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Figure 1. AutoSeg Exemplary Results. AutoSeg is readily applicable to unseen images for open-ended segmentation for objects such as
mascot and hole, such as the two images on the left. Furthermore, where established segmentation datasets have a fixed set of annotation
categories, our method is able to identify and segment with more semantically precise object categories beyond the fixed-set ground truth,
such as dachshund, bed and pagoda. Images are from the Road Anomaly [20], PASCAL [9] and ADE20K [47] datasets.

Abstract

Open-Vocabulary Segmentation (OVS) methods are capa-
ble of performing semantic segmentation without relying
on a fixed vocabulary, and in some cases, without train-
ing or fine-tuning. However, OVS methods typically require
a human in the loop to specify the vocabulary based on
the task or dataset at hand. In this paper, we introduce
Auto-Vocabulary Semantic Segmentation (AVS), advancing
open-ended image understanding by eliminating the neces-
sity to predefine object categories for segmentation. Our ap-
proach, AutoSeg, presents a framework that autonomously
identifies relevant class names using semantically enhanced
BLIP embeddings and segments them afterwards. Given
that open-ended object category predictions cannot be di-
rectly compared with a fixed ground truth, we develop a
Large Language Model-based Auto-Vocabulary Evaluator
(LAVE) to efficiently evaluate the automatically generated
classes and their corresponding segments. With AVS, our
method sets new benchmarks on datasets PASCAL VOC,
Context, ADE20K, and Cityscapes, while showing compet-
itive performance to OVS methods that require specified
class names. All code is released here.

1. Introduction

While humans possess an open-ended understanding of
scenes, recognizing thousands of distinct categories, se-
mantic segmentation methods [25] typically rely on a fixed
vocabulary of predefined semantic categories. They re-
quire large human-annotated datasets and have limited ca-
pabilities for handling a broad range of classes or un-
known objects. Recent studies have focused on address-
ing these limitations [23, 28] with models that leverage
Vision-Language Models (VLMs) as an emerging cate-
gory [3, 5, 7, 10, 17, 19, 43, 45, 46]. Such VLMs learn
rich multi-modal features from large numbers of image-
text pairs. Due to the immense computational training
costs of VLMs, it is common to build upon pre-trained
VLMs such as CLIP [29] or BLIP [18]. However, apply-
ing these VLMs on per-pixel tasks to obtain precise locality
information is non-trivial, as they are trained on full im-
ages and lack the ability to directly reason over local re-
gions in the image. This makes them less useful for ob-
taining precise segmentation boundaries, which is crucial
for downstream tasks like robot grasping. Moreover, cur-
rent Open-Vocabulary segmentation (OVS) methods still
require a human in the loop, inherently limiting the scal-
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Figure 2. Semantic Segmentation Tasks in Comparison. In traditional Semantic Segmentation, an image is segmented into fixed,
predefined set of classes (fixed vocabulary). In Open-Vocabulary Segmentation, the user specifies which object categories (from the
open vocabulary) should be segmented: 1) either via a human-provided prompt at runtime, or 2) the OV-method is trained to output
the vocabulary of a human-annotated target dataset. In contrast, Auto-Vocabulary Segmentation automatically generates relevant object
categories directly from the image. This enables true open-ended scene understanding without needing human input.

ability of these methods (see Fig. 2). OVS methods can
be separated into two categories: 1) prompt-based meth-
ods (e.g. [13, 16, 48]) require per-image user input to pro-
vide a known vocabulary; and 2) dataset-based methods
(e.g. [10, 17, 19, 41]) require human-annotated datasets in
combination with training in which the known vocabulary
is baked into the method as its defined output categoriza-
tion. For both categories, a human is providing a known
and fixed vocabulary, which drastically simplifies the seg-
mentation problem as the ground truth vocabulary is always
provided, but it also limits the application use-cases when a
human needs to be in the loop. Imagine a kitchen robot that
needs to distinguish a large variety of tools and ingredients
when cooking a recipe and requiring precise segmentations
for grasping. It is undesirable to require a human-provided
prompt for every grasp or to re-label a dataset and re-train
the segmentation method every time a new recipe contains
a new tool or ingredient.

