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Figure 1. Super Resolved Imaging with Adaptive Optics is a computational imaging method to enable multi-image super-resolution in
scientific telescopes. Without any additional hardware, existing adaptive mirrors are used to inject diversity into each sub-exposure. When
jointly reconstructed, we are able to recover higher spatial resolution from an otherwise undersampled signal. Each exposure’s phase
profiles is jointly optimized along with the image reconstruction algorithm—resulting in greatly improved performance.

Abstract

Astronomical telescopes suffer from a tradeoff between field
of view (FoV) and image resolution: increasing the FoV
leads to an optical field that is under-sampled by the science
camera. This work presents a novel computational imag-
ing approach to overcome this tradeoff by leveraging the
existing adaptive optics (AO) systems in modern ground-
based telescopes. Our key idea is to use the AO system’s
deformable mirror to apply a series of learned, precisely
controlled distortions to the optical wavefront, producing
a sequence of images that exhibit distinct, high-frequency,
sub-pixel shifts. These images can then be jointly upsam-
pled to yield the final super-resolved image. Crucially, we
show this can be done while simultaneously maintaining
the core AO operation—correcting for the unknown and
rapidly changing wavefront distortions caused by Earth’s
atmosphere. To achieve this, we incorporate end-to-end op-
timization of both the induced mirror distortions and the

upsampling algorithm, such that telescope-specific optics
and temporal statistics of atmospheric wavefront distortions
are accounted for. Our experimental results with a hard-
ware prototype, as well as simulations, demonstrate signifi-
cant SNR improvements of up to 12 dB over non-AO super-
resolution baselines, using only existing telescope optics
and no hardware modifications. Moreover, by using a pre-
cise bench-top replica of a complete telescope and AO sys-
tem, we show that our methodology can be readily trans-
ferred to an operational telescope.

1. Introduction

Super-resolution (SR) techniques have been integral to as-
tronomical imaging due to inherent telescope design con-
straints [23]. Telescopes can have many science instruments
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and in certain cases optical resolution is not their prior-
ity [67]. A large field of view (FoV), for example, neces-
sitates undersampling to capture a wider view of the night
sky. Another common case in photon-starved conditions is
to increase signal-to-noise ratio by focusing the light onto
fewer, larger, pixels, thereby incurring less read noise [43].
In these, and many other, cases although the telescope is ca-
pable of providing a diffraction-limited signal, the science
instrument can be undersampled. Thus, the use of SR meth-
ods in astronomical imaging has a long history in both satel-
lite and terrestrial telescopes [34].

Unlike telescopes stationed in orbit, ground telescopes
face an additional challenge: the Earth’s atmosphere [5].
Our atmosphere is a source of dynamic optical aberrations
which introduce additional difficulties regardless of a tele-
scope’s location, size, or design [58]. As the atmosphere
evolves, small changes in index of refraction occur across
the sky. This causes incoming light to distort as it transi-
tions from outer space and through our telescope, blurring
the images. Therefore, traditional multi-image SR methods
which combine multiple sharp images with small geomet-
ric distortions—whether from telescope movements [23] or
Earth’s rotation [4] are not well suited for these conditions.

We present Super Resolved Imaging with Adaptive Op-
tics, an end-to-end SR method for terrestrial telescopes that
leverages existing adaptive optics (AO) systems—designed
to correct for atmospheric distortions—to simultaneously
correct for aberrations and achieve SR. The crux of our ap-
proach is to take advantage of the existing AO system in
ground telescopes, which applies a phase mask in the tele-
scope’s Fourier domain to counteract atmospheric aberra-
tions. We use the AO system by optimizing and inject-
ing additional phase displacements that produce sub-pixel
shifts in the image plane. After capturing several images,
these shifts serve as inputs to an end-to-end trained, multi-
image SR (MISR) method. These additional phases are
optimized to minimally alter the telescope’s point spread
function (PSF), thus subtly modifying each exposure to
best facilitate MISR. The phase displacements can be co-
optimized with deep learning—based (or any differentiable)
MISR to enhance overall performance. This optimization is
performed entirely offline, requiring no modifications to the
telescope or use of on-sky time.

In summary, our contributions include:

* A novel MISR method for telescopes that leverages ex-
isting hardware, requires no modifications, and does
not impact the science payload.

* Demonstration that combining AO with MISR outper-
forms either technique alone, achieving performance
greater than the sum of its parts.

» Showing that phase displacements and image recon-
struction can be co-optimized end-to-end offline using
simple telescope telemetry as a proxy for real systems,
enabling unobtrusive deployment where telescope time
is extremely costly [31].

* A real-hardware setup demonstrating the feasibility of
integrating our method into existing telescope systems.

2. Principles of Adaptive Optics

The Earth’s atmosphere fundamentally limits the resolving
power of any telescope by introducing optical aberrations—
one of the reasons why space-based telescopes such as the
Hubble Space Telescope have outperformed many larger
ground-based observatories. This results in the final tele-
scope PSF being several factors worse than the diffraction
limit—the best achievable resolution. As such, AO systems
are now widely used in modern ground-based optical and
near-infrared telescopes to reverse these effects.

2.1. Components of an AO system

AO systems correct atmospheric turbulence by introducing
a phase equal in magnitude but opposite in sign to that of
the atmosphere. A prototypical AO setup (Fig. 2) con-
sists of a deformable mirror (DM), wavefront sensor (WES),
and control system. The DM, placed on the Fourier plane
of the telescope, takes on the opposite phase of the atmo-
sphere, resulting in corrected wavefronts of light which are
then passed on to the science camera and back to the WFS.
Because the atmosphere evolves over time, the WFS must
continuously measure the residual, uncorrected wavefront,
and send updated commands to the DM. This loop, imple-
mented via the control system, typically operates on the or-
der of 1-2 kHz for modern AO systems.

