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Abstract

Generative AI models, particularly diffusion models (DMs),
have demonstrated exceptional capabilities in high-quality
image synthesis. However, their large memorization capacity
raises significant privacy concerns, especially when trained
on sensitive datasets. This paper introduces DP-LoRA, a
surprisingly simple yet effective framework for differentially
private fine-tuning of latent diffusion models (LDMs) using
Low-Rank Adaptation (LoRA). By fine-tuning only a small
subset of parameters, DP-LoRA achieves state-of-the-art
(SoTA) performance in privacy-preserving image generation
while significantly improving the privacy-utility trade-off.
DP-LoRA leverages pre-trained LDMs and integrates LoRA
modules into attention blocks and projection layers, enabling
parameter-efficient fine-tuning under Differential Privacy
(DP) constraints. Extensive experiments on benchmarks
such as CelebA-HQ demonstrate that DP-LoRA outperforms
existing methods, achieving competitive Fréchet Inception
Distance (FID) scores with strict privacy budgets (e.g., € <
10). Additionally, we provide a comprehensive analysis of
the impact of LoRA rank, noise multiplicity, and trainable
components on model performance. Our results highlight the
potential of parameter-efficient techniques to scale privacy-
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preserving generative models to real-world applications,
paving the way for safer deployment of diffusion models
in sensitive domains. Our codes are available at ht tps :
//github.com/EzzzLi/DP-LORA.

1. Introduction

As generative Al evolves, advanced models raise serious con-
cerns about data privacy [15, 57]. Neural networks can unin-
tentionally reveal training data [6, 59], fueling research on
privacy-preserving methods [10] that maintain strong model
utility [54]. A solution is Differential Privacy (DP) [17, 18],
a rigorous framework for protecting individual data points
during training. In particular, Differential Privacy Stochas-
tic Gradient Descent (DP-SGD) [1] modifies standard SGD
by clipping gradients and injecting noise, providing formal
privacy guarantees for each training sample.

Recent generative approaches, such as diffusion mod-
els (DMs) [4, 13, 47, 48, 51], have demonstrated impres-
sive capabilities in synthesizing high-quality images and
achieving robust performance on various tasks. However,
their large memorization capacity poses heightened pri-
vacy risks [6, 15, 27], particularly when trained on sensi-
tive data [3, 7, 46]. Unlike generative adversarial networks
(GANSs) [22, 54, 55, 58], DMs break down the generation
process into iterative steps, which aligns well with DP proto-
cols that rely on incremental noise addition [14].

Nevertheless, the unique denoising architecture of DMs
demands tailored strategies [14, 20, 36, 37] to integrate DP
without undermining learning capacity. Dockhorn et al. [14]
first explored DP-SGD [ 1] for diffusion models, yielding lim-
ited utility on CIFAR10 and CelebA. Later, Ghalebikesabi
et al. [20] improved performance via public pretraining
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and private fine-tuning, while recent work [37] extended
the vanilla diffusion scheme [53] to latent diffusion models
(LDMs) [48], achieving competitive results. However, there
remains a gap in optimizing the privacy-utility trade-off, es-
pecially regarding parameter efficiency and model scalability.
Reducing the number of trainable parameters can help main-
tain DP guarantees by limiting the information learned from
sensitive data. In non-private scenarios, parameter-efficient
fine-tuning (PEFT) techniques (e.g. LoRA [28]) have been
proposed to address storage and compute constraints [12, 63].
Here, we conduct a comprehensive study to develop a strong,
accurate, and parameter-efficient strategy that optimizes the
privacy-utility trade-off under DP constraints.

Our contributions are: 1) We show that our parameter-
efficient fine-tuning approach, DP-LoRA, achieves state-
of-the-art (SoTA) performance in DP image synthesis, sur-
passing previous baselines on standard benchmarks. 2) We
thoroughly investigate parameter-efficient training under DP
constraints, demonstrating that a small subset of trainable pa-
rameters can still provide competitive results. 3) DP-LoRA
enables a modular design where a large pre-trained founda-
tion model can be rapidly adapted to diverse downstream
tasks with minimal overhead, facilitating faster and more
resource-efficient training of private diffusion models.

2. Preliminary

2.1. Differential Privacy

Differential privacy [17, 18] is a widely adopted defense
against membership inference attacks, where adversaries
attempt to pinpoint individuals or groups in the training data.

Definition 1 A randomized mechanism M : D — R satis-
fies (e, 6)-differential privacy if, for any two adjacent inputs
d,d" € D and any set S C R,

P(M(d) € S) < e P(M(d') € S) + 4. (1)

Here, € is privacy budget (higher values imply weaker privacy
guarantees) and ¢ bounds the probability of a privacy breach.

