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Abstract

Multispectral (MS) images capture detailed scene infor-

mation across a wide range of spectral bands, making them

invaluable for applications requiring rich spectral data. In-

tegrating MS imaging into multi-camera devices, such as

smartphones, has the potential to enhance both spectral ap-

plications and RGB image quality. A critical step in pro-

cessing MS data is demosaicing, which reconstructs color

information from the mosaic MS images captured by the

camera. This paper proposes a method for MS image demo-

saicing specifically designed for dual-camera setups where

both RGB and MS cameras capture the same scene. Our

approach leverages co-captured RGB images, which typi-

cally have higher spatial fidelity, to guide the demosaicing

of lower-fidelity MS images. We introduce the Dual-camera

RGB-MS Dataset – a large collection of paired RGB and

MS mosaiced images with ground-truth demosaiced out-

puts – that enables training and evaluation of our method.

Experimental results demonstrate that our method achieves

state-of-the-art accuracy compared to existing techniques.

1. Introduction

Multispectral (MS) imaging extends beyond standard RGB

imaging by capturing spectral information across multiple

wavelengths, often including visible and near-infrared spec-

tra. This enables precise analysis for applications such as

agriculture, medical imaging, and environmental monitor-

ing [2, 12, 29, 50]. MS data has also shown great potential

for image enhancement [37, 43, 57, 58], making it a valu-

able addition to imaging pipelines.

As multi-camera systems become more common in mod-

ern smartphones, interest in integrating MS and RGB imag-

ing has increased to leverage additional spectral data that

can complement RGB images. While hyperspectral (HS)

images provide denser and more contiguous spectral infor-

mation than MS images, MS sensors are more practical

Code and data are available at https://ms-demosaic.github.io/
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Figure 1. We propose a learning-based multispectral (MS) demo-

saicing method for a practical scenario (a), assuming a mobile de-

vice with a dual-camera setup, equipped with both RGB and MS

cameras. Unlike traditional MS demosaicing approaches (b), our

method (c) leverages the higher spatial resolution of the RGB mo-

saic from the RGB camera to guide and enhance the quality of the

demosaiced MS image, achieving state-of-the-art results.

for mobile devices, as HS imaging typically requires ex-

pensive and time-consuming capture systems [4, 16, 42].

In turn, there has been growing research focused on in-

corporating MS sensors into mobile devices, demonstrating

their ability to enhance performance in mobile RGB imag-

ing tasks such as illuminant spectral estimation [18], image

restoration [43], low-light enhancement [37], and tone ad-

justment [58]. However, most methods leverage MS imag-

ing as a complementary prior to improving RGB-targeted

tasks rather than focusing on enhancing MS image quality

directly. This is primarily due to the lower fidelity typically

associated with the MS imaging pipeline.

A standard RGB imaging pipeline adopts color filter ar-

rays (CFAs) over the image sensor to capture red, green,

and blue spectral bands. Each pixel records a single band,

resulting in a single-channel mosaic raw image. A com-

monly used CFA is the Bayer array [5], which arranges the

bands in a 2×2 mosaic pattern. Demosaicing algorithms

then reconstruct the 3-channel RGB image by estimating

the missing color values using the partial mosaic data [30].

In contrast, an MS imaging pipeline employ more com-

plex multispectral filter arrays (MSFAs), often arranged in

4×4 mosaic patterns, to capture multiple spectral bands

[3, 19, 26, 36]. While MSFA provides richer spectral in-
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formation, the increased number of bands results in sparser

mosaic data, making the demosaicing process considerably

more challenging than in RGB demosaicing [3].

To illustrate, consider a practical example of smart-

phones integrating RGB and MS cameras in a multi-camera

setup (Fig. 1a). Both cameras share identical lenses and sen-

sors in this configuration, with the RGB and MS cameras

using the 2×2 Bayer CFA and 4×4 MSFA, respectively.

Although both cameras capture mosaic raw images at the

same resolution, MS demosaicing is inherently more com-

plex. Meanwhile, RGB demosaicing benefits from fewer

missing pixels per color channel and denser spatial data.

This observation motivates us to develop a method

specifically for MS demosaicing. Our method leverages the

increasing potential of integrating RGB and MS cameras

within the same device [18, 28, 41]. In particular, we uti-

lize the RGB camera image as guidance in MS demosaic-

ing (Fig. 1c), using its higher spatial fidelity to compensate

for the MS image captured with MSFAs, which trades spa-

tial resolution for more spectral channels compared to RGB

CFAs. This ensures that the reconstructed MS images pre-

serve rich spectral information and achieve the same reso-

lution and spatial fidelity as the RGB counterparts.