The most common types of WFSs are based on Shack-
Hartmann [50] and pyramid [51] designs. To operate they
require a “guide-star”—a distant light source which can be
approximated as a point. Usually a bright star near the sci-
ence object is used, but laser beacons can also be used to
create an artificial star image in the upper atmosphere. The
guide star samples a similar turbulence path as the science
image without reducing its signal-to-noise ratio (SNR). By
comparing the measured signal to a reference, we can calcu-
late how the atmosphere has affected the wavefront across
the telescope pupil. Pre-calibrated responses are then used
to update the DM shape and negate the distortions [58].

The DM can be constructed in several ways. Many of to-
day’s telescopes use a continuous design with a single flex-
ible reflective membrane supported by a grid of discrete ac-
tuators [20]. These actuators can be individually pushed or
pulled to collectively generate complex phase patterns. In
contrast, many upcoming AO systems use grids of individ-
ual mirrors, enabling much larger DMs and corrections for
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even higher spatial frequencies [26].

Once converged, the effects of the AO loop, shown in
Fig. 2, are visible and have enabled many recent break-
throughs in modern astronomy. Direct imaging of exo-
planets [42] and the first direct evidence of a super-massive
black hole within our galaxy [25] would not have been pos-
sible without the increased resolution and contrast provided
by AO. For additional details on how AO has been recently
used in both astronomy and microscopy see [28].
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Figure 2. Starlight is aberrated by Earth’s atmosphere A, blurring
the telescope PSE. An AO system (a) measures the atmosphere
with a wavefront sensor and applies a corrective phase, D, on its
deformable mirror to cancel it out. When AO is off, resolution is
directly limited by the seeing conditions (i.e., turbulence) at the
observatory for both short and long exposures (b). When AO is
enabled the effects of the atmosphere are removed. If sampled
at or above the Nyquist rate, the resolution is limited only by the
mirror diameter and its PSF forms a diffraction-limited Airy disk
(¢). Our method enables under-sampled instruments with AO to
recover spatial resolution.

2.2. The AO Image Formation Model

Suppose we are observing a distant, constant object (e.g.,
a natural guide star) over an exposure time 7" using a tele-
scope without AO. The recorded image I(z,y) in pixel co-
ordinates (x,y) is modeled as the convolution of the object
O(z,y) with an atmosphere-degraded PSF Py, . Here, Py,
corresponds to a diffraction-limited PSF P,,,, (i.e., an Airy
Disk [59]) degraded by the time-varying turbulence of the
Earth’s atmosphere. In Fourier space, this turbulence can
be represented by a phase distribution A (u, v, ¢) with unit
amplitude where (u, v) are its spatial frequency coordinates.
By the convolution theorem, this can be described in Fourier
space with a point-wise multiplication:

]: {PTEL} (uu Ua t) = ejA(U,U,t)f {Pmu‘m_} (uu Ua t) ) (1)

where F {-} denotes the Fourier Transform operator. While
the AO is in operation, a DM continuously applies an ad-
ditional phase distortion D (u, v, t) in the Fourier plane of
the telescope to counteract the effects of the atmosphere.
The resulting corrected PSF, P, can be described in the
Fourier domain as

FA{Peow} (u,v,t) = ejD(“’”’t)ejA(“’”’t)}'{’Pmm} (u,v,t).

2
In an ideal scenario, the atmospheric phase A and the de-
formable mirror phase D would perfectly cancel at every
point and time; i.e., Peorx = Prpsar -

In practice the DM is limited by fitting errors and the fi-
nite range of its actuators which restricts the range of spatial
frequencies it can correct. Additionally, the effects of non-
circular mirror geometries [29] (e.g., hexagonal apertures)
and mirror support structures cause the DM to deviate from
ideal performance. Consequently, the final effective PSF
of the telescope never truly reaches P,,.... We model these
effects on P, in the Fourier domain as

F{Pu} (w,v,t) = 2D F LIPS (uyv,t),  (3)

where § (u, v, t) encapsulates the hardware and optical con-
straints described above.

Note that these contributions are predominantly static
and can be approximated as ¢ (u,v,t) ~ d(u,v). For
a well-performing, diffraction-limited AO system, varia-
tions will be short because the AO re-converges quickly.
Therefore, over long exposures, they average out over time.
Finally, we consider incoherent image formation, as as-
tronomical sources emit light independently with random
phases. Our image formation becomes

T
(o) = / 10 (2,9) P ® [P (2, 8) Pdt 417 (&)
0

where ® denotes the convolution operator, 7' is the total
exposure time, and 7 is cumulative noise.

3. Previous Work

Image Super-Resolution (SR). SR techniques aim to re-
construct a high-resolution (HR) image from one or more
observed low-resolution (LR) images [65]. However, the
problem is ill-posed in nature, and many plausible solutions
exist [41]. SR methods are distinguished between single-
image (SISR) and multi-image (MISR) super-resolution de-
pending on the number of images used. Deep-learning SR
has emerged as the state-of-the-art for both SISR and MISR
tasks [2, 41, 41, 56, 64], thanks to the growth of convo-
lutional networks and large datasets [18, 35]. However,
deep SR networks thrive on natural images but struggle with
out-of-distribution data due to limited training data [2]. In
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such cases, incorporating priors based on sensor, object, and
acquisition conditions can improve performance [2]. As-
tronomical imaging is a regime with unique conditions, in-
cluding extreme low-light, non-static aberrations, and im-
age features unlike those typically seen in terrestrial images.
Hence, additional modifications to existing deep-learning
SR techniques are required.