To eliminate the human in the loop and fully rely on pre-
trained foundation models, we propose Auto-Vocabulary
Semantic Segmentation (AVS). In AVS, the unknown vo-
cabulary is automatically generated and integrated into a se-
mantic segmentation method thus allowing pixel-level clas-
sifications for any class without the need for textual input
from the user, predefined class names, additional data, train-
ing or fine-tuning. To address this task, we introduce Au-
toSeg, a zero-shot method that first identifies image-specific
target categories and then predicts masks for them. See
Fig. 1 for exemplary results. We introduce BBoost for vo-
cabulary generation, which provides a simple yet effective
semantic clustering strategy to enhance locality and seman-
tic precision when captioning with BLIP.

Furthermore, we address the performance evaluation of
open-ended segmentation models, following the same goal
of eliminating human input for targeting the true scalabil-
ity of segmentation models. While VLMs have a continu-
ous latent representation of semantics, the inherent nature of
segmentation is to discretize semantic categories to a partic-
ular task-specific vocabulary. Comparing different discrete
category sets is challenging, especially for larger vocabular-

ies as exact matching can be difficult due to annotation am-
biguities like synonyms (e.g. table↔desk), semantic hier-
archies (e.g. person→man→groom), or spatial hierarchies
(e.g. car→wheel→rim). Human-annotated datasets typi-
cally have an annotation bias towards these ambiguities and
can be inconsistently annotated across multiple annotators,
making it nearly impossible for a segmentation algorithm
to infer the intended hierarchy level. Classical discrete se-
mantic evaluation also neglects semantic vicinities among
different labels, treating such ambiguities equal to misclas-
sifications. Since our methods’ output is not within a pre-
defined, but an auto-generated vocabulary, we enable eval-
uations on labeled datasets with our proposed Large Lan-
guage Model-based Auto-Vocabulary Evaluator (LAVE)
which maps a generated vocabulary to a provided one.

In summary, our contributions are as follows: 1) we
introduce AutoSeg, a novel framework to automatically de-
termine and segment open-ended classes in an image; 2)
we propose BBoost, a novel method for generating image-
specific target vocabularies, leveraging text decoding from
enhanced BLIP embeddings; and 3) we propose LAVE,
a novel evaluation approach for auto-vocabulary semantic
segmentation which utilizes an LLM. Through qualitative
and quantitative analyses, we demonstrate the effectiveness
of our framework for AVS on multiple public datasets.

2. Related Work

Open-Vocabulary Segmentation (OVS). OVS tackles the
challenging task of segmenting images based on arbitrary
text queries rather than a predefined class set. Early OVS
methods, like ZS3Net [1] and SPNet [38], treated it as a
zero-shot task by training modules that align visual and lin-
guistic embeddings, segmenting by comparing word vectors
with local image features. Recently, Vision-Language Mod-
els (VLMs) pre-trained on large image-text dataset, such as
Contrastive Language-Image Pre-training (CLIP)[29], have
unified image and text features. CLIP has advanced the
field of OVS significantly, with methods such as LSeg[17],
which compares per-pixel embeddings with class embed-
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Figure 3. Method Overview. BLIP encodings are clustered, aligned and denoised before being decoded into nouns by BBoost. Generated
nouns serve as self-guidance to a segmentor, which predicts the final mask. When evaluating (purple), our custom evaluator LAVE
processes the output, mapping predicted nouns to the fixed-vocabulary annotations.

