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Figure 1. Given occluded human image, non-reference methods, LOHC [43] and BrushNet [12], can generate plausible results but lack the

unique information of the person like special clothing and tattoo pattern (highlighted in Red box). Such information can be only acquired by

additional reference images. Given the reference image, MimicBrush [3] fails to find the corresponding parts between input and reference.

Our CompleteMe can preserve identical and fine-detail information from the reference image and generate a consistent result.

Abstract

Recent methods for human image completion can re-

construct plausible body shapes but often fail to pre-

serve unique details, such as specific clothing patterns

or distinctive accessories, without explicit reference im-

ages. Even state-of-the-art reference-based inpainting ap-

proaches struggle to accurately capture and integrate fine-

grained details from reference images. To address this lim-

itation, we propose CompleteMe, a novel reference-based

human image completion framework. CompleteMe employs

a dual U-Net architecture combined with a Region-focused

Attention (RFA) Block, which explicitly guides the model’s

attention toward relevant regions in reference images. This

approach effectively captures fine details and ensures accu-

rate semantic correspondence, significantly improving the

fidelity and consistency of completed images. Addition-

*Work was done when Yu-Ju Tsai was an intern at Adobe Research.

ally, we introduce a challenging benchmark specifically de-

signed for evaluating reference-based human image com-

pletion tasks. Extensive experiments demonstrate that our

proposed method achieves superior visual quality and se-

mantic consistency compared to existing techniques.

1. Introduction

Human image completion [31, 43–45] is an essential task

in computer vision, with a wide range of applications, in-

cluding photo editing [13, 29], virtual try-on [5, 7, 14, 20],

animation [9, 36], and 3D avatar [23, 47]. The ability to ac-

curately reconstruct missing parts of human images has sig-

nificant implications for enhancing user experience in these

areas. Traditional inpainting methods [39, 40] have made

strides in generating plausible image completions, but they

often fall short in maintaining consistency of complex fea-

tures like clothing, pose, and human anatomy. These chal-

lenges become even more pronounced when dealing with
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large or irregular missing regions, which require a compre-

hensive understanding of both the local and global context

of an image.

Amodal completion methods [22, 35, 41] have recently

garnered attention for their ability to infer occluded parts of

an object beyond visible regions. These approaches aim to

reconstruct the entirety of an object even when portions are

entirely hidden, relying on learned priors to predict missing

information. However, they primarily focus on reconstruct-

ing general object shapes obscured by occlusions and often

fall short in complex scenarios that involve varied human

poses or intricate details, such as unique clothing patterns

or distinctive features like tattoos. Without explicit refer-

ence information, these methods struggle to generate accu-

rate completions that capture individual characteristics, as

people often seek to faithfully restore specific, original de-

tails. Amodal completion methods, however, are currently

unable to achieve this level of precise restoration.

Reference-based inpainting [1, 3, 4, 27, 28, 37] provides

a promising solution by utilizing additional reference im-

ages that share similar attributes, offering valuable infor-

mation for reconstructing missing regions. These methods

leverage visual cues from reference images, such as cloth-

ing details, textures, or human poses, to fill in missing re-

gions more accurately and consistently. Despite these ad-

vancements, these methods mainly focus on object-level in-

sertion or completion, and challenges still remain in terms

of effectively capturing fine-grained details, particularly in

cases involving intricate clothing patterns and unique parts

of the person, where explicit reference information is cru-

cial for generating identical results.

To address the above issue, we propose CompleteMe, a

reference-guided human image completion framework that

leverages reference images to guide the completion process.

Our model is based on a dual U-Net structure, consisting

of the Reference U-Net and the Complete U-Net, which

separately handle reference information and completing for

the occluded input. To improve correspondence, we di-

vide different parts of human appearance (e.g., hair, face,

clothes, shoes) into separate reference images for the Ref-

erence U-Net. These reference features are then integrated

into the Complete U-Net via our newly designed Region-

focused Attention (RFA) Block. The RFA Block explic-

itly guides attention toward relevant reference regions based

on reference masks, effectively establishing precise corre-

spondences and improving the model’s ability to produce

more realistic and semantically accurate completions, par-

ticularly for challenging cases involving complex clothing

patterns, body patterns, or unique accessories. As shown

in Fig. 1, CompleteMe can generate more fine-detail results

based on the information provided by the reference image,

outperforming other methods. To comprehensively evalu-

ate the performance of various methods on reference-based

human completion tasks, we construct a challenging bench-

mark featuring significant body pose differences and vary-

ing scenarios between the occluded input and the reference

image. This benchmark tests the model’s ability to gener-

ate consistent information and establish proper correspon-

dences. Our contributions are summarized as follows:

• We propose CompleteMe, a novel reference-based human

image completion model employing a dual U-Net archi-

tecture enhanced by our Region-focused Attention Block,

explicitly designed to preserve fine details and identity

consistency with enhanced correspondence.

