the image by
training instance segmentation, depth estimation, and back-
ground completion. Text2Layer [60] extracts salient ob-
jects from natural images using matting and generates train-
ing data for layered image generation. Recently, MU-
LAN [51] decomposes natural images, including outdoor
scenes where obtaining ground truth data is difficult, by
combining the latest off-the-shelf open vocabulary object
detection models [57], zero-shot segmentation [18], depth
estimation [37], and instance ordering [22] with heuristics.
While the above studies mainly focus on object decompo-
sition, Yang et al. [55] decompose physical object effects
(e.g., shadows or reflections) as well.

Compared to the natural image decomposition, graphic
design decomposition has to deal with different granular-
ities of objects; e.g., a corporate logo in a graphic de-
sign consists of an illustration and a text, and whether they
should be decomposed into parts depends on the context.
Considering the nature of the task, we propose a simple and
effective method and a new quantitative evaluation protocol
for inconsistent ground-truth. A concurrent work [5] tack-
les the same task as ours with a stacked pipeline approach

17784

Layer M
…

Layer M-1
Next Input for Layer M-1

Input Top-layer Alpha

Top-layer
Matting

Inpaint

Unblend Palette-based
FG Refine

Palette-based
BG Refine

Background Completion

Top-layer extraction

Figure 2. LayerD decopmoses raster graphic designs into layers by iteratively extracting the top-layer and completing the background. Our
training target is the top-layer matting model. Figs. 3 and 4 illustrate details of the top-layer extraction and background completion.

using a VLM trained on closed data. LayerD’s pipeline is
overwhelmingly simple and leverages domain knowledge to
refine the final quality. We compare LayerD with a VLM-
based pipeline in our experiment.

2.2. Image Vectorization
Related to layer decomposition, image vectorization con-
verts an image or a part into a set of parameters of a spe-
cific drawing function, rather than layer images. Our layer
decomposition approach can be useful for vectorization as
a pre-processing step to extract part-based raster images.
Du et al. [8] and Favreau et al. [9] obtain a sequence of
linear gradient layers that approximate the original image
by optimization using alpha blending. Several works at-
tempt to generate SVG-based representation from raster im-
ages [4, 32, 39, 40, 42, 44], where they typically assume
vector art, cleanly masked images, or clean segmented im-
ages as input. A few specifically focus on typographic rep-
resentation in graphic design, where they estimate text ren-
dering parameters [5, 43].

2.3. Image Matting and Foreground Extraction
Image matting is a task to estimate alpha mattes of objects in
an image, and together with other tasks such as background
inpainting, forms the layer decomposition task. Matting ap-
proach often assumes user-specified trimap [7, 46, 53, 56],
and a few trimap-free methods have been reported re-
cently [24, 62]. LayerD mainly uses network architectures
used in matting [62] to extract unoccluded top layers.

While matting estimates alpha mattes, foreground color
estimation involves determining the color of the foreground
that is mixed with the background. There are energy-based
methods [3, 6, 23] and their efficient versions [10, 11], as
well as deep learning-based methods [31] that estimate the
foreground color given the alpha. Hou et al. and Li et al. si-
multaneously estimate the alpha map and foreground color
given an image and a trimap [13, 25]. The foreground color

is deterministic when the background color and foreground
alpha are given. In our setup, we obtain the foreground
matte from our trained model and the background color
from high-quality background inpainting [47], and then cal-
culate the foreground color.

3. Problem Formulation
Graphic layer decomposition is the task of decomposing a
raster graphic design image x ∈ [0, 1]H×W×3 into a se-
quence of layers Y = (lk ∈ [0, 1]H×W×4)Kk=0. Here, H
and W represent the height and width of the image, respec-
tively. x is an RGB image, and lk is an RGBA image, with
3 and 4 channels, respectively. k represents the blending
order of the layer, i.e., the z-index. lk>0 is the foreground
layer, and l0 is the background layer.

The layer sequence Y is composited by the following
recursive process from k = 1 to k = K (x = xK):

xC
k = B(lk,x

C
k−1), (1)

= lC
k ⊙ lA

k + xC
k−1 ⊙ (1− lA

k). (2)

Here, the superscript A represents the alpha channel, and
C represents one of the RGB channels. B(·) is the alpha
blending function, ⊙ is element-wise multiplication, and xk

is the k-th blended image.
In this study, we solve the inverse problem of the above,

i.e., layer decomposition that estimates the layer sequence
Y from the raster image x. The granularity of the layer de-
pends on the dataset, and in this study, we treat the human-
made graphic designs in the dataset as ground truth.