dings, and two-stage approaches like OpenSeg [10], OP-
SNet [3], OVSeg [19], ZSSeg [42], and POMP [31], which
first obtain class-agnostic masks and then classify each
mask with CLIP. Other works, such as MaskCLIP [7], FC-
CLIP [46], and SAN [43], utilize intermediate CLIP repre-
sentations. Other approaches leverage CLIP to relate im-
age semantics to class labels [5], predict binary masks [45]
or ensure segmentation consistency at multiple granulari-
ties [35]. Beyond VLMs, recent models use text-to-image
diffusion [12, 41] or transformers [22, 39, 40, 48], with X-
Decoder providing a generalized model for various vision-
language tasks.One common and significant limitation of
the described methods is the need for textual input as a form
of guidance by the user. Our work presents a novel frame-
work which enables self-guidance by automatically identi-
fying relevant object categories via localized image caption-
ing. Closest and concurrent to our work is Zero-Guidance
Segmentation [32], in which clustered DINO [2] embed-
dings are combined with CLIP to achieve zero guidance by
the user. Despite the similar setting, there are key differ-
ences: we use BLIP [18] for both image clustering and cap-
tion generation, while they use a complex pipeline involving
DINO clustering, CLIP embeddings, a custom attention-
masking module, and CLIP-guided GPT-2 for captioning,
requiring conversions between three latent representations.
In contrast, we achieve superior segmentation quality with
self-guidance using any out-of-the-box OVS model.
Image Captioning with Image-Text Embeddings. Image
Captioning is the task of describing the content of an im-
age using natural language. A number of approaches have
been proposed for the task, including ones utilizing VLMs.
Approaches such as CLIP-Cap [26] and CLIP-S [4] utilize
CLIP embeddings to guide text generation. More recently,
the Large Language and Vision Assistant (LLaVA) was in-
troduced with similar capabilities by connecting the visual
encoder of CLIP with a language decoder, as well as train-
ing on multimodal instruction-following data [21]. Other
approaches rely on BLIP [18], a VLM in which the task
of decoding text from image features was one of the tasks
of the pretraining process. This enables BLIP to perform
image captioning without additional components. Further-
more, the text decoder is guided by local patch embeddings
in a way that enables local captioning based on a specific

area. This unique capability, discovered during the devel-
opment of our method, emerges organically in BLIP despite
being trained solely with image-level captions.
Visual Phrase Grounding. Visual phrase grounding aims
to connect different entities mentioned in a caption to cor-
responding image regions [33]. This task resembles OVS,
as it aims to find correspondences between text and image
regions. However, predicted areas do not have to precisely
outline object boundaries and can be overlapping. Visual
grounding has been approached in a self-guided manner, in
which heatmaps of regions of the image are generated from
image-level CLIP embeddings, which are then captioned by
the BLIP encoder [34]. One disadvantage of this approach
is that the region determined by CLIP can indicate multiple
objects at once, hence multiple objects are captioned for that
region, preventing pixel-level class-specific predictions. In
our work, BLIP serves both as encoder and decoder, en-
abling category-specific regions and captioning.

3. Method

This work aims to perform semantic segmentation without
any additional data, training, finetuning or pre-defined tar-
get categories. To this end, we propose to identify relevant
object categories in an image by captioning with locality
(Sect. 3.1), filter the generated captions into a meaningful
vocabulary and use the vocabulary as target categories for a
segmentor (Sect. 3.2). An overview is depicted in Fig. 3.