SR in Astronomical Imaging: Drizzle—a SR tech-
nique commonly used in astronomical imaging and as-
trophotography—aligns and linearly blends multiple delib-
erately dithered frames to produce a super-resolved im-
age [23]. The technique has been widely adopted, includ-
ing by the Hubble Space Telescope, and remains in use to-
day [27]. However, the success of drizzling and its con-
temporaries hinges on highly accurate image registration
and precise knowledge of the offsets [3, 8], a challeng-
ing task when the atmosphere adds time-varying aberrations
and distortions [24]. In contrast, our method leverages the
telescope’s built-in AO system to inject optimized phase-
domain “jitters” and does not use any type of image regis-
tration. SR techniques have also been leveraged to improve
the resolution and quality of WFS measurements [46]. Our
method, building on our previous work [54], is agnostic to
the underlying WES type and can remain applicable as WFS
technology advances.

SR in Computational Imaging: Camera system design
often incorporates super-resolution. One early example
jointly optimized both the optics and SISR algorithms for
simple, refractive lenses [52]. Burst photography from
handheld cameras—where small distortions are induced by
hand shake—are extremely successful at recovering high-
resolution information [7, 62] even in low-light condi-
tions [38]. Deep learning methods have also been ex-
plored in the scientific imaging community for both mi-
croscopy [21] and satellite imaging [45]. MISR has also
long played a role in classic camera development; many
digital cameras are able to programmatically shift the imag-
ing sensor between subsequent images which can then be
combined into one higher resolution image (e.g., Sony’s
Pixel Shift Multi Shooting [15]). This work draws inspira-
tion from previous works by incorporating end-to-end opti-
mization of telescope mirror distortions with SR algorithms.

Computational Wavefront Sensing and Control: CNNs
have been used to improve WFES reconstruction [19, 47], as
well as to predict atmospheric conditions to reduce servo-
lag in the system [33, 53]. Similar techniques have shown
to be effective in microscopy AO systems as well [17, 66].
More general-purpose methods have been proposed such as
[60] which used coded wavefront sensors and spatial light
modulators (SLMs) to achieve much higher order spatial
frequency correction than is capable from typical AO sys-

tems in astronomy or microscopy. However, SLMs, unlike
DMs, may not be suitable for correcting rapidly changing
atmospheric conditions due to their slower speeds [10].

Optical Phase and PSF Optimization: End-to-end opti-
mization of optical systems and their image reconstruction
algorithms have been used in thin lens design [57], holog-
raphy [9, 49], and active illumination [12]. These methods
typically focus on optimization of critical optical elements
of the system, requiring either direct access to the optical
system [63] or robust, differentiable simulations during op-
timization. Due to the complexity and operating costs of
modern telescopes, modification to the underlying system
or real-time access for network training would be infeasi-
ble. Instead, we focus on optimization of optical elements
available to us in such a way that would not affect its oper-
ation, allowing us to side step these limitations.

4. Super Resolving Adaptive Optics

This work augments existing MISR methods by learning
the optimal way to enhance each individual image captured
over a single exposure. Using the DM already present in a
telescope’s AO system, we inject optimized phase profiles,
thereby enabling multi-image super-resolution.

In this section, we present an end-to-end approach to
determine optimal phase profiles while accounting for AO
hardware constraints and atmospheric effects on final im-
ages. We discuss our approach’s assumptions (Sec. 4.1), the
framework for optimizing phase profiles (Sec. 4.2), compat-
ibility with various image reconstruction methods for com-
bining sub-exposures (Sec. 4.3), and the training details for
obtaining the optimal phase profiles (Sec. 4.3).

4.1. The “Small Phase Shift”” Assumption

To include the image formation model in our learning in-
frastructure we must make some reasonable assumptions
about the process. Importantly, we assume that sub-pixel
shifts negligibly impact the AO loop or science image. In
our case this is reasonable due to the fact that we consider
only under-sampled systems. If our phase shifts keep Py,
within the range of its under-sampled area, the aggregated
effect over the entire exposure will be negligible'. The
shifts define the DM “flat” (a standard feature of AO real-
time controllers), and can be updated easily between expo-
sures. Therefore, the AO system will run entirely as usual—
unaware of the phase offsets applied by our method.

4.2. Phase Shifting and Optimization

Because our DM is designed to create highly complex
shapes, we are not restricted to planar movements like tra-
ditional methods [23]. We describe a given DM shape S

UIf necessary, we can also impose constraints on the magnitude of our
learned phase shifts to guarantee science performance
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using either actuator positions or, as detailed below, a more
general modal basis.

Specifically, one approach would be to use a combina-
tion of Zernike polynomial modes, Z. The Zernike modes
are well suited for this problem because of their ability to
represent rich phases (including planar shifts) with minimal
coefficients and are well-suited for circular apertures, such
as those of telescopes [32]. They can also provide some
insight into the nature of a given phase due to the relation-
ship between Zernike modes and classical optics aberrations
(e.g., focus, coma, and astigmatism [13]). Besides planar
shifts (tip and tilt Zernike modes), there is no trivial or well
known choice of Zernike modes for super-resolution avail-
able. We therefore optimize their values in conjunction with
the MISR algorithm of choice to estimate the best possible
choice of modes (i.e., an end-to-end optimization).

We can now update our image formation model from a
single exposure I; of time 7" to include IV exposures of time
T /N with individually optimizable phases S;—1.. N

I =0 ®|P; ® 5|2 4. (5)

This same model can be equally applied to a simple shifting
or Zernike model by replacing S with Z and choosing an
appropriate number of Zernike coefficients.