• We construct a challenging benchmark dataset with sig-

nificant pose differences and varying scenarios to system-

atically evaluate the model’s ability to find proper corre-

spondences and maintain identical and consistent infor-

mation from the reference image.

• We conduct comprehensive experiments, including a

large user study, to demonstrate the best performance of

the proposed method both qualitatively and quantitatively.

2. Related Work

Image Completion. Recent advancements in object image

completion have introduced various methods to address the

challenges in reconstructing missing or occluded regions.

Xiong et al. [34] develop a foreground-aware image in-

painting method incorporating explicit contour guidance to

enhance object reconstruction. SmartBrush [33] combines

text and shape guidance with a diffusion model to fill miss-

ing regions with detailed object reconstructions. Brush-

Net [12] introduces a plug-and-play dual-branch model to

embed pixel-level masked image features into any pre-

trained text-to-image diffusion model to generate inpainting

outcomes. For human-centric image completion, FiNet [42]

propose Fashion Inpainting Networks, which reconstruct

missing clothing parts in fashion portrait images using pars-

ing maps as priors. Wu et al. [31] extend the approach

with a two-stage deep learning framework for portrait im-

age completion, utilizing a human parsing network to ex-

tract the body structure before filling in unknown regions.

Zhao et al. [44] propose a prior-based human completion

method, incorporating structural and texture correlation pri-

ors to recover realistic human forms. LOHC [43] introduces

a two-stage coarse-to-fine method and leverages human seg-

mentation maps as a prior, and completes the image and

segmentation prior simultaneously.

Reference-based Inpainting. Reference-based image in-

painting has made significant improvements in recent years,

focusing on leveraging external references to improve im-

age completion tasks with enhanced realism and semantic

accuracy. TransFill [46] introduces a method that aligns

source and target images using multiple homography in-

formed by depth levels. Paint-by-Example [37] leverages

diffusion models for exemplar-guided editing, integrating
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Figure 2. CompleteMe Pipeline. Our proposed CompleteMe utilizes a dual U-Net framework composed of a Reference U-Net (Uref ) and

a Complete U-Net (Ucomp). Given an input image (Iinput) with masked regions, we first encode the input image to latent feature finput.

The Reference U-Net then extracts detailed visual features (f0

ref , f
1

ref , . . . , f
n
ref ) from multiple reference images (Iref ), which consist of

different human body parts. Along with global semantic features (fCLIP) extracted by CLIP, the reference features are processed within

our novel Region-focused Attention (RFA) Block embedded in the Complete U-Net. These reference features are then explicitly masked

according to reference masks, producing masked reference features (f ′0

ref , f
′1

ref , . . . , f
′n

ref ). This explicit masking and concatenation

strategy enables the model to precisely zoom in and focus on relevant human regions, establishing accurate and fine-grained correspon-

dences through the Region-focused Attention mechanism. Finally, decoupled cross-attention integrates these refined local features with the

global semantic CLIP features (fCLIP), resulting in a detailed and semantically coherent completion.

example patches into target images. ObjectStitch [27] uses

conditional diffusion models and introduces a content adap-

tor to maintain categorical semantics and object appearance.

AnyDoor [4] introduces a zero-shot framework that tele-

ports target objects into new scenes at user-specified loca-

tions and orientations. IMPRINT [28] proposes a diffusion

model trained with a two-stage learning framework that de-

couples learning of identity preservation from compositing.

LeftRefill [1] presents a strategy that stitches reference and

target views as a unified input to a text-to-image diffusion

model. MimicBrush [3] offers an approach to locally edit

the source region with reference images by training dual dif-

fusion U-Nets in a self-supervised manner with video data.