Contribution We propose an MS demosaicing method

that leverages high-fidelity RGB images to address the low-

fidelity nature of MS mosaic raw images (Fig. 1). We focus

on a mobile setup with RGB and MS cameras mounted on a

smartphone. As to the best of our knowledge, no handheld

device with dual RGB and MS cameras provides access to

both RGB and MS images, leading us to introduce a dual-

camera RGB-MS dataset to train and validate our model.

Unlike existing datasets [18, 47, 58], which lack ground-

truth MS images, our dataset provides high-fidelity ground-

truth MS images with detail comparable to RGB counter-

parts, enabling accurate evaluation of RGB-guided MS de-

mosaicing. Training on this dataset, our model learns to

leverage high-resolution RGB data, achieving state-of-the-

art performance and demonstrating the potential of dual-

camera systems to enhance MS image quality significantly.

2. Related work

We first define the relation of RGB, MS, hyperspectral (HS)

images and how they are captured. We note the boundaries

between MS and HS are not well-defined, but we utilize

the definitions from [18]. First, RGB images capture spec-

tral content that is integrated across three filters. RGB data

is commonly captured on Bayer [5] sensors (2×2 CFA) by

trading some spatial resolution for color information. Next,

MS image capture spectral content integrated across more

filters. In our case, we examine cameras with 16 filters ar-

ranged in a 4×4 CFA. Finally, HS images capture spectral

content (without demosaicing) in a large number of con-

tiguous spectral bands, offering high spectral resolution, but

are impractical for smartphones due to expensive and slow

scanning setups [4, 16, 42]. Our framework is designed for

real-time MS imaging, making it feasible for mobile devices

and practical applications. We now discuss the most rel-

evant works to ours which are those of HS reconstruction

and RGB/MS demosaicing.

HS Image Reconstruction HS image reconstruction

methods generally fall into three categories: (1) spectral

super-resolution [6, 40], enhancing spectral resolution from

high-resolution RGB/MS images (e.g., 3-ch RGB or 16-ch

MS) to HS images; (2) spatial super-resolution [45, 56], im-

proving the spatial resolution of HS images while preserv-

ing spectral detail; and (3) a hybrid approach [15, 25, 32,

51], using RGB/MS images to guide HS reconstruction by

combining the spatial advantages of RGB/MS images with

the spectral richness of HS images. Our method is quite

similar to hybrid HS image reconstruction [15, 32, 51],

since we leverage spatial advantages of RGB images for

high-fidelity MS reconstruction.

Demosaicing RGB demosaicing, extensively studied

through classical signal processing and recent learning-

based methods [17, 21, 22, 33, 34, 48, 55], use CFA mosaics

(typically 2×2 Bayer [5]) to leverage dense spatial informa-

tion for high-quality reconstruction. In contrast, MS demo-

saicing, though less explored, commonly works with 4×4

MSFA mosaics and addresses challenges related to sparse

spatial data [13, 14]. The limitations of both RGB and MS

demosaicing motivate our framework, which combines the

strengths of both approaches. Dense spatial information of

RGB mosaics helps guide high-quality MS image recon-

struction, despite their limited spectral content.

3. Multispectral Demosaicing

Figure 2 shows an overview of our MS demosaicing frame-

work, specifically designed to handle both MS and RGB

mosaic images captured in a dual-camera setup. Our frame-

work takes MS and RGB mosaic images of the same scene

captured with disparity and produces a demosaiced MS im-

age while utilizing high-fidelity details of the RGB image.

We build our framework in two stages: demosaicing

(Sec. 3.1) and fusion (Sec. 3.2). In the first demosaicing

stage, we employ two models to independently process the

MS and RGB mosaic images. In the fusion stage, a fu-

sion module integrates the high-fidelity information from

the demosaiced RGB image into the demosaiced MS image

while addressing spatial disparities and spectral differences

between the two images to produce the final demosaiced

MS image with enhanced fidelity.

3.1. MS and RGB Demosaicing

In this stage, given the dual camera MS and RGB mosaic
images, IMS

4×4
∈ R

H×W and IRGB
2×2

∈ R
H×W , the goal is
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Figure 2. Our framework enhances MS demosaicing by integrating high-fidelity details from the co-captured RGB image. The framework

consists of two stages: demosaicing (Sec. 3.1) and fusion (Sec. 3.2). In the demosaicing stage, the MS and RGB networks, DMS and

DRGB , reconstruct the MS and RGB images, I ′
MS

and I ′
RGB

, respectively. In the fusion stage, high-fidelity details from the RGB

image are fused into the MS image, while addressing both geometric and spectral disparities. The Cross-spectral Disparity Estimation

module computes flow map w between MS and RGB images by first transforming the MS image into RGB color space to ensure spectral

compatibility during flow estimation. Then, the Spectral Alignment Layer (SAL) refines multi-scale RGB demosaicing features f ′RGB

l into

f ′MSRGB

l , simultaneously compensating for geometric and spectral differences to align them with the MS image. Finally, the Multispectral