Now, let fy (x| 6) be a learned MISR function with pa-
rameters 0, and fy (z) be a downsampling method which
reduces an image’s spatial dimensions by a fixed factor. Our
end-to-end optical optimization problem is then,

{%?} Hfﬂ (fu (IOP ® |Pr.n ® SN P 4y | 9))_0"1’
(6)

where O is an image randomly sampled from a set of high-
resolution images, P; is randomly chosen from a set of pre-
computed AO telescope PSFs, S; are our trainable phase
profiles, and ||-||; denotes the ¢; norm. As described earlier,
S can be represented in many ways. To explore its effects,
we compare the most common methods in our experiments.
These include:

* No Learned Phase: The base case for CNN methods.
The same number of exposures are given to the CNN dur-
ing training—and still affected by P;—but without opti-
mizing any per-exposure S;.

 Tip/Tilt: A common MISR technique where the image is
translated by a sub-pixel shift [22]. The Classic case uses
a sequence of exposures whose translational shifts form a
regular sub-pixel raster scan. The Optimized variant ini-
tializes with the same shifts as Classic and then optimizes
the values of those shifts.

e Zernike Modes: Each phase is represented using the
Zernike basis and its coefficients are optimized.

* Non-Modal: Instead of a basis function, the DM shape
is directly optimized. This requires precise knowledge of
its influence functions and calibration with respect to the
WES [6]. While simple in simulation, this proves to be
difficult to use in practice.

4.3. Super-Resolution Reconstruction Methods

Although our method could work equally well with any
super-resolution reconstruction method, for the purposes of
this paper we focus on only two:

First, we consider a linear-reconstruction method sim-
ilar to Drizzle [23], also known as the shift-and-add
method [22]. This may be of interest in science cases where
such methods are already widely used, albeit for systems
without adaptive optics and with un-optimized phases.

Second, we consider a state of the art deep learning-
based SR algorithm. Specifically, we based our model on
the widely known EDSR [39] single-image SR CNN. Our
network was modified to incorporate the forward image for-
mation model (Eq. (4)) as well as to accept any number of
input channels, representing the phase-shifted exposures.
The EDSR model was chosen for its speed, widespread
adoption, and its avoidance of adversarial training (i.e., it
does not rely on a GAN [16]) which can complicate training
and introduce priors that may not be appropriate for scien-
tific purposes”.

4.4. Phase and Network Training Details

In addition to a training set of high-resolution images, our
phase and upsampling parameters require a collection of
system PSFs under the influence of the AO system and the
expected turbulence. These can be generated by simulations
of the system or collected from telescope telemetry.

At training time, for a model expecting N exposures, we
provide the network a random batch of high-resolution im-
ages as well as a random sample of IV system PSFs. The
low-resolution images are generated for each PSF, as de-
tailed in Eq. (5), using a trainable phase profile for each sub-
exposure. We now have low-resolution images affected by
the system PSF in addition to our optimized phases. We also
have the ground-truth high-resolution image, which can be
used to compute the loss function in Eq. (6).

Results shown in this work were trained on a combi-
nation of the DIV2K [1] and Microsoft ImagePairs [30]
datasets. Both CNN and linear reconstructors were im-
plemented and trained with pyTorch [48] following the
learning procedure described in the EDSR paper [39]. Un-
less stated elsewhere (e.g., Sec. 5.1), the following exper-

2Qur outlined procedure can be easily adapted to any SR method in-
cluding diffusion [37] or transformer [40] models, or traditional convex
optimization methods [11].
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iments are all performed with N = 4 exposures. While
our method can be used with any number of exposures, this
value was chosen to easily compare to the classic “tip/tilt”
methods when solving for a 2x upscaling factor. Restrict-
ing the number of exposures to four highlights the perfor-
mance differences between linear and deep learning-based
reconstruction methods, as discussed in Secs. 5 to 7.

5. Simulated Results

We first evaluate our method entirely in simulation. We
train SR parameters and phase profiles solely on synthetic
PSFs generated by the discretized image-formation model
in Eq. (5). After training, we run a new AO simulation, set-
ting the optimized phase profiles as the deformable mirror’s
“flat” position. This imposes the optimized phase on the
system, replicating our convolution in the simulated hard-
ware. The PSF generated from this new simulation is then
used as the PSF for evaluating test images.

5.1. AO Simulation Environment

To create a realistic AO simulation we use the OOMAO [14]
toolbox. We implemented a realistic AO simulation with
multiple layers of atmosphere to generate realistic PSFs for
training. Our simulated AO system was set up to match
our experimental hardware (detailed in Sec. 6) with an 8 m
diameter telescope and 397-actuator deformable mirror op-
erating at 1000 Hz. Each PSF was generated by performing
a full AO simulation with an evolving atmosphere over a 2-
second exposure. The simulated Py, was therefore imaged
on a simulated science camera under the effects of AO cor-
rection and realistic sensor noise. To cover a wide range of
conditions, the wind direction, wind speed, and guide star
magnitude were randomized for each simulation.

Effect of Joint Optimization: We investigate how recon-
struction results are affected by jointly optimizing phase
profiles and the CNN reconstruction method. As shown
in Fig. 4, the jointly-optimized approach yields better res-
olution enhancement than a naive approach that trains the
CNN without phase optimization, both qualitatively and
quantitatively.

Effect of Super-Resolution Factor: We compare different
reconstruction methods and phase representations for the
case where N = 4 exposures. We compare our different
phase representations against a baseline CNN case where
the input to the neural network are four fixed unshifted PSFs
with no optimizable phase and simple bilinear interpolation.
Experimental results are shown in Sec. 5.1. Sample phase
profiles and output can be found in Fig. 3.

Effect of Number of Exposures: We consider the effect
of number of exposures on each method, freezing the super-
resolution factor. The results are shown in Table 1.