2.2. DPSGD

Neural networks are commonly privatized using Differen-
tially Private Stochastic Gradient Descent (DP-SGD) [1]
or variants like DP-Adam [40]. During each training itera-
tion, gradients for each sample are clipped, and Gaussian
noise is injected. Formally, let [;(f) := L(f, x;,y;) be the
loss function with model parameters f € RP, input fea-
tures z;, and label y;. The clipping function clips(v) :
v — min (1, ﬁ) - v enforces a maximum f5-norm of C.
For a mini-batch B of size | B|, the privatized gradient § is
computed as

\Tll > clipa(VI(f)) +

i€B

oC

Ega

g:
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where £ ~ N(0,1,) and I, € RP*P is the identity matrix.
The noise variance o, batch size |B|, and the number of
training iterations collectively determine the privacy budget
(€,0). Tuning these hyperparameters is critical for maintain-
ing model accuracy. Moreover, excessive queries to a DP-
protected model can still threaten privacy guarantees [16].
In this work, we adopt DP-SGD as the primary optimizer for
all experiments.

2.3. Differentially Private Latent Diffusion Models

DP-LDM [37] leverages the efficiency of latent diffusion
models (LDMs) [49] and integrate DP by fine-tuning a small
subset of model parameters. In particular, DP-LDM first
pre-trains an LDM on public data and then fine-tune it on
private data using DP-SGD, thereby ensuring strong privacy
guarantees while maintaining high synthesis quality.

More specifically, an LDM consists of a pre-trained au-
toencoder, Enc(+) and Dec(-), that maps high-dimensional
images © € R7*V >3 into a lower-dimensional latent rep-
resentation z = Enc(z). A diffusion model, typically a
modified UNet, is then trained in the latent space to pre-
dict the noise component of z at various time steps ¢ and
conditional input c. The training loss is defined as

lem(e) =E. tec [HT - TG(Zt7ta C)”%] )

where 7y is the function approximator parameterized by 6 =
[0, Oawn, Ocn], with 8 corresponding to the UNet backbone
parameters (excluding attention layers), Oy, the attention
module parameters, and ¢, the conditioning embedder (for
conditional generation).

Rather than fine-tuning all parameters, DP-LDM only up-
dates the attention modules (and the conditioning embedder
in the conditional case). The selective fine-tuning reduces
the number of trainable parameters by approximately 90%
compared to full fine-tuning, which not only improves the
privacy-utility trade-off but also decreases the computational
burden. For the private fine-tuning step, DP-LDM adopts the
DP-SGD on the parameters {Oaun, Ocn}- At each iteration,
the gradients are computed on a mini-batch and then clipped
to a norm C'. This procedure ensures that the fine-tuned
model satisfies DP with respect to the private dataset.

2.4. Low-Rank Adaptation (LoRA)

LoRA [28] is a parameter-efficient fine-tuning method that
adapts a pre-trained model by introducing low-rank updates
to its weight matrices rather than updating all parameters.
Specifically, given a pre-trained weight matrix W € R™*",
LoRA decomposes the update as

W' =W + AW, AW = AB,

where A € R™*" and B € R"*" are low-rank matrices
and 7 < min(m, h) is the rank of the decomposition. This
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Figure 1. Overview of DP-LoRA. After pre-training the autoencoder and the latent diffusion model (LDM), we fine-tune the LDM by
inserting LoRA [28] into each attention block. We apply LoRA not only to the QK V-attention matrices but also to the output projection layer

for improved performance.

low-rank parameterization reduces the number of trainable
parameters from m x htor x (m + h).

In practice, during the fine-tuning process, the original
weights W are kept fixed, and only the matrices A and B are
updated via gradient-based optimization. During the forward
pass, the modified weight W' is computed by adding the low-
rank update AW to the pre-trained weight W. This allows
the model to adapt to new tasks while largely retaining the
pre-trained knowledge.

In our work, we employ LoRA to efficiently adapt the
model to the target task under differential privacy constraints,
leveraging its advantages in both computational efficiency
and retention of pre-trained representations.

3. Parameter-efficient Differentially Private La-
tent Diffusion Models

In this section, we introduce our method, DP-LLoRA, which
follows a two-stage process: 1) pre-train an LDM on a large
public dataset to ensure generative quality, and 2) fine-tune
the LDM on a small private dataset with limited privacy
budgets (¢) using Low-Rank Adaptation (LoRA) [28].