4. Approach
LayerD solves the decomposition task by iterative extrac-
tion of top-layers, which are not occluded by any other lay-
ers, and background completion (Fig. 2). Our formulation
integrates the subtasks of layer decomposition, which prior

17785

methods [5, 51] separately address, into a single task, lead-
ing to a simplified implementation and performance gain by
the simple training goal. Additionally, we refine the final
decomposition quality by leveraging the domain prior that
graphic designs often contain simple, texture-less elements
or backgrounds.

4.1. Iterative Decomposition
We obtain layer predictions Ŷ = (l̂m ∈ [0, 1]H×W×3)Mm=0

from an input image x by iterative processes from front
(m = M) to back (m = 1) as follows:

l̂A
m = Fθ(x̂m) (3)

x̂m−1 = Gϕ(x̂m, l̂A
m) (4)

l̂C
m = B−1(x̂C

m−1, x̂
C
m, l̂A

m) (5)

= (x̂C
m − x̂C

m−1 ⊙ (1− l̂A
m))⊘ l̂A

m (6)

where x̂M = x, l̂0 = x̂0, and ⊘ is an element-wise di-
vision. The superscripts A and C denote the alpha chan-
nel and one of the RGB channels, respectively. Fθ(·) is a
model that takes an image as input and outputs an alpha
map, which is the same as the trimap-free matting task, as
long as the matting target is the top-layers. The output alpha
contains all top layers; they are decomposed in one itera-
tion. Gϕ(·) is a background completion model that takes an
image and a target mask obtained from the top-layers alpha
map as input and outputs an image with the target area com-
pleted. The background completion model should not insert
new objects. We tried several inpainting approaches, in-
cluding generative model-based completion [20], and found
that generative approaches often insert unnecessary objects.
We use LaMa [47] for Gϕ, which satisfies our inpainting
requirement. B−1(·) is a process that estimates the RGB
values from the completed background and the alpha map
of top-layers. Since we know the alpha map and the com-
pleted background, we can calculate the RGB values of top-
layers by simple arithmetic as the inverse process of alpha
blending B(·). Note that existing methods [5, 51] replace
the alpha of the original image with the predicted soft or
hard segmentation mask. For pixels with an alpha of 1, our
method estimates the same RGB values as these naive meth-
ods. However, for other transparent pixels, our method esti-
mates the RGB values while considering blending with the
background. This primarily improves the quality of layer
boundaries where soft blending is applied. We terminate
the iteration (i.e., m = M) when there are no pixels above
a certain threshold in the matting result l̂A

m.

4.2. Training
In LayerD, we utilize two learnable models: top-layer mat-
ting model Fθ and background inpainting model Gϕ(·).
Since image inpainting is a general task and reasonably

performant models are available in the public [47], we use
an off-the-shelf pretrained model without fine-tuning. For
training the top-layer matting model, we prepare pairs of an
input RGB image x and a target alpha map of top-layers lA

from Crello [54] for supervised learning. We first check the
occlusion of each layer based on the layer information and
integrate the alpha maps of non-occluded layers into a sin-
gle alpha map. This clear target definition eliminates ambi-
guity in training. Similarly to LayerD’s pipeline, we create
multiple pairs per design sample by recursively performing
the same process on the remaining background.

We follow the prior study [62] and define the loss func-
tion as below:

L(l̂A, lA) = λBCELBCE(l̂
A, lA)

+ λIoULIoU(l̂
A, lA) + λSSIMLSSIM(l̂A, lA), (7)

where LBCE(·), LIoU(·), and LSSIM(·) are binary cross-
entropy, Intersection-over-Union (IoU) loss, and structural
similarity index (SSIM) loss, respectively, and λBCE, λIoU,
and λSSIM are weights for each loss term. We train the mat-
ting model using all loss functions at the early steps and then
use only the SSIM loss to improve the boundary quality.

During inference, the model takes the background com-
pletion result (x̂m) as input instead of the clean interme-
diate composite result, except for the first iteration. This
gap between training and inference can degrade the decom-
position quality. To make the matting model robust to the
inpainting artifacts, we include training examples where the
top-layer regions are completed by the background com-
pletion model. Since the completion in areas spanning the
back layers can alter their shape, leading to inconsistencies
with the ground truth, we do not complete such areas when
making training data.

4.3. Palette-based Refinement
Graphic designs often contain flat elements or backgrounds
with few textures, such as decorations, texts, and vector
shapes. Based on this observation, we introduce a simple
refinement approach that greatly improves the resulting ap-
pearance at the end of each iteration.