Fusion Network (F ) integrates refined RGB features f ′MSRGB

l into I ′
MS

, producing a high-fidelity MS image IMS .

to reconstruct their demosaiced images I ′
MS

∈ R
H×W×16

and I ′
RGB

∈ R
H×W×3 using the demosaicing networks

DMS and DRGB , respectively. Here, 4×4 and 2×2 denote
the mosaic pattern for MS and RGB mosaic images, respec-
tively, and H and W represent the height and width of the
images. Formally, we have:

I
′MS

= DMS(I
MS
4×4), (1)

I
′RGB

= DRGB(I
RGB
2×2 ), (2)

where we employ NAFNet [7] as backbone networks for

DMS and DRGB , selected based on their reliable perfor-

mance in MS and RGB demosaicing tasks [3, 27].

Note that we perform separate demosaicing for the MS

and RGB mosaic images to enable more precise and effec-

tive fusion in the subsequent stage, rather than attempting to

fuse them directly. Aligning mosaic images with different

patterns and spectral bands presents significant challenges,

complicating the accurate fusion of MS and RGB images.

3.2. Cross­Spectral Multi­Scale Fusion

The RGB image I ′
RGB

∈ R
H×W×3, restored from 2×2

mosaics, captures more high-frequency spatial details of a

scene in contrast to the MS image I ′
MS

∈ R
H×W×16 re-

constructed from 4×4 mosaics. In this stage, our goal is

to transfer the high-frequency spatial details from I ′
RGB

to

I ′
MS

, generating IMS with enhanced details.

Although I ′
RGB

and I ′
MS

capture the same scene, it is

not straightforward to directly utilize I ′
RGB

for enhancing

I ′
MS

, as the image pair is misaligned, due to the disparity

introduced within the dual-camera setup, and each image

contains different spectral information. To address this, we

compose this stage into two modules: first, Cross-spectral

Disparity Estimation that computes dense-correspondences

between I ′
MS

and I ′
RGB

; and second, Multi-scale Spec-

tral Fusion that integrates high-frequency spatial details of

I ′
RGB

with fewer spectral bands into I ′
MS

with more spec-

tral measurements to produce a final MS image IMS , while

compensating for the disparity between the images. In the

following, we describe each module in more detail.

Cross-Spectral Disparity Estimation Computing dense

correspondence between images with different spectra re-

mains as a challenging problem [8, 31]. While some stud-

ies focus on cross-modal matching, they are limited to spe-

cific cases like RGB with Near InfraRed [23], InfraRed [9],

varying illuminations [20], or MS images with limited spec-

tral bands [47]. A recent high-resolution (HS) image super-

resolution approach [25] uses stereo RGB images as guid-

ance. For RGB image alignment, the method computes per-

pixel flow between the HS and RGB images by first convert-

ing the HS image to RGB, leveraging the spectral response

functions of both HS and RGB images. This process is rela-

tively straightforward, as the HS image contains dense, con-

tiguous spectral information that spans the RGB spectrum.
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Inspired by this, we estimate cross-spectral disparity es-

timation between I ′
MS

and I ′
RGB

by employing a pre-
calibrated color conversion matrix C ∈ R

16×3 to trans-
form I ′

MS
∈ R

H×W×16 into the proxy RGB I ′
RGBMS ∈

R
H×W×3, aligning it to the color space of the RGB image

I ′RGB . Mathematically, we have:

I
′RGBMS = r

−1
(

r
(

I
′MS

)

· C
)

, (3)

where r
(

I ′
MS

∈ R
H×W×16

)

→ I ′r
MS

∈ R
(H×W )×16 is a re-

shaping operator and the color conversion matrix C is pre-

calibrated by computing a least squares transformation be-

tween the RGB and MS color chart image pairs (refer to the

supplementary material for more details).
Then, we estimate the optical flow w ∈ R

H×W×2 be-

tween I ′
RGBMS and I ′

RGB
using the pre-trained flow esti-

mation network S [46]. Specifically, w is obtained as:

w = S(I ′
RGBMS , I

′RGB
). (4)

Note that the flow estimation network S first preprocesses

I ′
RGB

and I ′
RGBMS , mapping them into the sRGB color

space using corresponding camera metadata (i.e., white bal-

ance and color correction matrices) to align the images with

the color space used for the flow estimation task.

Multi-Scale Spectral Fusion We now fuse the high-

fidelity details of the RGB image I ′
RGB

into the MS image

I ′
MS

to produce the final MS image IMS , while compen-

sating for the disparity between the two images using the

estimated flow map w. We propose a multi-scale spectral

fusion network F to address this challenge.