These methods illustrate the progression of reference-

based inpainting, moving from traditional alignment tech-

niques to advanced diffusion-based models prioritizing

identity preservation, contextual consistency, and zero-shot

learning capabilities. However, human image completion

presents a more complex challenge, as current methods pri-

marily focus on object-level completion and struggle to es-

tablish accurate correspondences between the source and

reference when conditions differ significantly.

3. Method

3.1. Overall Pipeline

Our proposed CompleteMe utilizes a dual U-Net architec-

ture comprising a Reference U-Net (Uref ) and a Com-

plete U-Net (Ucomp), as illustrated in Fig. 2, explicitly tai-

lored for reference-based human image completion. Given

an input source image (Iinput) with masked regions, our

masking strategy applies random grid masking (50% prob-

ability) 1 to 30 times and employs human body shape

masks (50% probability) to ensure complexity and real-

ism. The Reference U-Net (Uref ) first extracts detailed

spatial features (f0

ref , f
1

ref , . . . , f
n
ref ) from multiple ref-

erence images (Iref ), which consist of different human

body parts. The reference features are then processed

within our novel Region-focused Attention (RFA) Block,

embedded in the Complete U-Net (Ucomp). These ex-

tracted reference features are explicitly masked using cor-

responding reference masks, yielding masked reference

features (f ′0
ref , f

′1
ref , . . . , f

′n
ref ). The RFA block ex-

plicitly guides the input feature finput with attention to-

ward relevant human regions inside masked reference fea-

tures (f ′i
ref ). Along with the global semantic features
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(fCLIP) from CLIP [24] encoder, the RFA Block enables

the model to precisely identify and establish accurate corre-

spondences, significantly enhancing detail preservation and

semantic coherence. During inference, our model is flexi-

ble, operating effectively even with a single reference im-

age and optionally incorporating textual prompts, enabling

practical and versatile human image completion.

3.2. Reference Feature Encoding

In reference-based image inpainting tasks, previous ap-

proaches [4, 27, 28, 37] typically utilize semantic-level en-

coders such as CLIP [24] or DINOv2 [21] to extract global

features from reference images. However, these methods

often lose crucial spatial information, resulting in limited

preservation of fine-grained appearance details. Motivated

by recent successes in image and video generation condi-

tioned on reference images [3, 9, 10, 36], we propose a

specialized Reference U-Net encoder designed for detailed

identity preservation across multiple reference images.

Our Reference U-Net (Uref ) is initialized from pre-

trained Stable Diffusion 1.5 [25] weights but operates ex-

plicitly without the diffusion-based noise step (at timestep

zero), directly encoding reference images (Iref ) into latent

visual features (f0

ref , f
1

ref , . . . , f
n
ref ). Each reference im-

age, corresponding to distinct human appearance attributes

(e.g., upper body, lower body, shoes), is first transformed

into latent representations and then sequentially processed

by the Reference U-Net. This sequential encoding strat-

egy ensures flexibility and robustness, effectively manag-

ing varying numbers and types of reference images while

preserving detailed appearance information. Additionally,

global semantic features (fCLIP) are extracted from each

reference image using the CLIP [24] image encoder, sup-

plementing the spatially-detailed latent features with global

semantic context. These combined reference and seman-

tic CLIP features are cached before feeding to our Region-

focused Attention (RFA) Block, facilitating efficient and

detail-preserving encoding process.

3.3. Completion Process

Complete U-Net. Our Complete U-Net (Ucomp), initialized

from pretrained Stable Diffusion 1.5 [25] inpainting model,

receives as input a source image (Iinput) with masked re-

gions represented in the latent space, along with cached

latent reference features (f0

ref , f
1

ref , . . . , f
n
ref ) and global

CLIP features (fCLIP), as shown in Fig. 2. The Complete U-

Net then processes a concatenation of these masked refer-

ence features with the input feature (finput) inside Region-

focused Attention Block, providing detailed context for the

completion task.