Background refinement (Fig. 3) We first divide the al-
pha map into connected regions and process each area. We
calculate the color gradients of the surrounding area of the
completion target area. If the area with zero color gradients
is dominant, we assume that the completion target region is
a flat-paint area with few textures. We extract the dominant
colors, i.e., the palette, of the region based on percentiles
and assign the completed RGB values to the nearest palette
color in the Lab color space. The background comple-
tion model can make rough predictions for such flat back-
grounds even with noticeable artifacts, allowing our simple

17786

Palette

Refined BGBGTop-layers Alpha

Input

Assign
Colors

Area Around Target

: Target Area

Inpaint

Background
Completion

Figure 3. Background completion with palette-based refinement.
We first complete the area of the predicted alpha map, then refine
the target connected region based on the color palette of the sur-
rounding area. We select the target area based on the color gradient
of the surrounding area (shown in red).

refinement to work effectively. Our refinement eliminates
such artifacts.

Foreground refinement (Fig. 4) Similar to background
refinement, we first divide the alpha map into connected re-
gions. Next, we calculate the color gradients within each re-
gion and classify regions where the area with zero color gra-
dients dominates as flat regions. We extract the region that
matches the palette color from the input image (x) or inter-
mediate completed background (x̂m) and select the region
if the overlap with the predicted alpha exceeds a thresh-
old. Then, we integrate the selected regions as a new mask.
Since the obtained mask is binary, we calculate the alpha
value around the mask using the palette color and the back-
ground color to derive the final alpha value. We often ob-
serve that this refinement improves the quality of the bound-
ary parts and thin decoration layers (e.g., lines and frames),
which the plain matting model frequently fails.

5. Decomposition Metrics

There are two problems in evaluating the quality of pre-
dicted layers Ŷ against the ground truth Y . First, the num-
ber of layers in the ground truth and the predicted layers
can differ, making it non-trivial to compare directly. To
address this, we apply order-aware layer alignment using
DTW [34]. Second, the quality of the predicted layers can
be evaluated from two perspectives: visual quality and gran-
ularity. If we do not consider these aspects separately, we
may underestimate the quality of the predicted layers due to
differences in granularity, even if they are practically useful.
We measure granularity by the number of edits required to
align the two; we allow merging adjacent layers in the z-

Palette

Top-layer

Refined Top layer

Extract Region

Top-layers Alpha

Input

BG

Top-layer Extraction

Figure 4. Palette-based foreground refinement. First, we estimate
the RGB values of the top-layer using the input image, the top-
layer’s alpha, and the background by the unblend function. Next,
we extract the color palette of the connected components of the
top-layer, extract the region that matches the color from the origi-
nal image, integrate the connected color region with a large over-
lap with the predicted alpha map, and use it as a new alpha map.
Note that the missing blue edge is refined in this figure.

index and report both the number of edits and the visual
quality after the editing operations.

Layer alignment As pre-processing, we first group the
ground truth and predicted layers based on visibility.
Specifically, we extract layers whose visible regions (i.e.,
alpha values greater than zero) are not occluded by any
other higher layers in z-index, blend them into a single
layer, and repeat the same operation with the remaining lay-
ers. This operation never affects the appearance of the com-
posite image and forms what we refer to as a top-layer.

Next, we find alignment between the two layer se-
quences with different lengths using DTW, which considers
the sequence order even if the lengths differ. We obtain a
set of pairs P = {(ks, qs)|s = 0, 1, . . . , S}, where ks and
qs represent the layer indices, and S is the number of pairs.
Note that resolved pairs satisfy the monotonicity condition,
i.e., ks and qs are increasing sequences; in other words, lay-
ers cannot be shuffled during alignment (see Supp. Sec. F.1).
We define the distance metric for the layer pair as the sum
of the negative value of the alpha’s soft IoU and L1 distance
of the RGB channels weighted by the ground-truth alpha, as
introduced in [48].

Finally, we compute the quality metric between the two
layer sequences as follows:

E(Ŷ , Y) =
1

S

S∑
s=0

e(l̂ks
, lqs), (8)

where e(·) is an arbitrary function that measures the simi-
larity or distance between layers. We use the weighted L1

17787

distance of the RGB channels and the soft IoU of the alpha
channel as e(·), similar to DTW’s distance metric.

Layer merge Due to the ill-posed nature of layer decom-
position, decomposition results sometimes do not align well
with the ground truth. In this work, we relax the alignment
constraints by allowing edits. The idea is inspired by mini-
mum edit distance [52], which is commonly used for string
alignment. We define a specific edit operation set for layers,
and report both the maximum number of allowed edits and
the distance metric used in DTW after edits. This gives a
straightforward insight into how many layer-level edits are
required for good alignment.