The network F takes I ′
MS

as its primary input to pro-
duce the final enhanced output IMS . We introduce a spec-
tral alignment layer (SAL) to incorporate details from the
RGB image. The layer takes L-level multi-scale RGB fea-

ture maps {f ′RGB
l , l ∈ [1, 2, ..., L]} extracted from the

RGB demosaicing network and flow map w to provide re-

fined RGB feature map f ′MSRGB

l to each level of the fusion
network F . We formally define the fusion process as:

f
′MSRGB

l = SAL(f ′RGB

l , w), (5)

I
MS = F(I ′

MS
, f

′MSRGB

l∈[1,2,...,L]), (6)

where we adopt NAFNet [7] as the backbone for the net-

work F . Here, the refined RGB feature maps f ′MSRGB

l are

aligned with the MS image and adapted for fusion with the

intermediate MS features within the network F .
SAL addresses geometric and spectral disparities si-

multaneously using the deformable convolution network
(DCN) [11], which integrates seamlessly with the flow map
w and is particularly effective at capturing spatial features
through adaptive sampling patterns. SAL computes the re-

fined RGB feature map f ′MSRGB

l as the following:

f
′MSRGB

l (p) =
∑

i∈Ω

k(i)f ′RGB

l (p+ pw + i+∆i), (7)

where p is the location on the output feature map f ′MSRGB

l ,

and i enumerates the locations Ω in the deformable convo-

lution kernel k. The optical flow offset at location p, de-

noted as pw = w(p)/2l−1, represents the MS-to-RGB im-

age displacement downscaled by 2l−1, enabling multi-scale

geometric alignment of RGB to MS features. Here, ∆i rep-

resents the deformable kernel offsets learned by SAL, en-

abling the convolution kernel k to adapt spatially and cap-

ture fine structural details in the multi-scale RGB features

f ′RGB
l , such as edges and textures.

3.3. Network Training

The training process consists of two stages: demosaicing

and fusion. To train our network, we use our dual-camera

RGB-MS dataset, consisting of quadruplets of mosaic MS

and RGB images, each paired with ground-truth demosaic

MS and RGB images, denoted as IMS
4×4

, IRGB
2×2

, ÎMS , and

ÎRGB , respectively. Sec. 4 discusses more dataset details.

MS and RGB Demosaicing We first train the MS and
RGB demosaicing networks DMS and DRGB indepen-
dently (Sec. 3.1). For DMS , we use the L2 loss between
the predicted MS demosaiced image I ′MS , and the ground-

truth MS image ÎMS . Similarly, for the network DRGB , we

apply the L2 loss between the predicted RGB image I ′
RGB

,

and the ground-truth RGB image ÎRGB :

LMS = ∥I ′MS − Î
MS∥2, (8)

LRGB = ∥I ′
RGB

− Î
RGB∥2. (9)

Cross-Spectral Fusion In this stage, we train the multi-
scale spectral fusion module (Sec. 3.2), which comprises
the spectral alignment layer (SAL) and the fusion network
F to incorporate high-fidelity details from I ′RGB into the
demosaiced MS image I ′MS , producing an enhanced MS
image IMS . The MS and RGB demosaicing networks and
the optical flow estimation network, S , remain fixed during
this stage. We apply an L2 loss between the final MS image

IMS and the ground-truth MS image ÎMS :

Lfusion = ∥IMS − Î
MS∥2. (10)

4. Dual-Camera RGB-MS Dataset

To train and validate our network, we introduce a dataset

containing quadruplets of mosaiced RGB and MS images,

each paired with ground-truth demosaiced RGB and MS

images (Figs. 3b-e). The ground-truth demosaiced images

are high-quality captures (details of capture in Section 4.1)

obtained using our imaging system that simulates an asym-

metric dual-camera setup (Fig. 4). The system simulates

an RGB camera capturing a scene in 3 RGB channels and

an MS camera capturing the same scene in 16 multispec-

tral channels, with a spatial disparity between them. We

synthesize the mosaic images by converting the demosaiced

images into 1-channel mosaics. The dataset comprises 502
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(a) Scenes staged in the illumination box for constructing our dataset (b) 𝐼2×2𝑅𝐺𝐵 (c) መ𝐼𝑅𝐺𝐵 (d) 𝐼4×4𝑀𝑆 (e) መ𝐼𝑀𝑆
Figure 3. Representative examples from our dataset: (a) 28 scenes staged in the illumination box and (b–e) samples of quadruplets captured

from scenes 7, 14, 21, and 28. Each quadruplet consists of (b) a 1-channel RGB mosaic image IRGB
2×2 , (c) the corresponding 3-channel