Region-focused Attention Block. To effectively integrate

detailed local information from reference images, we intro-

duce the Region-focused Attention (RFA) Block, as illus-

trated in Fig. 2. Given the encoded latent reference features

(f i
ref ), we explicitly mask irrelevant regions using the cor-

responding reference masks, generating masked reference

features (f ′i
ref ). These masked reference features (f ′i

ref )

are then concatenated with latent input features (finput) ex-

tracted from the input image to form the concatenated fea-

ture (fconcat). Within the RFA block, we apply region-

focused attention to the concatenated features as follows:

Region-focused Attention(Q,K, V ) = Softmax
(

QK⊤

√
d

)

V, (1)

where the queries (Q), keys (K), and values (V ) are de-

fined as: Q = finput, K,V = fconcat. This region-

focused attention allows the model to explicitly identify ac-

curate and fine-grained spatial correspondences between the

masked source regions and relevant masked reference re-

gions. After this detailed correspondence establishment via

region-focused attention, we utilize the decoupled cross-

attention mechanism proposed by IP-Adapter [38] to fuse

the refined, detail-focused local features with global seman-

tic features (fCLIP). Specifically, we perform two separate

cross-attention operations—one using the refined local fea-

tures, and the other using the global CLIP features—then

sum their outputs to form enriched, semantically consistent

feature maps. This explicit integration of visual and textual

information results in more detailed, coherent, and contex-

tually accurate completed outcomes.

3.4. Evaluation Benchmark

Since no suitable dataset evaluates the reference-based hu-

man image completion task, we construct our benchmark to

systematically evaluate the performance of different meth-

ods. Our main target is to establish the scenario in which

reference images are necessary for completing the unique

information. We establish the benchmark to meet the fol-

lowing criteria: 1) the same person in the same clothing, 2)

a significantly different pose, 3) unique patterns like spe-

cial clothing, accessories, or tattoos, and 4) different back-

ground conditions. To construct the benchmark, we first se-

lect image pairs from the Wpose dataset in UniHuman [16],

which contains a wide variety of poses, allowing us to test

the model’s ability to find the proper correspondence. We

manually draw the source mask to indicate the inpainting

area. Finally, we obtain 417 image groups, each consist-

ing of a source image, inpainting area, and reference image,

please refer to supplementary material for more benchmark

examples. Additionally, we use LLaVA [17, 18] to generate

text prompts describing the source image. For evaluation

metrics, we use CLIP [24] to calculate text-to-image and

image-to-image similarity, DINO [2] to calculate similarity

scores, and the DreamSim [6] metric to better evaluate the

generated results. Aside from these metrics, we also use

PSNR [8], SSIM [30], and LPIPS [42] as our evaluation

metrics for masked regions.
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Table 1. Quantitative Comparison on Our Benchmark (Sec. 3.4). “CLIP-I” measures the similarity between images. “CLIP-T”

measures the similarity between text and image. Red and blue indicate the best and second-best, respectively.

Method CLIP-I ↑ CLIP-T ↑ DINO ↑ DreamSim [6] ↓ LPIPS ↓ PSNR ↑ SSIM ↑

LOHC [43] 96.03 29.46 82.52 0.0732 0.0709 28.4884 0.9264

BrushNet [12] 95.90 30.69 95.08 0.0576 0.0600 28.5764 0.9224

Paint-by-Example [37] 95.04 29.79 94.98 0.0611 0.0601 28.6441 0.9222

AnyDoor [4] 89.65 28.14 88.80 0.1454 0.0812 28.1807 0.9089

LeftRefill [1] 96.33 29.74 95.12 0.0574 0.0598 28.8657 0.9283

MimicBrush [3] 96.98 29.48 94.37 0.0651 0.0694 28.3598 0.9174

CompleteMe (Ours) 97.18 29.83 96.29 0.0419 0.0588 28.7020 0.9239

Masked Input Reference Image LOHC BrushNet w/ Prompt CompleteMe (Ours)

Figure 3. Qualitative Comparison with Non-reference Meth-

ods. We compare CompleteMe with non-reference methods,

LOHC[43] and BrushNet [12]. Given masked inputs, these non-

reference methods generate plausible content for the masked re-

gions using image priors or text prompts. However, as indicated in

the Red box, they cannot reproduce specific details such as tattoos

or unique clothing patterns, as they lack reference images to guide

the reconstruction of identical information.

4. Experiments

4.1. Experimental Setting

Implementation Details. We employ the Reference

U-Net and the Complete U-Net, initialized with pre-

trained weights from Stable Diffusion-1.5 [25] and Stable

Diffusion-1.5 inpainting model. Our image encoder uses

CLIP [24] Vision Model, along with projection layers. For

training, we use Adam [15] optimizer and set an initial

learning rate of 2×10−5 with a total batch size of 64. Train-

ing is performed on 8 NVIDIA A100 GPUs for 30,000 itera-

tions. We apply mean square error (MSE) loss as our super-

vision. To enhance the robustness of the model, we employ

a random drop strategy, where all reference image features

are randomly dropped with a probability of 0.2. This helps

the model learn to handle cases with partial information

from reference images. Additionally, to increase the flexi-

bility of the completion process, each reference condition is

randomly dropped with a probability of 0.2, allowing image

completion to be conditioned on various reference images.