Scale Factor
Method 2% 4x 8x

No Learned Phase 3372 2798 24.04
Tip/Tilt (Classic) 3956 3346 2547
CNN  Tip/Tilt (Optimized) 39.67 33.88 26.32
Zernike Modes 41.51 34.09 27.74
Non-Modal 43.13 34.24 27.79

Tip/Tilt (Classic) 28.56 26.04 23.32
Tip/Tilt (Optimized) 29.11 26.12 23.26
Zernike Modes 30.84 26.17 23.36
Non-Modal 31.08 26.67 23.33

Linear

Number of Exposures
Method 2 4 6 8

Tip/Tilt (Classic) 30.77 33.89 36.03 36.31
CNN Zernike Modes 31.13 34.11 36.29 37.44

Non-Modal 31.17 3424 36.24 37.48
Tip/Tilt 26.11 26.12 26.12 26.11
Linear Zernike Modes 26.14 26.17 26.16 26.17
Non-Modal 26.66 26.67 26.71 26.69

Table 1. Effect of number of exposures and super-resolution factor
on SR methods.  Values presented in PSNR (dB) 1. In general
the more exposures, and the more expressive the phase basis, the
better the results. Details on each method can be found in Sec. 4.2.

6. Experimental Results

To demonstrate our method’s ability to work in realistic
settings, we also implemented the experimental setup de-
scribed in Sec. 5 on an optical table. Our setup, shown
in Fig. 5, consists of a 97-actuator ALPAO deformable
mirror and a custom-built 25 x 25 sub-aperture Shack-
Hartmann wavefront sensor. Our guide star was created
with an 850 nm near-infrared laser whose pupil and beam
size were matched to the DM’s size (13.5 mm). Realis-
tic atmospheric turbulence was induced by a rotating Lex-
itek’ phase screen driven by a stepping motor. The sensor’s
native pixel pitch was 5.86 um and the diffraction-limited
spot was 22.95 um (f = 400 mm, pupil size 13.5 mm,
A =635 nm). Note that even though our experimental hard-
ware was not undersampled by design, we used 12X on-
sensor binning to capture individual images. This resulted
in an effective pixel pitch of 70.3 pm.

The AO loop was controlled with the open source
pyRTC software* which allows full control of the DM and
science camera. This allowed us to define the optimized
phase shifts to be the reference mirror “flat”, from which
the residual wavefront was measured by the AO WFS. Each
image was then captured as usual, changing the DM’s “flat”
between exposures as dictated by the optimized phases, and
then combining these images to restore our final SR image.

3Lexitek Inc. Phase Plates — ht tps://lexitek.com
4pyRTC on Github: https://github.com/Jacotay7/pyRTC
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Figure 3. Simulated SR results. Comparisons of reconstructions with super resolution factors of 2x and 8 (inset regions marked in red).
Images were generated with N = 4 exposures and phases were optimized for each method and SR factor. For a full view of the results,
please refer to the supplemental material [55]
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Figure 4. Improved SR with jointly-optimized phase and CNN on
simulated USAF resolution target. End-to-end training of both
phase and CNN yields superior resolution improvements com-
pared to a naive approach which does not optimize phases. The
input to both CNN:ss is the inset region of the USAF target, marked
in red. Qualitatively, by jointly optimizing the phase and the CNN,
we can resolve smaller features and, quantitatively, achieve lower
RMSE (displayed above each image).

6.1. Results

A green LED (centered at 530 nm) was used to project pho-
tographic slides on the optical bench detailed above. To
demonstrate our method’s resolving power, we imaged a
1”7 US Air Force resolution chart (Thorlabs Positive 1951
USAF Test Target Groups 2-7, @1"). Results are shown for
both simulation (Fig. 4) and experiment (Fig. 6). We also
show our method’s performance on more general scenes us-
ing a variety of real-world photos in Fig. 6. Because our
AO system was designed specifically for sensing in infrared
wavelengths, the quality of our images (captured at 635 nm)
is limited by chromatic aberration and vignetting. As such,
results in this paper are cropped and masked for clarity; raw
images are provided in the supplemental materials [55].

7. Discussion

MTF Analysis: The modulation transfer function (MTF) is
a measure of the achievable contrast for an optical system

(1) Red Laser Guide Source

@

Green LED Extended
Object Source

Transparent Extended
Object

(4) Rotating Phase Screen
6 Deformable Mirror

(6) Infrared-Pass Filter

(8) Wavefront Camera

Shack-Hartmann
Lenslet Array

e Green Bandpass Filter
@ Science Camera

() science Path

Wavefront Sensor Path

Figure 5. Optical setup. We present a top-down view of the optical
bench where our experiments were conducted, labeling both the
wavefront sensor path and the science (image) paths.

over a range of spatial frequencies [44]. An ideal lens will
linearly decrease from an MTF of 1 down to O as the spa-
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Figure 6. Experimental results. We reconstruct 8 X upsampled
images of the USFA resolution target and three natural images
(Grapes, Bookshelf, Trees) from low resolution images (LR In-
put) captured with the optical setup depicted in Fig. 5. We present
results using both linear and CNN method, each using their own
optimized phase profiles. Both result in higher resolutions than the
original input, as seen quantitatively on the USFA chart.

tial frequency increases and, in general, the closer a mea-
sured MTF behaves to this the better its resolving power.
The MTF plots in Fig. 7 correspond to the USAF simula-
tion of Fig. 4 and the real experiment of Fig. 6 computed
using a knife-edge method [36]. Both show an increase of
MTF across all spatial resolutions and thus demonstrate our
method’s superiority (i.e., higher preserved contrast).

Simulation Results Experimental Results

10
— Ours — Ours

~— Linear Drizzle

~ Linear Drizzle

00 T T T T T T 0.0 T T T T T T
00 02 04 0.6 0.8 1.0 0.0 02 04 0.6 08 10
Normalized Spatial Frequency Normalized Spatial Frequency

Figure 7. Comparison of simulated and experimental MTF's.