RGB demosaiced ground-truth ÎRGB , (d) a 1-channel MS mosaic image IMS
4×4, and (e) its corresponding 16-channel MS demosaiced

ground-truth ÎMS . Note that the images within each quadruplet share the same spatial resolution. We also visualize the mosaic patterns

(zoomed-in red cropped box) and the disparity between the RGB and MS mosaic images (white dashed line) in the first row.

camera with

pixel-shift

sensor

illumination box

linear stage actuator

royal blue yellow

amberblue deep red violet

D65 green

controllable illumination

Figure 4. Dual-camera MS-RGB capturing system.

quadruplets across 28 challenging scenes (Fig. 3a) with high

textures and detailed features. The dataset has training, val-

idation, and test sets, containing 352, 47, and 103 image

quadruplets captured from 20, 2, and 6 scenes, respectively,

where each image is in camera raw space at the resolution of

1440×2160 pixels. Additional details about capture setup

are given in the supplementary material.

Existing MS datasets [18, 58] are not well-suited for

our task due to the absence of high-quality, ground-truth

demosaiced images alongside the MS data. Additionally,

these datasets often feature very low-resolution MS and

RGB images in sRGB space already processed by camera

pipeline [58], or paired RGB and MS images with minimal

scene overlap due to extremely large disparities [18]. Our

method, designed for handheld devices like smartphones

with minimal multi-camera disparity, led us to collect a

dataset with realistic disparity and accurate ground-truth de-

mosaic images. It includes both RGB and synthetic MS

images in raw space, with no processing from the camera

pipeline, making it ideal for training and evaluating our ap-

proach in the early stages of the onboard camera pipeline.

4.1. Data Gathering Pipeline

To collect the dataset, we build an imaging system con-

sisting of a camera mounted on a linear stage actuator and

a controllable illumination box (Fig. 4), that allows us to

simulate an asymmetric dual-camera setup, where MS and

RGB cameras have a constant relative baseline.

The linear stage actuator moves the camera to two ad-

justable positions, one for MS and the other for RGB cap-

ture. We utilize an Arduino/Genuino microcontroller to pre-

cisely control the camera movement between positions, en-

suring a constant relative baseline between MS and RGB

captures. In practice, we set the baseline to 1 cm. The con-

trollable illumination box (Telelumen Octa Light Player)

simulates multispectral data capturing, featuring config-

urable light sources that distribute evenly throughout the

scene within the box. Capturing occurs in a lab setting in a

dark room to ensure that the box is the sole lighting source.

We use a Sony Alpha 1 camera as the capturing device.

For each capture, the system generates a pair of 16-channel

MS and 3-channel RGB demosaic images using the pixel

shift mode featured in the camera, which shifts the sensor

during capture to enable sensor-level demosaicing. Each

image is initially captured at a resolution of 5760×8640

pixels. To mitigate noise introduced by the small pixel size

of the sensor, we downsample these images to a resolution

of 1440×2160 pixels to generate ground-truth demosaiced

images. We create our 1-channel MS and RGB input mosaic

images by applying a 4×4 MSFA pattern and 2×2 Bayer

CFA pattern to the MS and RGB ground-truth demosaiced

images, respectively. Additionally, we simulate noise on the

mosaic images using a Poisson-Gaussian noise model [38],

calibrated at ISO 400. For this calibration, we use 90 im-
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ages of a color chart (30 images taken at three different ex-

posures) captured by the camera.

Like most consumer cameras, the camera in our system

uses a CFA that captures the RGB spectrum, making RGB

image acquisition straightforward. We obtain RGB images

by configuring the light sources within the controllable il-

lumination box to simulate the CIE D65 daylight illumi-

nant. For MS image acquisition, we simulate an MSFA by

capturing multiple RGB images of a scene under varying

light sources. The following provides further background

for simulating MS capture using the illumination box.

Multispectral Image Acquisition To begin, we consider
the image formation process in our setup under a uniform
light source across the scene. Formally, the color informa-
tion of a mosaic image I at location x can be described as:

I(x) =

∫

γ

S(y)Crgb(x, y)
︸ ︷︷ ︸

CRFRGB

L(y)R(x, y)
︸ ︷︷ ︸

scene irradiance

dy + z, (11)

where CRFRGB represents the RGB camera response func-

tion (composed of the sensor’s spectral sensitivity S(y) and

the RGB CFA response function Crgb(x, y)), L(y) is the

spectral power distribution (SPD) of light, and R(x, y) is

the scene reflectance. z denotes unwanted noise, typically

characterized by signal-dependent and additive components

[1]. The integral over the visible range γ at wavelength y
provides the color information in the mosaic raw image.