3.1. Fine-tuning LDM via Low-Rank Adaptation
Let f(Wsr; x) be a pre-trained model with parameters Wpy

and input . We can augment this function with additional
parameters 6, where dim(¢) < dim(W5s1), to enable fine-
tuning. These new parameters are initialized to 6 such that

fFT(WPT,emx) = f(WPT;-T)~ 2)
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LoRA then prescribes an additive update:

fFT(WPme;f) = f(WPT + )\(G)Qx); (3)

where the correction A(6) is parameterized by . Here
Wer = Wpr + A(0) lies on a low-dimensional manifold
of dimension dim(f) < dim(W5z). Consequently, even if ¢
is corrupted by significant DP noise, the combined weights
Wer remain near Wpr, preserving image generation quality.
To integrate DP using Eq. (3), we propose DP-LoRA and
employ LDMs for enhanced generation quality at higher
resolutions [37]. An overview of DP-LoRA is shown in
Figure 1. The training process consists of two main steps:

Pre-training. First, we train an auto-encoder on public
data using SGD to map high-resolution images into a re-
duced latent space [48]. This step simplifies subsequent
training by operating on lower-dimensional representations.
We then train the LDM from scratch (i.e., all parameters
W) without LoRA modules. This establishes a solid foun-
dation for high-fidelity image generation in the latent space.

Fine-tuning. Next, we encode private data into the learned
latent space using the pre-trained auto-encoder. We fine-
tune the LDM on this private data with LoRA modules via
DP-SGD, incorporating the noise multiplicity strategy from
DPDM [14]. Specifically, we inject LoRA into the self-
attention blocks (for unconditional image generation) and
the cross-attention blocks (for text-conditional generation).
LoRA adapters are placed not only in the QKV-attention



modules but also in the linear output projection layers that
restore dimensionality.

3.2. Discussions

Limitations of fully fine-tuning. In differentially private
training, there is an inherent trade-off between utility and pri-
vacy. As noted in Section 2.2, DP-SGD [1] clips per-sample
gradients proportionally to network size, causing large mod-
els to suffer disproportionately under private training [39].
Moreover, diffusion models demand high computational
budgets, often requiring many more iterations than standard
classifiers [26]. The combined noise from diffusion training
and DP-SGD makes private training especially challenging.

Parameter-efficiency benefits private fine-tuning. Min-
imizing the number of trainable parameters is crucial for
improving the privacy-utility trade-off [39]. From the in-
trinsic dimensionality hypothesis [32] and observations in
large language models [2], the intrinsic dimension required
for effective training can be much smaller than the total pa-
rameter count. Low-rank decomposition [28] thus enables
efficient adaptation of large models with significantly fewer
trainable parameters. For instance, DP-LoRA achieves a
FID of 8.4 (¢ = 10) on CelebA-64 using just 3.6% of the
parameters, exceeding prior SOTA by over 50%. Addition-
ally, our lightweight modification can be easily integrated
into any public pre-trained model.

Which modules are most worthwhile to optimize? Re-
cent research [24, 62] shows that fine-tuning attention layers
in DMs is highly effective for tasks like image editing and
text-to-image generation. Liu et al. [37] further advocate
tuning attention blocks and conditioning embedders for pri-
vate domain shifts. In DP-LoRA, we also adjust the output
projection layer, ensuring that adapted features align with
the new distribution. As shown in Table 1, fine-tuning both
components (attention and projection) yields a FID of 7.71
on CelebA-64, compared to 9.82 when excluding the projec-
tion layer. Conversely, tuning other parts such as ResBlocks
may degrade performance in private settings [37].

FT Modules FID A #Params

+ QKV & Project  7.71/8.41 718K /479K
-QKV 11.78/12.89 249K/ 159K
- Project Layer 9.82/11.24 479K /319K

Table 1. Tuning different components on CelebA-32 (left) / CelebA-
64 (right). QKV plus projection layers jointly achieve optimal FID.

4. Experiments

Datasets. We evaluate DP-LoRA on datasets of vary-
ing complexity: the widely recognized MNIST (re-
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sized to 32x32) [31], CIFAR-10 (32x32) [30], CelebA
(64x64) [38], and the high-resolution CelebA-HQ
(256x256) [29]. Note that we resize MNIST by follow-
ing the setting of DP-LDM [37] (one of our baselines, see
below). For class-conditional tasks, we use MNIST, CIFAR-
10, and CelebA-HQ; for unconditional tasks, we test on
CelebA at different resolutions. Public datasets include
EMNIST [11] for MNIST and scaled ImageNet [50] for
CIFAR-10, CelebA, and CelebA-HQ.