For simplicity, we define a single edit operation; Merge,
which merges two consecutive layers in z-index, when the
edit yields the highest positive distance improvement. We
apply edits iteratively until no further improvements are
possible or the number of layers is reduced to 2. The ground
truth is also mergeable. Visual examples of the edit process
can be found in Supp. Figs. G and H.

6. Experiments
6.1. Datasets
We use the Crello dataset [54], which is a collection of
graphic design templates, for both training and evaluation.
We obtain pairs of input images and their ground-truth layer
sequences from the layer structure in design templates. We
follow the data split of v5.1.0 to obtain 19,478 / 1,852 /
1,971 samples for train, validation, and test split, respec-
tively. We resize all images to maintain their aspect ra-
tio, with the shorter side set to 512. In this work, we ex-
clude transparent layers from the evaluation since neither
our method nor the baselines primarily focuses on accurate
transparency estimation. For all methods, we conduct train-
ing and validation on the train and validation split, respec-
tively, and report the results on the test split. For training of
LayerD as described in Sec. 4.2, we generate input / ground-
truth pairs, and finally obtain 48,725 and 4,674 pairs for the
train and validation, respectively. As typography is one of
the unique domain properties, we prepare the full dataset
and the variant that excludes all text layers for evaluation.

6.2. Baselines
Although there are a few methods comparable to LayerD,
none of them have publicly available code or models. We
design the following baseline and implement an existing ap-
proach with minor modifications to fit our setting. Addition-
ally, we evaluate all methods using Hi-SAM [58], a state-of-
the-art text segmentation, for initial layer extraction.

YOLO baseline We design a naive baseline that com-
bines state-of-the-art object detection and pretrained seg-

mentation models. First, since most graphic designs contain
text on the top, we segment text using Hi-SAM [58] and
complete the background using LaMa [47]. Next, we detect
bounding boxes of layers from the remaining background.
To this end, we extract bounding boxes from the layer struc-
ture of Crello and fine-tune YOLO [17] using them. We de-
termine the z-index of layers based on heuristics in graphic
design, assuming that the smaller box is in front when the
boxes overlap. Then, we obtain the segmentation masks of
the topmost boxes using a pretrained SAM2 [38] and per-
form background completion. We repeat this process, ex-
cept for text segmentation, until the number of detections
becomes zero. We obtain the final layers by replacing the
alpha of the input or completion image with the predicted
segmentation mask and blacking out the color of pixels with
an alpha close to zero.

VLM baseline We also consider a baseline that follows
the approach of Accordion [5]. Accordion generates lay-
ered graphic design by combining raster-based image gen-
eration [21] and layer decomposition, where VLM first
takes an image as input and generates a decomposition plan
with a JSON-like description of bounding boxes and z-
indices of layers, and then applies segmentation and back-
ground completion in a front-to-back order to obtain the
layer sequence. Since the model and training data are not
publicly available, we reproduce this with minor modifica-
tions in our experiment. We use PaliGemma2 [45] as the
backbone VLM and fine-tune on the Crello train set, Hi-
SAM for text detection, and SAM2 for other elements. For
background completion, we use LaMa [47] to ensure fair-
ness with other methods.

6.3. Implementation Details
We use BiRefNet [62] with Swin-L [29] pre-trained on nat-
ural image object segmentation for the top-layers matting
model, and train it on Crello for 60 epochs with a batch size
of 12. We set the maximum number of iterations for de-
composition to 3 for LayerD and the YOLO baseline. The
maximum number of colors for palette-based refinement is
set to 10 for the foreground and 2 for the background. For
evaluation, we change the maximum number of allowed ed-
its from 0 to 5, and report the visual quality for each case.

6.4. Quantitative Evaluation
Baseline comparison We compare LayerD with base-
lines with and without text layers in Fig. 5b and Fig. 5a, re-
spectively. In all metrics, LayerD generates layer sequences
close to the ground truth with fewer edits. Our simplified
pipeline and training objective are effective in layer decom-
position. Moreover, in the results for all layers (Fig. 5b),
LayerD alone shows higher performance than LayerD +
Hi-SAM, which replaces the first iteration with Hi-SAM.

17788

0 1 2 3 4 5
Edits (Max.)

0.04

0.06

0.08

0.10

R
G

B
 L

1

0 1 2 3 4 5
Edits (Max.)

0.6

0.7

0.8

0.9

A
lp

ha
 s

of
t

Io
U

LayerD
LayerD w/o text training

YOLO base
VLM base

(a) Without text layers

0 1 2 3 4 5
Edits (Max.)

0.04

0.06

0.08

0.10

R
G

B
 L

1

0 1 2 3 4 5
Edits (Max.)