Next, let us combine the camera response function with

the light SPD emitted by the illumination box in narrow

spectral bands, which mimic the spectral filters used in

MS systems. We assume that the scene is lit by a uni-

form, broadband, and neutral “virtual” light source with an

SPD denoted as J (·), which spans all wavelengths equally.

Eq. (12) can then be rewritten as:

I(x) =
∫

γ
S(y)Crgb(x, y)L(y)
︸ ︷︷ ︸

CRFMS

J(y)R(x, y)
︸ ︷︷ ︸

simulated scene irradiance

dy + z, (12)

where CRFMS represents our virtual MS camera response

function, and the scene irradiance is now simulated by the

scene reflectance under the assumption of a constant, uni-

form, broadband, neutral virtual light source.

Since our capturing system uses the illumination box as

the only physical light source in the scene, the box allows us

to control the SPD of the light. This capability enables us to

simulate the MS mosaic image by capturing the scene with

the RGB CFA, varying the SPD of the light within the illu-

mination box, and performing multiple captures to simulate

the response function of an MS camera.

The box provides seven primary wavelengths, ranging

from 380 nm to 760 nm, which can be combined in various

ways to create customizable light sources. For MS image

acquisition, the system captures the same scene seven times,

each under a different wavelength combination, resulting in

a 21-channel MS image (7 wavelength combinations × 3

RGB channels). This is then reduced to a 16-channel MS

image by discarding the 5 spectral channels with the least

information. Detailed discussions and experiments are in-

cluded in the supplementary material.

5. Experiments

We train our model using the proposed dual-camera MS-

RGB dataset (Sec. 4). During training, we use the Adam

optimizer [24] with a learning rate of 1×10-3. Following

the two-stage training strategy (Sec. 3.3), we train the model

for 200k iterations in both the demosaicing and fusion

stages. For each iteration, we randomly sample batches of

8 quadruplets (mosaiced MS and RGB images, along with

their corresponding demosaiced outputs) from the training

set and cropped into 256×256 patches. For the quantita-

tive evaluation of MS restoration quality, we measure the

Peak Signal-to-Noise Ratio (PSNR), Structural Similarity

(SSIM) [49], and Spectral Angle Mapper (SAM) [53] .

5.1. Ablation Study

We conduct ablation studies focusing on the impact of

the proposed cross-spectral multi-scale fusion module

(Sec. 3.2) in incorporating RGB guidance for reconstructing

the final MS demosaiced image. We compare the baseline

MS demosaicing network DMS (Eq. (1)), with NAFNet [7]

as the backbone, and three variants that utilize the RGB de-

mosaicing network DRGB (Eq. (2)) to provide RGB guid-

ance to the multispectral fusion network F . The variants

employ RGB guidance through image-based or feature-

based methods. In the image-based guidance, the RGB de-

mosaicked image I ′RGB is used directly, with or without

alignment to the MS image. Each of these is concatenated

with the MS demosaicked image I ′MS and fed into the fu-

sion network F . The feature-based guidance leverages con-

figurations of the proposed spectral alignment layer (SAL).

Table 1 presents quantitative results. The baseline model

performs the worst due to the absence of RGB guidance

(first row). Providing RGB guidance by concatenating

I ′RGB with the MS image I ′MS yields slight improvements

(second row), while flow-based alignment further enhances

performance by addressing geometric misalignment (third

row). Incorporating multi-scale RGB features refined by the

proposed SAL, which adapts deformable convolution [11],

achieves the best performance (last row) and demonstrates

its effectiveness in utilizing RGB features to facilitate cross-

spectral fusion with multi-scale features (see supplementary

for a more detailed analysis of SAL).

5.2. Comparison on MS Demosaicing

In this section, we evaluate the proposed method in two key

asymmetric dual-camera scenarios. The first scenario fo-

cuses on asymmetry in the CFA patterns of the RGB and
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DMS

(Eq. (1))

DRGB

(Eq. (2))

RGB guidance for fusion network F (Eq. (6))
PSNR↑ SSIM↑ SAM↓

Params

(MB)

MACs1

(T)I′RGB I′RGB(p + w(p)) SAL

✓ 40.89 0.9766 2.604 111.24 0.78

✓ ✓ ✓ 40.90 0.9767 2.597 124.17 1.91

✓ ✓ ✓ 41.75 0.9808 2.520 124.17 1.91

✓ ✓ ✓ 41.92 0.9811 2.422 130.03 2.53

Table 1. Ablation study evaluating the effect of RGB guidance strategies of the proposed MS demosaicing framework. We examine direct

usage of the RGB demosaic I ′RGB , the warped image I ′RGB(p+w(p)) aligned to the MS image using the flow w (Eq. (4)), and feature-

based guidance with the proposed spectral alignment layer (SAL, Eqs. (5) and (7)).