Phase Analysis: One advantage of representing phase pro-
files using Zernike modes is the ability to infer exactly
which optical aberrations are most important to our recon-
struction algorithms. In Fig. 8, we plot the total absolute
power of the first nine basis modes identified by our method
for both the CNN and the linear reconstructor, using a fixed
number of exposures while varying the magnification fac-
tor. The optimized phases reveal insights. First, total modal
power increases with the magnification order. Intuitively,
this makes sense as more movement within a pixel is needed
to sample higher resolutions. Second, CNNs apply roughly
the same power across all modes for a given magnification
while the linear method has more variance. Perhaps this
is because linear solvers cannot leverage higher-frequency
spatial information in the image as well as CNNs can.

—4— Linearx2 =4 Lincarx§  =—$= CNNx2 == CNN=x§

Modal Power (a.u.)

0 1 2 3 4 5 & 7 & 9 10 11 12 13_14 15 16
Tip Tilt Focus Astigmatism  Coma Spherical Trefoil  Astigmatism  Coma  Spherical Tetrafoil
Zernike Mode  (Second)  (Secondary) (Second)

Figure 8. Comparison of modal powers used to induce SR. We
show modal power in the Zernike basis to explore the optimized
phases (corresponding to the phases shown in Fig. 3). The linear
method uses low-order, symmetric modes while the CNN spreads
across all modes. Comparing 8 vs. 2X magnifications, they
take opposite approaches: the CNN prefers low modes at higher
resolutions, while the linear uses lower modes at low resolutions.

Limitations & Future Work: Currently, our work is lim-
ited to telescopes with a single-conjugate adaptive optics
(SCAO) system, which treats the atmosphere as a single
column. Many of today’s observatories instead use multi-
ple WES and DMs. This leads to more accurate corrections
across a wider FoV and can even be tuned to different atmo-
spheric layers. Such systems do not preclude the use of our
method, since our method can be extended to multiple DMs
and potentially enhanced by their extra degrees of freedom.

Other directions for future work include real-time view-
ing of video from the science camera by cycling through
each phase multiple times to create individually super-
resolved frames. Once extended to multiple DMs, addi-
tional multiplexing could also be achieved by varying each
DM at different rates.

Most importantly, now that we have demonstrated our
methodology with an optical bench prototype, our current
priority is to show its effectiveness on sky with a science
class telescope and AO system.

Conclusion: This work shows that science images can en-
code sufficient MISR information using the AO systems al-
ready present in state-of-the-art telescope observatories. We
achieve resolution gains without affecting the scientific data
in both simulations and optical-bench experiments. With
this method, we aim to unlock new scientific capabilities at
existing observatories without altering the optical system.

Acknowledgements

RS acknowledges NVIDIA for GPU hardware sup-
port.  EYHL acknowledges the support of NSERC
under CGSD. SS acknowledges the support of the
Canada Foundation for Innovation and the Ontario
Research Fund. KNK acknowledges the support
of NSERC under the RGPIN and RTI programs.

29149



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

(13]

[14]

Eirikur Agustsson and Radu Timofte. Ntire 2017 challenge
on single image super-resolution: Dataset and study. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 126-135, 2017.
5

Saeed Anwar, Salman Khan, and Nick Barnes. A deep jour-
ney into super-resolution: A survey. ACM Computing Sur-
veys (CSUR), 53(3):1-34, 2020. 3, 4

Roberto J. Avila, Warren J. Hack, and Stsci Team. Astrodriz-
zle: Aligning images from multiple instruments. In Ameri-
can Astronomical Society, 2012. 4

Thilo Bauer. Super-resolution imaging: The use case of op-
tical astronomy. In Proceedings of the IADIS International
Conference Computer Graphics, Visualization, Computer Vi-
sion and Image Processing, Rome, pages 49-59, 2011. 2
Jacques M Beckers.  Adaptive optics for astronomy-
principles, performance, and applications. In: Annual Re-
view of Astronomy and Astrophysics. Vol. 31 (A94-12726 02-
90), p. 13-62.,31:13-62, 1993. 2

Anthony Berdeu, Michel Tallon, Eric Thiébaut, and Maud
Langlois. Analytical modelling of adaptive optics systems:
Role of the influence function. Astronomy & Astrophysics,
674:A112,2023. 5

Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu
Timofte. Deep burst super-resolution. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9209-9218, 2021. 4

David Borncamp, J. M. Anderson, Norman A. Grogin, and
Warren J. Hack. Acs/wfc revised geometric distortion for
drizzlepac. In Instrument Science Report ACS/WFC, 2015. 4
Praneeth Chakravarthula, Ethan Tseng, Tarun Srivastava,
Henry Fuchs, and Felix Heide. Learned hardware-in-the-
loop phase retrieval for holographic near-eye displays. ACM
Transactions on Graphics (TOG), 39(6):1-18, 2020. 4
Dorian Chan, Srinivas Narasimhan, and Matthew O’Toole.
Holocurtains: Programming light curtains via binary holog-
raphy. Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022. 4

Stanley H Chan, Xiran Wang, and Omar A Elgendy. Plug-
and-play admm for image restoration: Fixed-point conver-
gence and applications. [EEE Transactions on Computa-
tional Imaging, 3(1):84-98, 2016. 5

Wenzheng Chen, Parsa Mirdehghan, Sanja Fidler, and Kiri-
akos N Kutulakos. Auto-tuning structured light by optical
stochastic gradient descent. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5970-5980, 2020. 4

Xu Cheng, Arthur Bradley, Sowmya Ravikumar, and
Larry N Thibos. Visual impact of zernike and seidel forms of
monochromatic aberrations. Optometry and Vision Science,
87(5):300-312, 2010. 5

Rodolphe Conan and C Correia. Object-oriented matlab
adaptive optics toolbox. In Adaptive Optics Systems IV,
page 91486C. International Society for Optics and Photon-
ics, 2014. 6