0.6

0.7

0.8

A
lp

ha
 s

of
t

Io
U

LayerD
LayerD + Hi-SAM

YOLO base + Hi-SAM
VLM base + Hi-SAM

BiRef. + Hi-SAM

(b) All layers

Figure 5. Baseline comparisons. We show visual quality metrics (RGB L1, Alpha IoU) as the maximum number of allowed edits increases.
The left two are the results when we exclude text layers from the dataset, and the right two are the results when all layers are included.
“w/o text training” indicates the case where text layers are not included during training.

1 32
Edits (Max.)

0.05

0.06

RG
B

L1

1 32
Edits (Max.)

0.82

0.84

0.86

0.88

Al
ph

a
so

ft
Io

U

Naive
Color est.

Color est. + BG ref.
Color est. + BG ref. + FG ref.

Figure 6. Ablation results of foreground color estimation and re-
finement.

LayerD, which is specifically trained for graphic design, is
more effective than Hi-SAM, which is trained for text seg-
mentation without being limited to graphic design. More
interestingly, in the case of decomposition without text lay-
ers, as shown in Fig. 5a, LayerD trained with text layers ex-
hibits slightly better performance than LayerD trained with-
out text, even though the decomposition targets contain no
text. We suspect that text is essentially a variant of vector
shapes, and training with text layers improves the decompo-
sition performance of these elements. Our method outper-
forms the BiRefNet without additional training in Fig. 5b,
indicating the importance of training on top-layer matting.

Refinement ablation Fig. 6 shows the ablation results of
foreground color estimation and refinement. First, the color
estimation by the inverse blending (Eq. (6)) reduces the
RGB L1 compared to the “Naive”, which simply replaces
the alpha with the predicted mask. Background refinement
significantly improves the RGB L1, resulting in better sub-
sequent layer decomposition, as indicated by the improve-
ment in Alpha IoU. The foreground refinement slightly im-
proves the quality of the alpha map. Although the quan-

Input Output: Layers Application

Application

La
ye

rD

Layer 1

La
ye

rD
V
LM

 b
as

e
V
LM

 b
as

e
YO

LO
 b

as
e

YO
LO

 b
as

e

Layer 4Layer 3Layer 2

Figure 7. Comparison of decomposition results by LayerD and
baselines. The leftmost images are the input image (LayerD), ob-
ject detections (VLM), and text-removed input (YOLO). Red rect-
angles indicate text, and blue rectangles indicate other elements.

titative improvement is slight, we observe that foreground
refinement improves the quality of boundary regions.

6.5. Qualitative Evaluation

Baseline comparison Fig. 7 shows the qualitative com-
parison of LayerD with VLM and YOLO baseline. The
VLM baseline, which relies on bounding boxes, struggles

17789

Input

w
/

FG
 r

ef
.

Input Image

w
/ B

G
 re

f.
w

/o
 B

G
 re

f.

LayersBack Front

LayersBack Front

w
/o

 F
G

 r
ef

.

Layer 1 Layer 2

Figure 8. Example with or without foreground refinement. With-
out refinement, layers tend to have a collapsed boundary.

Input

w
/

B
G

 r
ef

.

Input Image

w
/ B

G
 re

f.
w

/o
 B

G
 re

f.

LayersBack Front

LayersBack Front

w
/o

 B
G

 r
ef

.

Layer 1 Layer 2 Layer 2

Figure 9. Example with or without background refinement. Our
refinement prevents the background from being divided into seg-
ments or filled with unexpected colors.

with proper decomposition when detection fails or when the
detected boxes overlap. The bounding box of a layer with
a large hole like a donut includes the elements of the entire
image, making it difficult for the subsequent segmentation
(Fig. 7 top sample). The YOLO baseline suffers from false
negatives in detection, resulting in incomplete decomposi-
tion. In contrast, LayerD directly extracts layers without re-
lying on bounding boxes, resulting in clean decomposition
results in all cases.

Refinement effect Fig. 8 shows an example of foreground
refinement. The foreground refinement recovers the large
missing gold decoration with a large hole, which is a typical
failure case of the top-layers matting model. In Fig. 9, we
show an example of background refinement. Background
refinement successfully completes the missing part of the
background. Since layer decomposition is recursive, fail-
ures in the previous iteration have a negative impact on sub-
sequent iterations. Our refinement contributes not only to
the quality of the target layer itself but also to the quality
of the subsequent layers, i.e., the overall quality of the layer
decomposition.