During inference, we adopt the DDIM sampler [26] with

50 steps and set the guidance scale to 7.5 to improve out-

put quality and identity. Please refer to the supplementary

material for more details.

Training Dataset. To train our CompleteMe model, we

modify a multi-modal human dataset based on [10], which

is constructed from the DeepFashion-MultiModal [11, 19]

dataset. To meet our requirements, we rebuild the train-

ing pairs by using occluded images with multiple reference

images that capture various aspects of human appearance

along with their short textual labels. Each sample in our

training data includes six appearance types: upper body

clothes, lower body clothes, whole body clothes, hair or

headwear, face, and shoes. For the masking strategy, we ap-

ply 50% random grid masking between 1 to 30 times, while

for the other 50%, we use a human body shape mask to in-

crease masking complexity. After the construction pipeline,

we obtained 40,000 image pairs for training.

4.2. Comparison with Other Methods

In this section, we compare our CompleteMe with other

approaches capable of performing similar functions in the

reference-based human image completion task. Among

non-reference methods, we select LOHC [43], the state-

of-the-art in non-reference human image completion, and

BrushNet [12], a leading model for image inpainting with

text prompts. For reference-based methods, we include

Paint-by-Example [37], AnyDoor [4], LeftRefill [1], and

MimicBrush [3] for a comprehensive comparison. We

also provide additional inputs where applicable for previ-

ous methods. For instance, we include extra prompts for

BrushNet [12] and supply reference region masks for Paint-

by-Example [37] and AnyDoor [4].

Quantitative Comparison. To assess the effectiveness

of CompleteMe, we perform a quantitative comparison

with other state-of-the-art methods for human image com-

pletion. We evaluate both non-reference and reference-

based inpainting approaches using several metrics: CLIP-

I [24] (image-to-image), CLIP-T [24] (text-to-image),

DINO [2], DreamSim [6], PSNR [8], SSIM [30], and
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Masked Input Reference Image Paint-by-Example AnyDoor LeftRefill MimicBrush CompleteMe (Ours)

Figure 4. Qualitative Comparison with Reference-based Methods. Our CompleteMe can generate more realistic and preserve identical

information from the reference image. Please refer to the Red box region for a more detailed comparison.

LPIPS [42]. As shown in Table 1, CompleteMe demon-

strates strong performance across various perceptual met-

rics, outperforming other methods in CLIP-I, DINO,

DreamSim, and LPIPS, which reflect our ability to main-

tain semantic alignment and appearance fidelity with the

reference image. In terms of image quality metrics, Com-

pleteMe achieves competitive PSNR and SSIM scores,

demonstrating its high-fidelity reconstructions. These quan-

titative results illustrate that CompleteMe achieves better

performance across semantic similarity, structural fidelity,

and perceptual quality, positioning it as a robust solution

for reference-based human image completion.

Qualitative Comparison. For qualitative comparison, we

first compare our CompleteMe with non-reference meth-

ods, LOHC [43] and BrushNet [12], as shown in Fig. 1 and

Fig. 3. Given masked inputs, these non-reference methods

generate plausible content for the masked regions by lever-

aging image priors or additional text prompts. However, as

highlighted in the red box, they are unable to replicate spe-

cific details, such as tattoos or unique clothing patterns, due

to the absence of reference images to guide the reconstruc-

tion of identical features.

As shown in Fig. 4, we compare CompleteMe with

reference-based methods: Paint-by-Example [37], Any-

Door [4], LeftRefill [1], and MimicBrush [3]. For the set-

ting of comparison, we use only one reference image and

text prompt for our method. Given a masked human image

and a reference image, other methods can generate plausi-

ble content but often fail to preserve contextual information

from the reference accurately. In some cases, they gen-

erate irrelevant content or incorrectly map corresponding

parts from the reference image. In contrast, CompleteMe ef-

fectively completes the masked region by accurately pre-

serving identical information and correctly mapping corre-

sponding parts of the human body from the reference image.