We emphasize that generating high-resolution DP images
is more challenging than generating low-resolution images;
thus, more attention must be paid to the quality of the DP-
synthesized images. Although non-private image synthesis
has advanced to photo-realistic high-resolution outputs up
to 512x512 [37], the DP noise introduced during training
degrades image quality. As shown in Table 2, previous work
still considers CelebA-32 (32x32) and CelebA-64 (64 x64)
for unconditional generation, and MNIST and CIFAR-10 for
conditional generation, which justifies our dataset selection.

Methods Uncondition Condition

CelebA-32, CelebA-64
CelebA-32, CelebA-64

CIFAR10

CIFAR10, MNIST, Camelyon17-WILDS,
CelebAHQ (Gender), CelebA-64 (Gender)
MNIST, Fashion-MNIST, CIFAR10
MNIST, Fashion-MNIST

MNIST, Fashion-MNIST, CelebA-64 (Gen-
der), CelebA-64 (Hair)

MNIST, Fashion-MNIST

MNIST, CIFAR-10, Camelyon17

Privimage (USENIX"24)
DP-LDM (TMLR24)

DP-MEPF (TMLR"23)
dp-promise (USENIX'24)
DP-SAD (Eccv24)

CelebA-32, CelebA-64
CelebA-32, CelebA-64, CIFAR10
CelebA-64

DPDM (TMLR"23)
DP-Diffusion (DeepMind'23)

CelebA-64

Table 2. Datasets used by prior work.

Target CelebA-32  CelebA-64 MNIST CIFAR-10
pretrain-dataset ImageNet  ImageNet EMNIST (Letters) ImageNet
Input size 32 64 32 32
Latent size 16 32 4 16

f 2 2 8 2
z-shape 16x16x3  16x16x3 4x4x3 32x32x3
Channels 128 192 128 128
Channel multiplier [1,2] [1,2] [1,2,3,5] [1,2]
Attention resolutions [16,8] [16,8] [32,16,8] [16,8]
Batch size 16 16 50 16
Epochs 4 10 50 4

Table 3. Parameter settings for pretraining autoencoders.

Evaluation metric. We demonstrate the performance of
DP-LoRA by assessing: (1) image generation quality and
(2) downstream classification accuracy. For image qual-
ity, we adopt the Fréchet Inception Distance (FID) [25], a
standard measure in DP image generation [14]. For down-
stream utility in class-conditional tasks, we train a classi-
fier (using CNN, Wide Residual Network (WRN) [61], or
ResNet-9 [23]) on synthetic data and test on the real test set.

Baselines. We compare DP-LoRA with state-of-the-art ap-
proaches: DPDM [14], DP-MEPF [22], DP-Diffusion [20],
DP-LDMs [37], Privimage [33], and dp-promise [56].



Targte CelebA-32  CelebA-64 MNIST CIFAR-10
pretrain-dataset ImageNet  ImageNet EMNIST (Letters) ImageNet
model channels 192 192 64 128
channel multiplier [1,2,4] [1,2,4] [1.2] [1,2,2,4]
attention resolutions [1,2,4] [1,2,4] [1,2] [1,2,4]
num res blocks 2 2 1 2
num heads - 8 2 8
num head channels 32 - - -
Batch size 384 256 512 512
Epochs 40 40 120 40
use spatial transformer False False True True
cond stage key - class label class label
conditioning key crossattn crossattn
num classes 26 1000
embedding dim 5 512

transformer depth 1 1

Table 4. Parameter settings for pretraining latent diffusion models.

Implementations. All experiments are conducted using
PyTorch [43] with Opacus [60] for DP-SGD training and
privacy accounting. Following standard practice [5], we set
§ = 1075 for MNIST and CIFAR-10, and § = 1076 for
CelebA, ensuring that ¢ is smaller than the reciprocal of the
dataset size.

DP is implemented via Opacus. Parameter-Efficient Fine-
Tuning (PEFT) and LoRA use the PEFT library from Hug-
gingface, with added support for Conv1D. Textual inversion
is implemented with Huggingface’s Diffusers library. The
codebase builds on the Latent Diffusion paper and the DP-
LDMs code. GPU devices used include RTX 4090/3090.

Detailed parameter settings for the auto-encoder pre-
training are provided in Table 3, and those for pre-training
the latent diffusion models are listed in Table 4.