6.6. Applications
In this section, we demonstrate that LayerD enables a few
applications out of the box.

Input Output: Layers Application

Application

Gen. Image Layer 1 Layer 4Layer 2 Layer 3

Figure 10. Decomposition results of LayerD on raster images gen-
erated by FLUX.1 [dev] [21].

Decomposing generated images Fig. 10 shows the de-
composition results of LayerD on graphic design gener-
ated by FLUX.1 [dev] [21], which is one of the state-
of-the-art text-to-image generator, using prompts from
DESIGNERINTENTION-v2 benchmark [16]. Note that
quantitative evaluation is not possible in this setup as
ground truth layers are not available. The results suggest
that LayerD can generalize and successfully decompose
generated images, enabling an editable workflow for raster
image generators.

Image editing We show the image editing examples
using the decomposed layers by LayerD in Fig. 1 and
Supp. Sec. A. Here, we only perform simple operations
such as color conversion, translation, and resizing at the
layer level. Although the layers obtained by LayerD are
grouped by top-layers, we can easily divide them into con-
nected components for more granular editing. Our decom-
position enables flexible and intuitive layer-based editing.
Note also that there is no significant artifact in the editing
results.

7. Conclusion

We present LayerD for decomposing raster graphic designs,
where we propose the iterative extraction of unoccluded
layers and background completion as well as refinement
tailored for graphic materials. We propose an evaluation
protocol for the ill-posed decomposition task, where we in-
troduce the notion of layer edit to quantify the difference
from the unreliable ground truth. The experiment showed
that LayerD led to solid improvement over baselines.

Our approach aims at decomposition, but it might be
interesting to further consider vectorization [4, 32, 39, 44],
which would expand the possible creative workflow.
In the other direction, our method could help learn
a layered design generation model [14, 16] as a pre-
processing component, or be combined with recent
automatic layered design editing [26, 35], or ani-
mation generation [28] for interesting applications.

17790

References
[1] Naofumi Akimoto, Huachun Zhu, Yanghua Jin, and Yoshim-

itsu Aoki. Fast soft color segmentation. In CVPR, 2020. 2
[2] Yağiz Aksoy, Tunç Ozan Aydin, Aljoša Smolić, and Marc

Pollefeys. Unmixing-based soft color segmentation for im-
age manipulation. ACM TOG, 36(2), 2017. 2

[3] Yagiz Aksoy, Tunc Ozan Aydin, and Marc Pollefeys. De-
signing effective inter-pixel information flow for natural im-
age matting. In CVPR, 2017. 3

[4] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and
Radu Timofte. Deepsvg: A hierarchical generative network
for vector graphics animation. In NeurIPS, 2020. 3, 8

[5] Jingye Chen, Zhaowen Wang, Nanxuan Zhao, Li Zhang, Di-
fan Liu, Jimei Yang, and Qifeng Chen. Rethinking layered
graphic design generation with a top-down approach. arXiv
preprint arXiv:2507.05601, 2025. 2, 3, 4, 6

[6] Qifeng Chen, Dingzeyu Li, and Chi-Keung Tang. Knn mat-
ting. IEEE TPAMI, 35(9), 2013. 3

[7] Yung-Yu Chuang, Brian Curless, David H Salesin, and
Richard Szeliski. A bayesian approach to digital matting.
In CVPR, 2001. 3

[8] Zheng-Jun Du, Liang-Fu Kang, Jianchao Tan, Yotam Gin-
gold, and Kun Xu. Image vectorization and editing via linear
gradient layer decomposition. ACM TOG, 42(4), 2023. 3

[9] Jean-Dominique Favreau, Florent Lafarge, and Adrien
Bousseau. Photo2clipart: Image abstraction and vectoriza-
tion using layered linear gradients. ACM TOG, 36(6), 2017.
3

[10] Marco Forte. Approximate fast foreground colour estima-
tion. In ICIP, 2021. 3

[11] Thomas Germer, Tobias Uelwer, Stefan Conrad, and Stefan
Harmeling. Fast multi-level foreground estimation. In ICPR,
2021. 3

[12] Daichi Horita, Kiyoharu Aizawa, Ryohei Suzuki, Taizan Yo-
netsuji, and Huachun Zhu. Fast nonlinear image unblending.
In WACV, 2022. 2

[13] Qiqi Hou and Feng Liu. Context-aware image matting for si-
multaneous foreground and alpha estimation. In ICCV, 2019.
3

[14] Naoto Inoue, Kento Masui, Wataru Shimoda, and Kota Ya-
maguchi. OpenCOLE: Towards Reproducible Automatic
Graphic Design Generation. In CVPRW, 2024. 8

[15] Phillip Isola and Ce Liu. Scene collaging: Analysis and syn-
thesis of natural images with semantic layers. In ICCV, 2013.
2