User Study. Recognizing that metrics alone may not fully

capture human preferences, we conducted a user study, as

shown in Table 2. We asked 15 annotators to evaluate

the generated results from various models on our bench-

mark (described in Sec. 3.4) and acquire 2,895 groups

of data points. We construct the “one-to-one” evaluation

pair between CompleteMe and other four methods (Paint-

by-Example [37], AnyDoor [4], LeftRefill [1], and Mim-

icBrush [3]) with masked input and reference image. Each
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Masked Input Reference Image CLIP U-Net w/o RFADINOv2 U-Net (Ours)

Figure 5. Qualitative Comparison on Different Reference Image Encoder. We conduct the ablation study for different encoders to

extract the feature from reference images. CLIP [24] and DINOv2 [21] can find the correspondence between masked input and the

reference image, but they can not preserve the detailed information compared to the U-Net encoder. For the effectiveness of our Region-

focused Attention (RFA), this design further helps preserve the identical information. Please zoom in for the detail inside the Red box.

Table 2. User Study on Our Benchmark. We conduct a user

study on our proposed benchmark (see Sec. 3.4). “Quality” and

“Identity” measure the completion quality and preservation of

identical information from the reference image. We report the one-

to-one comparison between these methods and CompleteMe. For

“a/b”, a is the percentage where the compared method is consid-

ered better than CompleteMe, and b is the percentage where Com-

pleteMe is considered better than the compared method.

Evaluation Quality Identity

Method CompleteMe

Paint-by-Example [37] 6.12%/93.88% 3.48%/96.52%

AnyDoor [4] 0.55%/99.45% 1.13%/98.87%

LeftRefill [1] 14.97%/85.03% 4.58%/95.42%

MimicBrush [3] 5.14%/94.86% 6.05%/93.95%

Table 3. Ablation on Different Masking Ratios. We conduct

experiments with different ratios between human shape and ran-

dom mask (0% to 100%) and evaluate performance using CLIP-I,

DINO, and DreamSim.

Random Mask Ratio 0 % 25 % 50 % 75 % 100 %

CLIP-I ↑ 97.09 97.02 97.18 97.07 96.78

DINO ↑ 96.22 96.26 96.29 96.10 95.60

DreamSim ↓ 0.0426 0.0419 0.0419 0.0434 0.0495

group sample is assessed based on two primary criteria:

“Quality” and “Identity”. The “Quality” criterion examines

whether the completed regions contain high-quality fine de-

tails, while the “Identity” criterion evaluates the model’s

ability to preserve the identity of the reference region. As

shown in Fig. 4, the annotators will judge the results gener-

ated by these reference-based methods and report their pref-

erence based on the two criteria. Table 2 shows the signifi-

cant preference on CompleteMe. We provide the discussion

and more visual comparisons in the supplementary material.

4.3. Ablation study

Different Masking Ratios. We conducted an ablation

study to analyze the impact of varying masking ratios be-

Table 4. Ablation on Different Reference Image Encoder and

Effectiveness of Region-focused Attention. We conduct an abla-

tion study using various image encoders to process reference im-

ages. The U-Net encoder consistently outperforms both CLIP [24]

and DINOv2 [21] encoders across all perceptual metrics. We fur-

ther compare the effectiveness of Region-focused Attention Block,

which demonstrate the best performance among all comparisons.

Method Region-focused CLIP-I ↑ DINO ↑ DreamSim [6] ↓

CLIP Encoder 96.96 96.06 0.0457

DINOv2 Encoder 96.20 94.30 0.0639

U-Net 97.05 96.17 0.0437

Ours (U-Net) X 97.18 96.29 0.0419

tween human shape and random mask on our model’s

performance. Specifically, we experimented with random

mask ratios ranging from 0% to 100% and evaluated the

results using three metrics: CLIP-I, DINO, and Dream-

Sim. As shown in Table 3, our model achieves the best

overall performance at a 50% random mask ratio, obtaining

the highest CLIP-I (97.18) and DINO (96.29) scores and

the lowest DreamSim (0.0419) score. This indicates that

a balanced masking ratio of 50% effectively enhances our

model’s robustness and ability to handle diverse occlusions,

enabling visual and semantic consistency.