3.1. Local Region Captioning
To identify relevant object categories in the image,
we employ Bootstrapped Language Image Pretraining
(BLIP) [18]. BLIP is a powerful VLM capable of per-
forming accurate and detailed image captioning. Its image
encoder is designed as a Vision Transformer [8], dividing
the image into patches and encoding them into embeddings
in which image-text features reside. The set of embed-
dings is then passed through transformer layers to capture
contextual information across the image. Finally, all con-
textualized embeddings are decoded into text descriptions.
Though effective in describing salient objects in the image,
captioning models like BLIP generally fail to describe all el-
ements of a scene comprehensively. This is likely due to the
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captions in the training data, which mostly focus on salient
foreground objects. In turn, this limits its direct applica-
tion to downstream tasks such as open-ended recognition,
since many non-salient objects are missed. As a solution
to this limitation, we propose BBoost for exhaustive, lo-
cal captioning. BBoost clusters the encoded BLIP features
into semantically meaningful feature clusters, which are en-
hanced to capture the object-specific feature representations
more effectively. Afterwards, each individual feature clus-
ter is fed to a pre-trained BLIP text decoder. This enables
generating a description of each semantically distinct and
meaningful area in the image, resulting in a more compre-
hensive, specific and accurate description of the image over-
all. Its components are detailed in the next paragraphs.
Clustering. By default, BLIP expects an RGB image
XD ∈ R384×384×3. Since common datasets often have
images with higher resolution, we additionally process the
image at a higher resolution XH ∈ R512×512×3. The multi-
resolution set of images X = {XD,XH} is fed to the
BLIP encoder to obtain the set of BLIP patch embeddings
B̂ = {B̂

XD
, B̂

XH} at the two resolutions:

PXD =
{
XD

ij |XD
ij ∈ R16×16×3, 1 ≤ i, j ≤ 24

}
(1)

PXH =
{
XH

ij |XH
ij ∈ R16×16×3, 1 ≤ i, j ≤ 32

}
(2)

B̂XR
n = T

(
fMLP

(
PXR

n

))
∥ zXR

n ,

∀R ∈ {D,H}, n ∈ {1, . . . , NR} (3)

where PXD ∈ R576×16×16×3 and PXH ∈ R1024×16×16×3

denote the sets of patches for resolutions D and H respec-
tively, and PXR

n is the n-th patch. fMLP(·) represents a
shared fully connected Multi-Layer Perceptron (MLP), LN
is LayerNorm, and T is a Transformer encoder with L alter-
nating layers of Multi-Head Self-Attention (MHA) and an
MLP, sequentially propagated:

Tl(X) = X + MHA
(
LN(X), LN(X), LN(X)

)
(4)

T̂l(X) = Tl(X) + fMLP
(
LN(Tl(X))

)
(5)

T (X) = (T̂L−1 ◦ T̂L−2 ◦ . . . ◦ T̂0)(X). (6)

In Eq. (3), we concatenate, i.e. ∥, a sinusoidal positional
encoding [37] zXR

n ∈ R256 to each patch embedding to en-
code spatial information. Next, we cluster the patches in
B̂XR for each resolution R using k-means clustering [24]:

CR
k =argmin

C

NR∑
i=1

min
µj∈C

∥B̂XR
i − µj∥2 (7)

where CR
k is the set of k clusters for resolution R and µj are

the cluster centroids. Running the clustering procedure with
k ∈ {2, . . . , 8} on two different image resolutions results in
14 unique cluster assignments.

Cross-clustering Consistency. Each run of k-means clus-
tering labels its clusters independently from others, yielding
a correspondence mismatch between clusters across runs.
To resolve this, we relabel the cluster indices to a common
reference frame with the following steps:
1. Select C with the most clusters after k-means as a ref-
erence set S. As some clusters end up empty during the
k-means iterations, this is not always the set with highest
initial k. The reference set determines the indices used for
all other sets of clusters C, each with its number of clusters
denoted by |Ci|:

S = argmax
Ci∈C

|Ci| (8)

2. Sets of clusters are aligned to the reference set using
Hungarian matching [15]. We calculate pairwise Intersec-
tion over Union (IoU) between the clusters from S and C.
Then, each cluster from C is assigned a new index, match-
ing the cluster with the highest IoU from S:

For each cluster cj ∈ C, j ∈ {1, . . . , |C|} :

Assign index i to cj where i = argmax
i∈{1,...,|S|}

IoU(cj , si) (9)

3. With the labeled sets of clusters, a probability distribution
over the clusters is assigned to each image patch. For a
given patch p, let L(p) = {L1(p),L2(p), . . . ,
Lm(p)} be the set of labels assigned to p by the m different
sets of clusters. The probability P (n|p) of p being assigned
to a particular cluster n is defined as the relative frequency
of n among labels L(p):