[16] Peidong Jia, Chenxuan Li, Zeyu Liu, Yichao Shen, Xingru
Chen, Yuhui Yuan, Yinglin Zheng, Dong Chen, Ji Li, Xi-
aodong Xie, et al. COLE: A hierarchical generation frame-
work for graphic design. arXiv preprint arXiv:2311.16974,
2023. 8

[17] Rahima Khanam and Muhammad Hussain. YOLOv11: An
overview of the key architectural enhancements. arXiv
preprint arXiv:2410.17725, 2024. 6

[18] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. In ICCV, 2023. 2

[19] Yuki Koyama and Masataka Goto. Decomposing images into
layers with advanced color blending. CGF, 37(7), 2018. 2

[20] Black Forest Labs. FLUX.1 fill [dev]. https://
huggingface.co/black-forest-labs/FLUX.
1-Fill-dev, 2024. Last accessed 7 March, 2025. 4

[21] Black Forest Labs. FLUX.1 [dev]. https : / /
huggingface.co/black-forest-labs/FLUX.
1-dev, 2024. Last accessed 7 March, 2025. 6, 8

[22] Hyunmin Lee and Jaesik Park. Instance-wise occlusion and
depth orders in natural scenes. In CVPR, 2022. 2

[23] Anat Levin, Dani Lischinski, and Yair Weiss. A closed-form
solution to natural image matting. IEEE TPAMI, 30(2), 2007.
3

[24] Jiachen Li, Jitesh Jain, and Humphrey Shi. Matting anything.
arXiv: 2306.05399, 2023. 3

[25] Xiaodi Li, Zongxin Yang, Ruijie Quan, and Yi Yang. Drip:
Unleashing diffusion priors for joint foreground and alpha
prediction in image matting. In NeurIPS, 2024. 3

[26] Jiawei Lin, Shizhao Sun, Danqing Huang, Ting Liu, Ji Li,
and Jiang Bian. From elements to design: A layered ap-
proach for automatic graphic design composition. arXiv
preprint arXiv:2412.19712, 2024. 8

[27] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2023. 2

[28] Vivian Liu, Rubaiat Habib Kazi, Li-Yi Wei, Matthew Fisher,
Timothy Langlois, Seth Walker, and Lydia Chilton. Lo-
goMotion: Visually grounded code generation for content-
aware animation. arXiv preprint arXiv:2405.07065, 2024.
8

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 6

[30] Zhengzhe Liu, Qing Liu, Chirui Chang, Jianming Zhang,
Daniil Pakhomov, Haitian Zheng, Zhe Lin, Daniel Cohen-
Or, and Chi-Wing Fu. Object-level scene deocclusion. In
ACM SIGGRAPH Conference Papers, 2024. 2

[31] Sebastian Lutz and Aljosa Smolic. Foreground color predic-
tion through inverse compositing. In WACV, 2021. 3

[32] Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev,
Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-
wise image vectorization. In CVPR, 2022. 3, 8

[33] Tom Monnier, Elliot Vincent, Jean Ponce, and Mathieu
Aubry. Unsupervised layered image decomposition into ob-
ject prototypes. In ICCV, 2021. 2

[34] Meinard Müller. Information Retrieval for Music and Mo-
tion. Springer Verlag, 2007. 2, 5

[35] Sohan Patnaik, Rishabh Jain, Balaji Krishnamurthy, and
Mausoom Sarkar. Aesthetiq: Enhancing graphic layout
design via aesthetic-aware preference alignment of multi-
modal large language models. In CVPR, 2025. 8

[36] Thomas Porter and Tom Duff. Compositing digital images.
In Proceedings of the 11th annual conference on Computer
graphics and interactive techniques, 1984. 2

[37] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE TPAMI, 44(3), 2020. 2

17791

[38] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang
Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman
Rädle, Chloe Rolland, Laura Gustafson, et al. SAM 2:
Segment anything in images and videos. arXiv preprint
arXiv:2408.00714, 2024. 2, 6

[39] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and
Niloy J Mitra. Im2vec: Synthesizing vector graphics without
vector supervision. In CVPR, 2021. 3, 8

[40] Juan A Rodriguez, Shubham Agarwal, Issam H Laradji, Pau
Rodriguez, David Vazquez, Christopher Pal, and Marco Ped-
ersoli. Starvector: Generating scalable vector graphics code
from images. arXiv preprint arXiv:2312.11556, 2023. 3

[41] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, 2022. 2

[42] I-Chao Shen and Bing-Yu Chen. Clipgen: A deep generative
model for clipart vectorization and synthesis. IEEE TVCG,
28(12), 2021. 3