Input Model PSNR↑ SSIM↑ SAM↓
Params

(MB)

MACs1

(T)

IMS

4×4

SSMT [13] 33.97 0.932 6.723 9.76 26.01

MCAN [14] 39.02 0.966 3.947 5.24 0.91

MCAN-L 40.36 0.974 2.996 53.69 7.80

NAFNet [7] 40.89 0.977 2.604 111.25 0.78

NAFNet-L 40.68 0.976 2.654 158.58 1.51

Restormer [54] 40.61 0.977 2.643 99.70 6.72

Restormer-L 40.58 0.976 2.660 148.71 11.82

IMS

4×4

&

IRGB

2×2

DCT [32] 38.44 0.962 4.748 31.91 15.22

HSIFN [25] 36.50 0.963 3.198 90.21 18.79

MCAN+Ours 41.85 0.981 2.572 24.03 2.66

NAFNet+Ours 41.92 0.981 2.422 130.03 2.53

Restormer+Ours 41.48 0.981 2.474 118.49 8.47

Table 2. Quantitative comparison for MS demosaicing.

MS sensors. The second introduces an additional asymme-

try where the MS sensor has a lower resolution than the

RGB sensor, reflecting a practical consideration where a

smaller MS sensor is used in the dual-camera setup.

We compare our RGB-guided MS demosaicing frame-

work with previous image restoration methods, including

hyperspectral image restoration and multispectral demo-

saicing methods: SSMT [13], MCAN [14], DCT [32],

HSIFN [25], NAFNet [7, 10], and Restormer [54]. Among

these, SSMT and MCAN are MS mosaic-to-MS recon-

struction methods. NAFNet and Restormer are general-

purpose image restoration models with state-of-the-art per-

formance in tasks such as demosaicing [27, 52] and super-

resolution [39, 59]. DCT and HSIFN are hybrid MS-to-HS

reconstruction methods that use RGB as a guidance. All

baselines are retrained from scratch on our dataset using

the same training configuration as our model and all are

dtrained with the same number of iterations for fairness.

For comparison, we categorize these methods into two

types based on their input: a single MS mosaic (“IMS

4×4
”),

and a MS mosaic with an auxiliary RGB mosaic images

(“IMS

4×4
& IRGB

2×2
”). We adapt each model to handle the ap-

propriate mosaiced inputs and generate demosaiced MS im-

ages. Specifically, we adapt SSMT, MCAN, NAFNet, and

Restormer to work with mosaiced MS images. DCT and

HSIFN are modified to accept mosaiced MS images as in-

put, while using mosaiced RGB as an auxiliary guidance.

Additional details are provided in the supplementary.

1Measured on 1440×2160 MS and RGB mosaic images.
2Measured on 360×540 MS and 1440×2160 RGB mosaic images.

Input Model PSNR↑ SSIM↑ SAM↓
Params

(MB)

MACs2

(T)

I
MS↓4
4×4

SSMT [13] 32.08 0.902 6.651 12.71 26.92

MCAN [14] 31.97 0.900 5.755 5.43 0.08

MCAN-L 32.87 0.916 4.884 53.88 0.51

NAFSR [10] 32.98 0.917 4.736 59.19 2.66

NAFSR-L 32.95 0.919 4.439 100.93 4.54

Restormer [54] 32.34 0.908 5.166 99.99 0.93

Restormer-L 32.45 0.911 4.882 149.00 1.26

I
MS↓4
4×4

&

IRGB

2×2

DCT [32] 31.12 0.893 6.613 42.21 15.78

HSIFN [25] 29.92 0.866 6.982 90.35 6.61

MCAN+Ours 37.55 0.962 3.629 24.22 1.82

NAFSR+ Ours 37.67 0.964 3.567 77.98 4.41

Restormer+Ours 36.70 0.960 3.722 118.77 2.68

Table 3. Quantitative comparison for 4× MS demosaicing.

In comparison, our framework is validated in a plug-

and-play manner by integrating MCAN, NAFNet, and

Restormer into a multispectral (MS) demosaicing network

DMS , on top of the RGB demosaicing network DRGB

(Eq. (2)) and the cross-spectral fusion module (Sec. 3.2). To

ensure fairness, we account for the increased model com-

plexity introduced by our approach by also evaluating base-

line models with increased capacity, denoted as “-L”.

Scenario 1: Asymmetric CFA Pattern In this scenario,

we examine MS demosaicing in an asymmetric dual-camera

configuration where the MS and RGB sensors share the

same spatial resolution while using CFAs with different mo-

saic patterns: a 4×4 MFSA for the MS sensor and a 2×2

Bayer pattern for the RGB sensor.