P (n|p) =
∑m

i=1 1

m
,with 1 =

{
1, if Li(p) = n

0, else
. (10)

The predictions of a single k-means predictor tend to con-
tain high levels of noise, likely due to the high dimensional-
ity of the embeddings. Our method can be seen as an ensem-
ble, reducing the variance present in each individual predic-
tor. The areas that are consistently clustered together by
various predictors are likely to be semantically connected.
In addition, our method enables for a flexible number of
output clusters. Some of the initial clusters can disappear
if they are not well-supported by multiple predictors. This
property is highly desired due to the variety of input images
and the number of objects in them.
Cluster Denoising. To further improve the locality and
semantic meaningfulness of clustered feature representa-
tions, we apply a Conditional Random Field (CRF) [14] and
majority filter. CRF is a discriminative statistical method
that is used to denoise predictions based on local inter-
actions between them. In our case, the predictions are a
2D grid of cluster assignment probabilities of the image
patches. Our implementation is specifically tailored for re-
fining 2D segmentation map, using a mean field approxi-
mation with a convolutional approach to iteratively adjust
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the probability distributions of each image patch’s cluster
indices. In the pairwise potentials, we use a Gaussian fil-
ter to ensure spatial smoothness and consistency in the seg-
mentation. The application of the CRF yields embeddings
which are less noisy and more cohesive than the original
aligned k-means result. To address remaining noise in the
embeddings, a neighborhood majority filter is applied as
a final step. For each image patch, we consider the set
of patches N (i, j) in its square neighborhood: N (i, j) =
{(i + δi, j + δj) | δi, δj ∈ {−1, 0, 1}}. The mode value
from the cluster indices in that neighborhood is calculated
and assigned as the new index of the central patch:

mode
(
N (i, j)

)
= argmax

k∈K

∑
m∈N (i,j)

1index(m)=k (11)

This step is applied recursively until convergence or 8 times
at most. In the supplementary material, we visualize the ef-
fect of each step on the embeddings.
Captioning. The next step involves turning clustered, de-
noised and enhanced embeddings into text. The BLIP text
decoder is a transformer architecture capable of process-
ing unordered sets of embeddings of arbitrary size. We
leverage this feature and feed flattened subsets of patch em-
beddings, each corresponding to a cluster, to the text de-
coder. Spatial information is preserved due to the presence
of positional embeddings added in the clustering step. With
this technique, our method essentially infers semantic cate-
gories captured by clusters and represented by BLIP embed-
dings. To the best of our knowledge, we are the first to use
the text decoder in this manner, enabling local captioning
without specifically training for it. The caption generation
is stochastic, with different object namings appearing in the
captions depending on initialization. To obtain a rich, unbi-
ased and diverse set of object names, we regenerate captions
with each embedding with multiple inference cycles.
Caption Filtering. The captions generated in the previous
step are sentences in natural language. For our task, we are
only interested in the class names present in each sentence.
To obtain these, we filter the sentence down to relevant class
names by extracting all nouns using part-of-speech labels
for each word in the caption. Nouns are kept and converted
into their singular form through lemmatization. We col-
lect all nouns generated by different clusters and cycles into
one target vocabulary and remove any duplicates, as well as
nouns which do not appear in the WordNet dictionary.

3.2. Segmentation through Self-Guidance
The output of the clustered BLIP embeddings is a 32x32
grid with cluster index assignments (see Sect. 3.1), with
each element corresponding to an image patch from the
original image. This enables the extraction of segmenta-
tion masks - defined as a union of areas covered by image
patches with the same index - essentially for free. For in-

stance, Fig.3 and 4 show the clustered output as a 2D mask
that partially captures relevant objects. However, the low
resolution of the segmentations are unsatisfactory, and up-
sampling leads to oversegmented objects or unsharp bound-
aries. To perform effective and accurate auto-vocabulary se-
mantic segmentation, we leverage BBoost’s strength in gen-
erating an elaborate set of relevant class names from clusters
instead - and use this as textual guidance for a pre-trained
OVS model capable of producing high-resolution outputs.
BBoost is model-agnostic, allowing our approach to inte-
grate with any OVS model that accepts an image and a set
of class labels. In this work, we focus on X-Decoder [48], a
popular and well-performing OVS model.