4.1. Conditional Generations

Classification results. Table 5 compares classification ac-
curacy across multiple datasets and privacy budgets (¢). On
MNIST, our CNN-based classifier achieves 96.4% at e = 1,
peaking at 97.9% for ¢ = 10. The WRN variant also per-
forms competitively. DP-Diffusion [20] with WRN obtains
a top accuracy of 98.6% when privacy constraints are re-
laxed (e = 10). For CIFAR-10, our ResNet9-based method
consistently outperforms others with the same architecture,
reaching 73.98% at e = 10. Overall, we observe that in the
realm of low-resolution images, DP-LoRA works very well
but still has competitors.

Generation on high-resolution images. Table 6 presents
FID scores for gender-conditional generation on CelebA-
HQ (256 x 256). DP-LoRA outperforms other methods
across all € values, with more than a 20% improvement
at stricter privacy levels. We focus on gender-conditional
generation for CelebA-HQ because DP-LDM also considers
this task (see Table 2). Although no other prior work reports
results on CelebA-HQ, we include additional experiments
with DP-MEPF [22] for comparison; DP-MEPF exhibits
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significantly higher FIDs, indicating lower image fidelity
under DP constraints.

4.2. Unconditional Generations

Table 7 compares FID scores on CelebA-64. DP-LoRA sig-
nificantly outperforms other methods at all privacy levels,
achieving FIDs of 12.0, 9.5, and 8.4 for ¢ = 1,5, 10, re-
spectively. DP-LDMs [37] show moderate improvement as
€ increases, but remain behind our results. dp-promise [56]
and PrivIimage [33] also lag considerably, suggesting chal-
lenges when training in pixel space or compressing latent
representations too aggressively.

Table 8 and 9 show the complete results on unconditional
generation on CelebA across different resolutions.

Interestingly, we observe that the generation quality on
female images is much better than the generation quality of
male images (see Figure 2 which consistently across different
€). Because of the highly imbalance between female and
male images (the number of female images is way more than
the male images), the generation quality of female images
are generally better than male images.

(c)e=1.

Figure 2. Examples generated from CelebA-HQ with e = 1, 5, 10.

4.3. Textual-Inversion

We also evaluate textual inversion [19], which learns seman-
tic embeddings for text prompts. As shown in Table 11 and
Figure 3, we do not observe notable improvements over stan-
dard training. Generic text prompts can struggle to represent
diverse or detailed images, diminishing their effectiveness in
privacy-preserving settings.

4.4. Ablation Study

We conduct additional experiments to investigate the impact
of key hyperparameters in our pipeline, focusing on noise



Dataset Method Classifier e=1 €=9H e=10 € =00
Ours CNN 96.4 - 97.9 98.35
Ours WRN 94.8 - 97.8 98.16
DP-LDM (TMLR24) CNN 95.940.1 - 97.4+0.1 -
DP-LDM (TMLR24) WRN - 97.54+0.0 -
MNIST DPDM (TMLR’23) CNN 95.2 - 98.1 -
DP-Diffusion (DeepMind’23) WRN - - 98.6 -
dp-promise (USENIX'24) CNN 95.8 - 98.2 -
DP-SAD Eccv24) CNN 91.2 - 94.1 -
DP-FETA (s&P’25) CNN 94.2 - 97.6 -
DP-FETA (s&pP25) WRN 95.0 - 98.2 -
Ours ResNet9 67.76 72.97 73.98 79.85
Ours CNN 62.81 67.59 69.87 72.01
DP-LDM (TMLR24) ResNet9  51.3+0.1 59.1+0.2 65.3£0.3 -
DP-LDM (TMLR24) WRN - - 78.6+£0.3 -
DP-MEPF (TMLR’23) ResNet9 28.9 479 48.9 -
CIFAR-10 DP-Diffusion (DeepMind’23) WRN - - 75.6 -
Privimage+G (USENIX'24) CNN 47.5 39.2 44.3 -
Privimage+D (USENIX'24) CNN 66.2 69.4 68.8 -
DP-FETA (s&p25) ResNet9 31.3 37.9 44.6 -
DP-FETA (s&p25) WRN 33.6 40.2 46.6 -
Ours ResNet9 94.3 - 95.8 -
DP-MEPF (TMLR’23) ResNet9 82.9 - 93.8 -
CelebA-64 (Genden) b SAD (mecvas) ResNet9  82.6 - 84.1 -
DP-FETA (s&p25) ResNet9 84.7 - 85.5 -

Table 5. Classification accuracy (%) with class-conditional generations under various privacy levels. Higher is better;

best underlined.