Different Reference Image Encoder. Several recent meth-

ods [3, 9, 10, 36] have shown that an additional U-Net can

effectively capture fine-grained details from reference im-

ages. Paint-by-Example [37] uses a CLIP [24] encoder to

extract features from reference images, while AnyDoor [4]

employs DINOv2 [21] for the same purpose. In our study,

we investigate whether these encoders can effectively learn

feature correspondences and alignment across multiple ref-

erence images. To do so, we replace our reference U-Net

with CLIP and DINOv2 image encoders, using their token

features in the cross-attention layer of the Complete U-Net.

As shown in Fig. 5, both CLIP and DINOv2 successfully

identify relevant reference regions, but the U-Net demon-

strates clear advantages in preserving fine details. Addi-
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Table 5. Quantitative Comparison on Our Benchmark for Ablation Study on Different Training Strategies. “Train Ref U-Net”

indicates whether to train the Reference U-Net. “Prompt” means using the text prompt as additional input for the Complete U-Net.

“Reference Mask” stands for whether using reference masks for the Region-focused Attention Block.

Exp. Train Ref U-Net Prompt Reference Mask CLIP-I ↑ DINO ↑ DreamSim [6] ↓ LPIPS ↓

(a) Freeze U-Net 96.02 95.54 0.0513 0.0596

(b) Freeze U-Net+Prompt X 96.13 95.48 0.0521 0.0598

(c) Freeze U-Net+Prompt+Ref Mask X X 97.02 96.08 0.0444 0.0600

CompleteMe (Ours) X X X 97.18 96.29 0.0419 0.0588

Masked Input Reference Image Exp. (a) CompleteMe (Ours)Exp. (b) Exp. (c)

Figure 6. Qualitative Comparison on Different Training Strategies. The experimental index follows configurations in Table 5. The Red

box highlights the finely detailed regions where different models exhibit varying performance based on distinct training strategies.

tionally, quantitative results in Table 4 show that U-Net out-

performs CLIP and DINOv2 on all evaluation metrics. The

Reference U-Net encoder provides multi-level representa-

tions at higher resolutions, and its feature space aligns natu-

rally with the Complete U-Net, leading to improved results

as a reference feature extractor.

Effectiveness of Region-focused Attention. We conducted

an ablation study to investigate the effectiveness of our pro-

posed Region-focused Attention (RFA) mechanism. As

shown in Table 4, integrating our proposed RFA mecha-

nism with the U-Net encoder further enhances performance,

yielding the highest CLIP-I (97.18) and DINO (96.29)

scores and the lowest DreamSim (0.0419). This clearly

demonstrates that the RFA effectively captures detailed cor-

respondences and enhances semantic coherence by explic-

itly focusing attention on relevant masked regions.

Different Training Strategies. We conduct the ablation

study to verify the training strategy and different training

input sources. We validate the ablation study on the follow-

ing three aspects: 1) whether to train the Reference U-Net,

2) text prompt input for Complete U-Net, and 3) reference

mask for the Region-focused Attention Block.

Table 5 presents the results of our ablation study, demon-

strating that CompleteMe achieves the highest evaluation

scores across all metrics, showing its robustness and ef-

fectiveness in the reference-based human image completion

task. To further illustrate the impact of our design choices,

we provide visual comparisons in Fig. 6, showing how each

variation affects the quality of generated images. These vi-

suals highlight the strengths of CompleteMe in preserving

fine details, maintaining identity consistency, and achieving

high-quality completions, underscoring the contributions of

each component in our model architecture.

5. Conclusion

In this paper, we propose CompleteMe, a novel reference-

based human image completion framework explicitly de-

signed to reconstruct missing regions in human images with

high fidelity, detail preservation, and identity consistency.

Our approach employs a dual U-Net architecture consist-

ing of a Reference U-Net and a Complete U-Net integrated

with our Region-focused Attention (RFA) Block, which ex-

plicitly guides attention toward relevant regions in refer-

ence images, thus significantly enhancing spatial correspon-

dence and detailed appearance during completion. Exten-

sive experiments on our benchmark demonstrate that Com-

pleteMe outperforms SoTA methods, both reference-based

and non-reference-based, in terms of quantitative metrics,

qualitative results and user studies. Particularly in challeng-

ing scenarios involving complex poses, intricate clothing

patterns, and distinctive accessories, our model consistently

achieves superior visual fidelity and semantic coherence.
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