[43] Wataru Shimoda, Daichi Haraguchi, Seiichi Uchida, and
Kota Yamaguchi. De-rendering stylized texts. In ICCV,
2021. 3

[44] Yiren Song, Xuning Shao, Kang Chen, Weidong Zhang,
Zhongliang Jing, and Minzhe Li. Clipvg: Text-guided image
manipulation using differentiable vector graphics. In AAAI,
2023. 3, 8

[45] Andreas Steiner, André Susano Pinto, Michael Tschannen,
Daniel Keysers, Xiao Wang, Yonatan Bitton, Alexey Grit-
senko, Matthias Minderer, Anthony Sherbondy, Shangbang
Long, et al. PaliGemma 2: A family of versatile VLMs for
transfer. arXiv preprint arXiv:2412.03555, 2024. 6

[46] Jian Sun, Jiaya Jia, Chi-Keung Tang, and Heung-Yeung
Shum. Poisson matting. In ACM SIGGRAPH Conference
Papers. 2004. 3

[47] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In WACV, 2022. 3, 4, 6

[48] Tomoyuki Suzuki, Kotaro Kikuchi, and Kota Yamaguchi.
Fast sprite decomposition from animated graphics. In ECCV,
2024. 5

[49] Jianchao Tan, Jyh-Ming Lien, and Yotam Gingold. Decom-
posing images into layers via rgb-space geometry. ACM
TOG, 36(1), 2016. 2

[50] Jianchao Tan, Jose Echevarria, and Yotam Gingold. Effi-
cient palette-based decomposition and recoloring of images
via rgbxy-space geometry. ACM TOG, 37(6), 2018. 2

[51] Petru-Daniel Tudosiu, Yongxin Yang, Shifeng Zhang, Fei
Chen, Steven McDonagh, Gerasimos Lampouras, Ignacio Ia-
cobacci, and Sarah Parisot. Mulan: A multi layer annotated
dataset for controllable text-to-image generation. In CVPR,
2024. 2, 4

[52] Robert A Wagner and Michael J Fischer. The string-to-string
correction problem. JACM, 21(1), 1974. 6

[53] Ning Xu, Brian Price, Scott Cohen, and Thomas Huang.
Deep image matting. In CVPR, 2017. 3

[54] Kota Yamaguchi. CanvasVAE: Learning to generate vector
graphic documents. In ICCV, 2021. 4, 6

[55] Jinrui Yang, Qing Liu, Yijun Li, Soo Ye Kim, Daniil Pakho-
mov, Mengwei Ren, Jianming Zhang, Zhe Lin, Cihang Xie,
and Yuyin Zhou. Generative image layer decomposition with
visual effects. arXiv preprint arXiv:2411.17864, 2024. 2

[56] Jingfeng Yao, Xinggang Wang, Shusheng Yang, and
Baoyuan Wang. Vitmatte: Boosting image matting with pre-
trained plain vision transformers. Information Fusion, 103,
2024. 3

[57] Lewei Yao, Jianhua Han, Xiaodan Liang, Dan Xu, Wei
Zhang, Zhenguo Li, and Hang Xu. Detclipv2: Scal-
able open-vocabulary object detection pre-training via word-
region alignment. In CVPR, 2023. 2

[58] Maoyuan Ye, Jing Zhang, Juhua Liu, Chenyu Liu, Baocai
Yin, Cong Liu, Bo Du, and Dacheng Tao. Hi-sam: Marrying
segment anything model for hierarchical text segmentation.
arXiv preprint arXiv:2401.17904, 2024. 6

[59] Xiaohang Zhan, Xingang Pan, Bo Dai, Ziwei Liu, Dahua
Lin, and Chen Change Loy. Self-supervised scene de-
occlusion. In CVPR, 2020. 2

[60] Xinyang Zhang, Wentian Zhao, Xin Lu, and Jeff Chien.
Text2layer: Layered image generation using latent diffusion
model. arXiv preprint arXiv:2307.09781, 2023. 2

[61] Chuanxia Zheng, Duy-Son Dao, Guoxian Song, Tat-Jen
Cham, and Jianfei Cai. Visiting the invisible: Layer-by-layer
completed scene decomposition. IJCV, 129, 2021. 2

[62] Peng Zheng, Dehong Gao, Deng-Ping Fan, Li Liu, Jorma
Laaksonen, Wanli Ouyang, and Nicu Sebe. Bilateral refer-
ence for high-resolution dichotomous image segmentation.
CAAI Artificial Intelligence Research, 3, 2024. 3, 4, 6

17792