Method e=10 €=5 e=1
Ours 17.2 18.2 20.0
DP-LDM (tMLr24)  19.04+0.0 20.5+£0.1 25.6+0.1
DP-MEPF (TMLR*23) 435 79.4 117.1

Table 6. FID scores (lower is better) for gender-conditional gen-
eration on CelebA-HQ. DP-LoRA significantly outperforms other

methods at all privacy levels.

CelebA-64

Method =1 e=5 e=10
Ours 12.0 9.5 8.4
DP-LDMSs (TMLR24) 21.1 16.1 14.3
DP-SAD (Eccv24) 24.7 20.7 17.9
DP-MEPF (¢4, ¢2) (tMLR24)  19.0 19.1 18.5
DP-MEPF (¢1) (TMLR"24) 184 16.5 17.4
Privimage+G (USENIX'24) 45.1 45.2 38.2
Privimage+D (USENIX"24) 71.4 52.9 493
dp-promise (USENIX'24) 29.1 26.2 25.3

Table 7. Unconditional generation results on CelebA-64. Our
method consistently achieves the lowest FID.

multiplicity and LoRA [28] rank settings.

best in bold, second

Method e=10 €e=5 e=1
DP-LDM (average case) (TMLR'24) 143+£0.1 16.1+£0.2 21.1+0.2
DP-LDM (best case) (TMLR'24) 14.2 15.8 21.0
DP-MEPF (TMLR23) 17.4 16.5 20.4
dp-promise (USENIX'24) 253 26.2 29.1
Privimage (USENIX'24) 49.3 52.9 71.4
Ours (r=8, k=4, n=10,000, epoch=5) 14.8621 17.2584  21.4400
Ours (r=8, k=4, n=60,000, epoch=5) 14.0125 16.3800  20.1930
Ours (r=8, k=4, n=10,000, epoch=15) / / 16.7637
Ours (r=16, k=4, n=10,000, epoch=15) / / 15.8495
Ours (=16, k=4, n=60,000, epoch=15) / / 15.5615
Ours (r=16, k=4, n=60,000, epoch=40) 11.2422 11.3459 14.2692
Ours (r=16, k=4, n=60,000, epoch=40, project=True) 8.4098 9.5134 12.0592

Table 8. Results with different number, n, of training samples and
pre-training epochs (k is the number of noise samples per data

sample).

. CelebA-32 CelebA-64 CelebA-HQ
Algorithm e=1 e=5 e=10 e=1 e=5 e=10 e=1 e=5 e=10
Ours (k=4) 125 119 11 120 95 84 231 203 19.9
DP-LDMSs (TMLR"24) 258 16.8 16.2 21.1 16.1 143 29.7 26.0 243
DP-MEPF (¢1,¢,) tMir23) 190 175 174 190 191 185 427 791 984
DP-MEPF (¢1) (TMLR'23) 17.2 16.9 16.3 184 165 17.4 45.8 81.3 102.1
Privimage+G (USENIX'24) 31.8 19.8 18.9 45.1 452 382 179.5 1429 983
Privimage+D (USENIX'24) 260  20.1 19.1 714 529 49.3 1942 167.7 1125
dp-promise (USENIX"24) 9.0 6.5 6.0 29.1 26.2 253 200.1 1387 101.2

Table 9. FID with unconditioned generations on CelebA across

different image resolutions.

Number of noise multiplicity steps.

Table 10 shows how

increasing noise multiplicity (k) improves image quality but
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. CelebA-32 CelebA-64
Metric

k=1 k=2 k=4 k=8 k=1 k=2 k=4 k=38

FID 13.75 1091 7.71 7.32 12.29 11.03 8.41 8.94
training time/epoch 6 min  9min 15min 28 min 22min 37 min 70 min 140 min

Table 10. Ablation on the number of noise multiplicity steps (k).
Higher k yields better FID but increases training time.

Figure 3. Examples generated using the prompt “a good and
full photo of <HF>" on Stable-Diffusion-v1.5 with e = 10.

e=1
72.6

e=5
64.9

e=10
48.9 41.1

€ =00

Ours

Table 11. FID scores for textual-inversion on MM-CelebA-HQ
(512x512)(30,000 images from Stable-Diffusion-v1.5).

significantly prolongs training. On CelebA-64, performance
peaks at £ = 4 with an FID of 8.41, but training time rises
accordingly. In practice, k = 4 —8 offers a good balance
between quality and efficiency.

Lower rank still achieves competitive results. Table 12
examines the effect of LoRA rank on FID. A moderate rank
(r = 16) gives the best FID of 7.71 (CelebA-32) and 8.41
(CelebA-64), outperforming both lower (r = 8) and higher
(r = 64) ranks. This suggests an optimal rank range where
efficiency meets performance.