For comparison, the baseline methods are trained using

L2 loss between the predicted demosaiced MS image and

ground-truth MS images (i.e., Eq. (8)), while our models are

trained using the complete pipeline described in Sec. 3.3.

Table 2 provides quantitative results. NAFNet performs

best among the baseline models, followed by Restormer,

MCAN, and SSMT. For capacity-increased baselines, while

MCAN-L shows improvements, NAFNet-L and Restormer-

L perform worse than their original versions, likely due

to overfitting when using only MS mosaic input. By in-

corporating our proposed method (rows marked “+ Ours”),

all models show significant improvements in MS restora-

tion quality, demonstrating the adaptability of our approach

across varying architectures. The qualitative results in

Fig. 5 show how our method induces a baseline model to

produce better details and structures. The supplementary

materials provide additional examples to confirm the bene-
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(b) Restormer (c) Restormer + Ours (d) NAFNet (e) NAFNet + Ours (f) GT(a) MS mosaic input

31.08dB

42.89dB

31.41dB

43.94dB

31.13dB

43.17dB

31.58dB

44.65dB

Figure 5. Qualitative comparison of MS demosaicing results for a dual-camera scenario where we consider MS and RGB sensors with the

same spatial resolution but using asymmetric CFAs. Following [14, 35], we visualize the predicted MS demosaics by converting them to

the sRGB color space leveraging the color conversion matrix C (Eq. (3)) and camera metadata, using CIE D65 as the reference white point.

fits of our approach in asymmetric CFA pattern scenarios.

Scenario 2: Asymmetric Sensor Resolution This sce-

nario extends Scenario 1 by introducing an additional asym-

metry in sensor resolution, where the MS and RGB sen-

sor captures low- and high-resolution mosaics, respectively.

In this scenario, we aim to reconstruct low-resolution MS

mosaic images into high-resolution MS demosaiced images

while preserving spectral fidelity.

For comparison, we adapt the baseline methods that

takes MS mosaic image as an input to produce MS de-

mosaic images at the desired spatial resolution. Specif-

ically, we modify SSMT [13], DCT [32], HSIFN [25],

MCAN [14], Restormer [54] by appending upsampling lay-

ers consisting of multiple convolutional and pixel-shuffle

layers [44]. We employ NAFSR [10], a variant of NAFNet

designed for the super-resolution task (refer supplement for

details). The training follows the same procedure as in Sce-

nario 1, except that we synthesize low-resolution MS mo-

saic input images by downsampling the ground-truth MS

demosaic images, followed by mosaicing to simulate data

captured by a smaller MS sensor. For downsampling, we

use strided box filtering at a target scaling factor of 4.

Table 3 presents the quantitative results. Among the

baselines, NAFSR-L achieves the best MS reconstruction

performance, followed by Restormer-L and MCAN-L. Inte-

grating our approach (rows marked “+ Ours”) significantly

enhances performance across all baselines, particularly in

spectral accuracy, as SAM scores reflect. Unlike Scenario

1, where capacity increase led to overfitting for NAFNet

and Restormer, ambiguity in dealing with low-resolution

MS mosaic images allows these models to benefit from

additional capacity. Figure 6 provides qualitative results.

Our approach significantly improves reconstructing high-

fidelity details and accurate structures, demonstrating the

advantages of the proposed dual-camera scenario in enhanc-

ing MS images by leveraging high-quality RGB mosaics.

29.64dB

40.50dB

(b) NAFSR-L

37.95dB

45.68dB

(c) NAFSR+Ours (d) GT(a) MS mosaic

Figure 6. Qualitative comparison of 4× MS demosaicing results

for a dual-camera configuration with asymmetric sensor resolu-

tion. The results are in the sRGB color space as described in Fig. 5.

6. Conclusion

This paper proposes an MS demosaicing framework lever-

aging high-fidelity RGB guidance from a dual-camera MS-

RGB setup to enhance MS image quality. Our framework

integrates a cross-spectral fusion module to address geomet-

ric misalignment and spectral disparities, effectively com-

bining RGB and MS information. We also introduce a

dual MS-RGB dataset with high-fidelity ground-truth MS

images, enabling accurate evaluation of RGB-guided MS

demosaicing. Experiments demonstrate the state-of-the-art

MS restoration quality of our approach, highlighting the po-

tential of dual-camera systems to advance MS imaging.

Limitation Our method enhances MS image restoration

using high-fidelity RGB guidance but relies on dual RGB-

MS camera setups, which are not yet widely adopted in

commercial devices. Its effectiveness also depends on RGB

image quality and precise cross-spectral alignment, as mis-

alignment or noise can impact MS reconstruction. Future

work could focus on reducing computational overhead to

improve feasibility for resource-constrained devices.
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