29150

[15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

Sony Corporation. Pixel Shift Multi Shooting | SONY
— support.d-imaging.sony.co.jp. https://support .
d-imaging.sony.co. jp/support/ilc/psms/
ilce7rm3/en/index.html, 2025. [Accessed 30-03-
2025]. 4

Antonia Creswell, Tom White, Vincent Dumoulin, Kai
Arulkumaran, Biswa Sengupta, and Anil A Bharath. Gener-
ative adversarial networks: An overview. IEEE Signal Pro-
cessing Magazine, 35(1):53-65, 2018. 5

Benjamin P Cumming and Min Gu. Direct determination
of aberration functions in microscopy by an artificial neural
network. Optics Express, 28(10):14511-14521, 2020. 4
Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou
Tang. Learning a deep convolutional network for image
super-resolution. In Computer Vision — ECCV 2014, pages
184-199, Cham, 2014. Springer International Publishing. 3
Theodore B DuBose, Dennis F Gardner, and Abbie T Wat-
nik. Intensity-enhanced deep network wavefront reconstruc-
tion in shack—hartmann sensors. Optics Letters, 45(7):1699—
1702, 2020. 4

Mark A Ealey and John F Washeba. Continuous facesheet
low voltage deformable mirrors. Optical Engineering, 29
(10):1191-1198, 1990. 2

Linjing Fang, Fred Monroe, Sammy Weiser Novak, Lyn-
dsey Kirk, Cara R Schiavon, Seungyoon B Yu, Tong
Zhang, Melissa Wu, Kyle Kastner, Alaa Abdel Latif, et al.
Deep learning-based point-scanning super-resolution imag-
ing. Nature Methods, 18(4):406-416, 2021. 4

Sina Farsiu, Dirk Robinson, Michael Elad, and Peyman Mi-
lanfar. Robust shift and add approach to superresolution. In
Applications of Digital Image Processing XXVI, pages 121-
130. SPIE, 2003. 5

AS Fruchter and RN Hook. Drizzle: A method for the linear
reconstruction of undersampled images. Publications of the
Astronomical Society of the Pacific, 114(792):144, 2002. 1,
2,4,5

Andrew S. Fruchter. A new method for band-limited imaging
with undersampled detectors. Publications of the Astronom-
ical Society of the Pacific, 123(902):497, 2011. 4

Andrea M Ghez, BL Klein, M Morris, and EE Becklin. High
proper-motion stars in the vicinity of sagittarius a*: Evi-
dence for a supermassive black hole at the center of our
galaxy. The Astrophysical Journal, 509(2):678, 1998. 3
Roberto Gilmozzi and Jason Spyromilio. The european ex-
tremely large telescope (e-elt). The Messenger, 127(11):3,
2007. 3

S Gonzaga, W Hack, A Fruchter, and J Mack. The drizzlepac
handbook. The DrizzlePac Handbook, 2012. 4

Karen M Hampson, Raphaél Turcotte, Donald T Miller,
Kazuhiro Kurokawa, Jared R Males, Na Ji, and Martin J
Booth. Adaptive optics for high-resolution imaging. Nature
Reviews Methods Primers, 1(1):1-26, 2021. 3

James E Harvey and Christ Ftaclas. Diffraction effects of
telescope secondary mirror spiders on various image-quality
criteria. Applied Optics, 34(28):6337-6349, 1995. 3

Hamid Reza Vaezi Joze, Ilya Zharkov, Karlton Powell,
Carl Ringler, Luming Liang, Andy Roulston, Moshe Lutz,



(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

and Vivek Pradeep. Imagepairs: Realistic super resolu-
tion dataset via beam splitter camera rig. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 518-519, 2020. 5

SR Kulkarni. Instruments on large optical telescopes—a case
study. arXiv preprint arXiv:1606.06674,2016. 2
Vasudevan Lakshminarayanan and Andre Fleck. Zernike
polynomials: a guide. Journal of Modern Optics, 58(7):545—
561,2011. 5

Rico Landman, Sebastiaan Y Haffert, Vikram M Radhakr-
ishnan, and Christoph U Keller. Self-optimizing adaptive op-
tics control with reinforcement learning. In Adaptive Optics
Systems VII, page 1144849. International Society for Optics
and Photonics, 2020. 4

Tod R Lauer. Combining undersampled dithered images.
Publications of the Astronomical Society of the Pacific, 111
(756):227, 1999. 2

Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,
Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe
Shi. Photo-realistic single image super-resolution using a
generative adversarial network, 2017. 3

Hang Li, Changxiang Yan, and Jianbing Shao. Measurement
of the modulation transfer function of infrared imaging sys-
tem by modified slant edge method. Journal of the Optical
Society of Korea, 20(3):381-388, 2016. 8

Haoying Li, Yifan Yang, Meng Chang, Shiqi Chen, Huajun
Feng, Zhihai Xu, Qi Li, and Yueting Chen. Srdiff: Single
image super-resolution with diffusion probabilistic models.
Neurocomputing, 479:47-59, 2022. 5

Orly Liba, Kiran Murthy, Yun-Ta Tsai, Tim Brooks, Tianfan
Xue, Nikhil Karnad, Qiurui He, Jonathan T Barron, Dillon
Sharlet, Ryan Geiss, et al. Handheld mobile photography in
very low light. ACM Transactions on Graphics (TOG), 38
(6):1-16, 2019. 4

Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, pages 136—144, 2017. 5

Zhisheng Lu, Juncheng Li, Hong Liu, Chaoyan Huang, Lin-
lin Zhang, and Tieyong Zeng. Transformer for single im-
age super-resolution. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
457-466, 2022. 5