4. Evaluation of Auto-Classes
As discussed in Sect. 2, previous works in OVS have mainly
focused on a setting where the target class names are pro-
vided by the user. Hence, evaluation is possible by having
access to the ground truth of those target class names dur-
ing evaluation. However, in scenarios where the target class
names are discovered, as in our framework, rather than pre-
specified there may be a lack of direct alignment between
the semantics of these categories and the classes used in the
annotations. In zero-guidance segmentation [32], the au-
thors have proposed to align class names based on the co-
sine similarity in the latent space of Sentence-BERT [30]
or CLIP [29]. In our initial tests, however, this approach
misaligned obvious class pairs (e.g., taxi mapped to road
instead of car), thereby reducing segmentation accuracy de-
spite promising qualitative results. Relations between two
class names can be complex and ambigious [44], such as
due to synonymity, hyponymy, or hypernymy, which exceed
the capabilities of a cosine-similarity criterium in the latent
space. To address this, we propose an LLM-based Auto-
Vocabulary Evaluator (LAVE), leveraging the Llama-2-7B
language model [36], to map predicted auto-vocabulary cat-
egories to target dataset classes. LAVE gathers all predicted
auto-vocabulary classes and maps each category to the most
relevant or similar class in the known vocabulary. It then
updates all pixel values in the predicted segmentation masks
according to the mapping, after which the mean Intersection
over Union (mIoU) is calculated using the updated mask.
Though not an integral part of our method, LAVE greatly
reduces the mapping effort which is often infeasible to do
manually, requiring C ×A comparisons between C known
classes and A auto-classes. Pseudocode and prompts for
LAVE are included in the supplementary material.

5. Experiments
5.1. Experimental Setup

Datasets. AutoSeg is evaluated on four popular semantic
segmentation validation datasets: PASCAL VOC [9] and
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Input AutoSeg (Ours)Baseline (BLIP) Ground TruthBBoost Embedding

Figure 4. Segmentation with VLMs. Example outputs on PASCAL VOC/Context (top), ADE (middle) and Cityscapes (bottom) by (left
to right) directly using BBoost embeddings as masks, feeding plain BLIP embeddings to X-Decoder or AutoSeg. Notably, our method
segments images in the most comprehensive and semantically accurate manner.

Table 1. Ablations on Segmentation with VLMs (cmIoU).
Leveraging BBoost semantic embeddings for segmentation with
AutoSeg outperforms baselines on all four datasets.

Method VOC [9] PC [27] ADE [47] CS [6]

BBoost Embeddings 16.3 16.3 11.3 0.85
X-Decoder [48] + BLIP [18] 38.0 35.3 26.7 29.2
AutoSeg (Ours) 71.8 47.7 29.2 35.8

Context (PC) [27], ADE20K (ADE) [47] and Cityscapes
(CS) [6] with 20, 459, 847 and 20 classes respectively, cov-
ering a wide range of difficulty and class diversity. For in-
stance, ADE is challenging with its many and infrequently
appearing classes, while CS contains many instances per
image (see Tab. 2 for detailed statistics).
Evaluation. For quantitative comparison with previous
works, we use mIoU as the main metric. As mentioned
in Sec. 4, auto-class predictions in the segmentation mask
are mapped using LAVE before the mIoU is computed. To
evaluate class-agnostic segmentation performance of differ-
ent VLMs, we report the class-agnostic mean Intersection
over Union (cmIoU). For each ground-truth segment gi, we
compute its IoU with all predicted segments pj and select
the best match pmaxi = argmaxj IoU(gi, pj). The cmIoU
is then given by cmIoU = 1

N

∑N
i=1 IoU(gi, pmaxi), where

N is the total number of ground-truth segments.