Rank FID A #Params

r=8 8.09/10.01 359K /239K
r=16 7.71/841 718K /479K
r=232 7.83/9.14 14M/958K
r=64 10.16/9.03 29M/1.9M

Table 12. Effect of LoRA rank on FID for CelebA-32 (left) /
CelebA-64 (right).

Which modules matter most? Table | compares the im-
pact of tuning different attention components. Incorporating
both QKV matrices and the projection layer yields the best
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performance (FID of 7.71 on CelebA-32, 8.41 on CelebA-
64). Omitting either component substantially degrades im-
age quality, confirming that both are critical for effective
private fine-tuning of diffusion models.

Different pretraining dataset on DP-LoRA. We pre-
trained models on CIFAR-10 and CIFAR-100, and evaluated
both conditional and unconditional settings on CelebA32.
The results are summarized in Table 13, where DP-LoRA
still constantly outperforms competitors.

Condition | Training Dataset | Method | c=1 | ¢=10

DP-LoRA | 54.55 39.31
Privimage | 64.34 50.94
DP-LDM 68.58 49.30

DP-LoRA | 59.98 42.81
Privimage | 69.94 58.74
DP-LDM 63.57 59.10

Unconditional | CIFAR-10 (FID)

Unconditional | CIFAR-100 (FID)

DP-LoRA | 90.19% | 93.32%
Conditional CIFAR-10 (Acc) | Privimage | 81.38% | 87.92%
DP-LDM | 85.85% | 89.47%

Table 13. Unconditional FID and gender downstream classification Acc on CelebA32
with different training datasets.

4.5. Discussion

Comparison to Private Evolution (PE). We also consider
PE [34]. However, the 89.13% accuracy reported by PE on
CIFAR-10 comes from training an ensemble of five classi-
fiers on 1M generated images, which differs significantly
from our setup. So, we instead compare PE and DP-LoRA
under the same setting by excerpting results from PrivIim-
age [33] and DPImageBench [21]. As Tables 14 and 15 show,
DP-LoRA outperforms PE in nearly all cases. This discrep-
ancy arises because PE is highly sensitive to the similarity
between the pretraining and private datasets. For example,
in the case of a large domain gap (e.g., ImageNet—CelebA),
PE’s performance drops drastically. Another source of dis-
crepancy is usually-unreported hyperparameters (e.g., ran-
dom seed and initial weights) used in different papers. A
concurrent work, Sim-PE [35], also benchmarks DP-LoRA
as a competitor. Table 16 shows DP-LoRA (excerpted from
Sim-PE) and Sim-PE perform comparably, each excelling
in different settings; notably, DP-LoRA (reported from our
paper) surpasses Sim-PE in every case.

Dataset | & | PE (from Privimage) | DP-LoRA (from our paper)

1 47.1% 61.81%
CIFAR-10 (Acc) | 5 46.1% 67.59%
10 47.9% 69.87%
1 37.9 125
CelebA32 (FID) | 5 338 11.9
10 238 7.7
1 54.9 12.0
CelebA64 (FID) | 5 49.4 9.5
10 49.0 8.4

Table 14. Performance comparison with PE in Privimage.



Dataset | €

PE (from DPImageBench) | DP-LoRA (from DPImageBench) | DP-LoRA (from our paper)

96.4%
97.9%

MNIST (Acc)

32.3% 97.4%

33.7% ‘ 76.6% ‘

67.8%

CIFARI10 (Acc) 74.0%
0%

73.9%

91.2%

CelebA32 (Acc) 93.9%

69.8%
75.8%

/

\
‘ 61.3% ‘
\ /

Camelyon (Acc)

61.2%
62.4%

Table 15. Performance comparison with PE in DPImageBench.

Dataset ‘ € ‘ Sim-PE ‘ DP-LoRA (from Sim-PE) ‘ DP-LoRA (from our paper)
MNIST (Acc) ‘ 110 ‘ gz:é:;j ‘ % ‘ gg;z
CelebA32 (Acc) 1]0 ‘ zgggj ‘ % ‘ g;;zz
CelebA32 (FID) ‘ 110 ﬁ ;Z; ‘ 17275

Table 16. Performance Comparison with Sim-PE

Theoretical insights and difference to DP-LDM. The
LoRA in DP-LoRA confines learning to an r-dimensional
subspace (r < |W]), reducing trainable parameters from
~ 100% to = 0.5%, which brings two benefits. First, fewer
parameters incur less clipping-induced information loss dur-
ing DP-SGD. Second, a smaller parameter count allows
a lower clipping bound C, so DP-SGD injects much less
Gaussian noise. Consequently, noise corrupts only the small
adapter (), leaving the public weights Wy intact and
keeping the denoising trajectory close to the pretrained man-
ifold even under strict privacy budgets. Moreover, placing
adapters in QKV and projection layers, where diffusion mod-
els concentrate their expressive power, enables this compact,
less-noisy parameter set to recapture task-specific informa-
tion more efficiently than prior baselines.