Bahattin Can Maral. Single image super-resolution methods:
A survey. arXiv preprint arXiv:2202.11763,2022. 3
Christian Marois, Bruce Macintosh, Travis Barman, B Zuck-
erman, Inseok Song, Jennifer Patience, David Lafreniere,
and René Doyon. Direct imaging of multiple planets orbiting
the star hr 8799. science, 322(5906):1348-1352, 2008. 3

Y Mellier, Abdurrouf Abdurrouf, JA Acevedo Barroso, A
Achicarro, J Adamek, R Adam, GE Addison, N Aghanim,
M Aguena, V Ajani, et al. Euclid. i. overview of the euclid
mission. Astronomy & Astrophysics, 2024. 2

HH Nasse. How to read mtf curves. Carl Zeiss, Camera
Lens Division, page 33, 2008. 7

29151

[45]

[40]

(47]

(48]

[49]

(501

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

Ngoc Long Nguyen, Jérémy Anger, Axel Davy, Pablo Arias,
and Gabriele Facciolo. Self-supervised multi-image super-
resolution for push-frame satellite images. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1121-1131, 2021. 4

Sylvain Oberti, Carlos Correia, Thierry Fusco, Benoit Ne-
ichel, and Pierre Guiraud. Super-resolution wavefront re-
construction. Astronomy & Astrophysics, 667:A48, 2022. 4
Scott W Paine and James R Fienup. Machine learning for
improved image-based wavefront sensing. Optics Letters,
43(6):1235-1238, 2018. 4

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: Anim-
perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.
5

Yifan Peng, Suyeon Choi, Nitish Padmanaban, and Gordon
Wetzstein. Neural holography with camera-in-the-loop train-
ing. ACM Transactions on Graphics (TOG), 39(6):1-14,
2020. 4

Ben C Platt and Roland Shack. History and principles of
shack-hartmann wavefront sensing, 2001. 2

Roberto Ragazzoni, Emiliano Diolaiti, and Elise Vernet. A
pyramid wavefront sensor with no dynamic modulation. Op-
tics Communications, 208(1-3):51-60, 2002. 2

Vincent Sitzmann, Steven Diamond, Yifan Peng, Xiong Dun,
Stephen Boyd, Wolfgang Heidrich, Felix Heide, and Gor-
don Wetzstein. End-to-end optimization of optics and image
processing for achromatic extended depth of field and super-
resolution imaging. ACM Transactions on Graphics (TOG),
37(4):1-13,2018. 4

Robin Swanson, Masen Lamb, Carlos M Correia, Suresh
Sivanandam, and Kiriakos Kutulakos. Closed loop predictive
control of adaptive optics systems with convolutional neural
networks. Monthly Notices of the Royal Astronomical Soci-
ety, 503(2):2944-2954, 2021. 4

Robin Swanson, Suresh Sivanandam, and Kiriakos N Kutu-
lakos. Adaptive optics mediated sub-pixel super resolution.
In Adaptive Optics Systems VIII, pages 2594-2600. SPIE,
2022. 4

Robin Swanson, Esther Y. H. Lin, Masen Lamb, Suresh
Sivanandam, and Kiriakos N. Kutulakos. Super resolved
imaging with adaptive optics: Supplemental document. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2025. 7

Jing Tian and Kai-Kuang Ma. A survey on super-resolution
imaging. Signal, Image and Video Processing, 5(3):329-342,
2011. 3

Ethan Tseng, Shane Colburn, James Whitehead, Luocheng
Huang, Seung-Hwan Baek, Arka Majumdar, and Felix
Heide. Neural nano-optics for high-quality thin lens imag-
ing. Nature Communications, 12(1):1-7, 2021. 4

Robert K Tyson. Adaptive ptics engineering handbook. Mar-
cel Dekker New York, 2000. 2

Robert K Tyson and Benjamin West Frazier. Principles of
adaptive optics. CRC press, 2022. 3



[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Congli Wang, Qiang Fu, Xiong Dun, and Wolfgang Hei-
drich. Megapixel adaptive optics: towards correcting large-
scale distortions in computational cameras. ACM Transac-
tions on Graphics (TOG), 37(4):1-12, 2018. 4

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 2

Bartlomiej Wronski, Ignacio Garcia-Dorado, Manfred Ernst,
Damien Kelly, Michael Krainin, Chia-Kai Liang, Marc
Levoy, and Peyman Milanfar. Handheld multi-frame super-
resolution. ACM Transactions on Graphics (TOG), 38(4):
1-18, 2019. 4

Haitang Yang, Esther Y. H. Lin, Kiriakos N. Kutulakos, and
George V. Eleftheriades. Sub-wavelength passive single-
shot computational super-oscillatory imaging. Optica, 9(12):
1444-1447, 2022. 4

Wenming Yang, Xuechen Zhang, Yapeng Tian, Wei Wang,
Jing-Hao Xue, and Qingmin Liao. Deep learning for single
image super-resolution: A brief review. IEEE Transactions
on Multimedia, 21(12):3106-3121, 2019. 3

Linwei Yue, Huanfeng Shen, Jie Li, Qiangqiang Yuan,
Hongyan Zhang, and Liangpei Zhang. Image super-
resolution: The techniques, applications, and future. Signal
Processing, 128:389-408, 2016. 3

Biwei Zhang, Jiazhu Zhu, Ke Si, and Wei Gong. Deep learn-
ing assisted zonal adaptive aberration correction. Frontiers
in Physics, page 634, 2021. 4

Hao Zhu, Mantang Guo, Hongdong Li, Qing Wang, and
Antonio Robles-Kelly. Revisiting spatio-angular trade-off
in light field cameras and extended applications in super-
resolution. [EEE Transactions on Visualization and Com-
puter Graphics, 27(6):3019-3033, 2019. 2

29152