Implementation details. For our experiments, we use the
BLIP model built with ViT-Large backbone and finetuned
for image captioning on the COCO dataset in combination
with the Focal-L variant of X-Decoder. For both models,
we use publicly available pretrained weights and do not
perform any additional finetuning. Parameter tuning is per-
formed for the clustering and captioning modules. Parame-
ters of the clustering include image scales encoded by BLIP
(384 × 384 and 512 × 512), the k values of k-means clus-
tering (2 to 8), the parameters of Gaussian smoothing in the

CRF (smoothness weight of 6 and smoothness θ of 0.8),
the number of iterations of majority filtering (8) and the
feature dimension size of the positional embeddings (256).
For text generation, we use nucleus sampling with a mini-
mum length of 4 tokens and maximum of 25, top P value
of 1 and repetition penalty of 100 to ensure as many unique
nouns as possible. These parameters were determined using
Bayesian optimization on VOC with the goal of maximizing
the mIoU. For CRF denoising and part-of-speech tagging,
we use the crfseg [14] and spaCy [11] libraries respectively.

5.2. Ablations
To assess our framework we investigate various segmenta-
tion methods with captions, the impact of captioning cycles,
generated/fixed vocabulary similarity, alternative mappers
and the effects of cluster denoising. The latter three abla-
tion studies are detailed in the supplementary material.
Segmentation with Vision Language Models. We com-
pare a baseline that uses upsampled BBoost embeddings
directly as segmentation masks, leveraging their semantic
clustering (see Sec. 3.2), to AutoSeg, which refines low-
resolution semantics into high-resolution outputs. Segmen-
tation quality is evaluated using class-agnostic cmIoU, with
results in Tab. 1 and Fig. 4. Across all datasets, AutoSeg
performs best, with the baseline X-Decoder + BLIP show-
ing issues of false positives and negatives that explain the
performance gap. For example, it incorrectly segments ar-
eas around objects in VOC/PC (e.g. person for building)
and ignores significant regions in ADE and CS. In contrast,
AutoSeg effectively captures smaller objects and details.
As expected, low-resolution BBoost masks are inaccurate
but can still segment general areas in VOC/PC and ADE,
though they struggle in CS due to higher object density.
Captioning Cycles. A key feature of our model is its abil-
ity to repeatedly enrich the vocabulary with BBoost, en-
abling it to cover more objects classes in the scene. This
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Table 2. Ablations on Captioning Cycles (mIoU) and Gener-
ated Classes. The optimal number of captioning cycles depends
on the dataset, influenced by the image content and annotation
method. Our method identifies a substantially larger variety of
unique classes (Gen.) than those annotated by humans (Ann.),
highlighting its capacity to capture finer context. I and C denote
the average number of instances and classes per image.

Number of Captioning Cycles Data Properties

Dataset 1 5 10 15 20 25 Gen. Ann. I C

PASCAL VOC [9] 85.3 84.4 87.1 85.7 83.3 83.3 938 20 3.5 3.5
PASCAL Context [27] 10.1 9.7 11.2 11.7 9.6 10.8 721 459 18.9 6.2
ADE20K [47] 6.0 5.8 5.1 5.2 5.1 5.6 1578 847 19.5 10.5
Cityscapes [6] 28.2 28.1 28.4 28.3 27.9 30.0 395 20 34.3 17

Table 3. Ablation on denoising components (mIoU). The combi-
nation of our denoising components outperforms individual parts.