DP-LDM [37] fine-tunes attention blocks via DP-SGD.
DP-LoRA has two key designs: applying LoRA to these
blocks to drastically reduce trainable parameters (see Ta-
ble 17) and using noise multiplicity & to lower noise scale.

Dataset | DP-LoRA | DP-LDM
MNIST | 57K/107M (0.05%) | 4M/107M (3.74%)
CIFAR-10 | 433K/ 105M (0.41%) | 90M/ 105M (85.71%)
CelebA32 | 718K/ 195M (0.37%) | 162M / 194M (83.51%)
CelebA64 | 479K / 120M (0.40%) | 72M/ 119M (60.50%)

Table 17. Different numbers of trainable / total parameters.

Discrepancy to DPImageBench results. DPIm-
ageBench [21] differs from our implementation in terms of
network architecture, pretraining data, and hyperparameters.
Thus, DP-LDM (Privimage) exhibits worse (better) per-
formance in DPImageBench, compared to their originally
reported results (see Table 18). In fact, DPImageBench
reports highly mismatched results across methods (from
to 1 10.0).
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Dataset | ¢ | DP-LoRA | DP-LDM | DPDM | PDP-Diffusion | DP-FETA | Privimage
1] 76.6(,198) | 542( 90.0 ( 96.2 ( /
MNIST ‘ 10‘ 97.4( ‘ 94.3( ‘ 98.0( ‘ 977( ‘ 98.3( ‘ /
L 641(1306) | 439(.74) / / 75.0 (18.8)
CIFAR-10 ‘ 10| 77.7(137) | 63.1( ‘ / ‘ 694( / ‘ 78.8 (1 10.0)

Table 18. Performance mismatch between DPImageBench and original results. Arrows
indicate performance change compared to the experimental results in original paper.
"/" denotes that the result was not reported in the original paper.

5. Related Work

Diffusion models. Diffusion models have recently at-
tracted considerable interest for their ability to generate high-
quality synthetic data by iteratively denoising samples drawn
from simple distributions [13, 26, 52]. Recent efforts to im-
prove their efficiency [41, 42, 51] and scalability [44, 48]
include techniques for faster sampling, latent-space repre-
sentations, and more stable training.

Differentially private image generation. Applying differ-
ential privacy to diffusion models is an emerging research
direction, aimed at producing high-fidelity synthetic data
while protecting individual privacy [14]. Previous work on
privacy-preserving generative modeling has mostly focused
on applying DP-SGD [1] to GANs [8, 55, 58] and VAEs [45].
With the advent of diffusion models [48], recent studies have
explored DP-SGD in this context. Dockhorn et al. [14] first
investigated DP for diffusion, followed by Ghalebikesabi
et al. [20], who showed that pretraining on public data and
fine-tuning on private data achieves state-of-the-art perfor-
mance. Liu et al. [37] proposed DP-LDM, a latent diffusion
model with significantly fewer parameters to fine-tune than
pixel-space diffusion. Meanwhile, custom architectures have
been explored in works such as DP-MEPF [22] (which priva-
tizes feature-embedding means), DPGEN [9] (energy-based
modeling with random responses), Privimage [33] (semantic
query functions using public data), and DP-Promise [56]
(DP noise added in early forward steps). Nonetheless, the
substantial size of modern DMs still makes fine-tuning com-
putationally expensive, limiting their practical utility.

6. Conclusion

We explored the integration of Differential Privacy (DP) with
diffusion models (DMs), addressing the substantial privacy
risks posed by the memorization capabilities of these models.
Our study focused on optimizing the privacy-utility trade-
off through a parameter-efficient fine-tuning strategy that
minimizes the number of trainable parameters, thus enhanc-
ing the model’s privacy while maintaining high utility. We
empirically demonstrated that DP-LoRA achieves state-of-
the-art performance in DP synthesis, significantly surpassing
previous benchmarks with a small privacy budget. This work
highlights the potential of parameter-efficient techniques in
advancing privacy-preserving generative models.
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