Denoising Component VOC

CRF only 77.8
Majority filter only 74.5
CRF & Majority filter 87.1

approach proves especially beneficial for instances where
objects are initially overlooked or described with less pre-
cise semantic terms. We assess the effects of various cap-
tioning iterations using the mIoU metric. Tab. 2 reveals
that the optimal number of captioning cycles varies with the
dataset in question. We observe that for CS, which features
a high average number of instances and unique classes per
image (I and C in Tab. 2), increasing the number of cap-
tioning cycles improves performance the most. In contrast,
datasets with fewer instances and classes per image such
as VOC and ADE require fewer cycles for BBoost to iden-
tify relevant categories. As expected, additional cycles are
also beneficial for PC given its additional 439 object cate-
gories. Remarkably, AutoSeg accurately handles ADE, the
dataset with the highest number of unique classess, using
only a single captioning cycle, demonstrating its efficiency
in open-ended settings. Furthermore, through its captioning
framework, AutoSeg identifies significantly more distinct
classes than hand-crafted fixed vocabularies.
Denoising Components. To investigate the effectiveness
of the denoising components, we measure their individual
performance, as well as the combination as in AutoSeg.
Tab. 3 shows that including both components in the pipeline
significantly improves individual performance. Additional
analyses are provided in the supplementary material.

5.3. Quantitative Analysis

Auto-Vocabulary Segmentation Setting. Our quantita-
tive analysis begins by comparing AutoSeg with other auto-
vocabulary methods, such as Zero-Guidance Segmentation
(ZeroSeg [32]), as well as LLM-aided segmentation meth-
ods like LISA [16] with alternative captioning methods like

Table 4. Quantitative Auto-Vocabulary Results (mIoU). The
wide availability of captioning and OVS methods allows various
combinations to design an auto-vocabulary method, but they are
not necessarily performing well. AutoSeg performs superior over
the only Auto-Vocabulary method ZeroSeg, as well as over AVS-
adapted methods with alternative captioners or segmentors.

Auto-Vocabulary Segmentation Method VOC [9] PC [27] CS [6]

LLaVA + LISA [16, 21] 7.7 0.2 1.5
ZeroSeg [32] 20.1 11.4 -
SAM + BLIP + X-Decoder [13, 18, 48] 41.1 11.3 27.4
LLaVA + X-Decoder [21, 48] 56.7 11.4 23.4
AutoSeg (Ours) 87.1 11.7 30.0

Table 5. Open/Auto-Vocabulary State of the Art Comparison
(mIoU). AutoSeg surpasses ZeroSeg [32] in human-free segmen-
tation and remains competitive with some well-known OVS meth-
ods that rely on human input, while outperforming others (3 out of
8 methods on VOC and 3 out of 7 methods on PC). Results with
dashes indicate unpublished or unavailable data.

Unknown VOC [9] PC [27] ADE [47] CS [6]
Method Vocabulary (20) (459) (847) (20)

OVS Segmentation methods with prompted (known = ground truth) vocabulary
LSeg [17] ✗ 47.4 - - -
OpenSeg [10] ✗ 72.2 9.0 8.8 -
OVSeg [19] ✗ 94.5 11.0 9.0 -
ODISE [41] ✗ 82.7 13.8 11.0 -
SAN [43] ✗ 94.6 12.6 12.4 -
CAT-Seg [5] ✗ 97.2 19.0 13.3 -
X-Decoder [48] ✗ 96.2 16.1 6.4 50.8
FC-CLIP [46] ✗ 95.4 12.8 14.8 56.2

AVS Segmentation methods with auto-generated (unknown) vocabulary
ZeroSeg [32] ✓ 20.1 11.4 - -
AutoSeg + LAVE mapper (Ours) ✓ 87.1 11.7 6.0 30.0
AutoSeg + Manual mapper (Ours) ✓ 88.2 12.8 6.2 31.1

LLaVA [21]. We also evaluate a configuration combining
BLIP and X-Decoder, where instance crops predicted by
SAM [13] are used for captioning to simulate locality. We
use the same caption filtering as in our method. The re-
sults, shown in Tab. 4, indicate that our method outperforms
ZeroSeg, the only other true auto-vocabulary approach. In
contrast, LISA requires multiple inferences with individu-
ally prompted categories to achieve scene segmentation, a
notably more complex and less efficient approach that also
yields poor performance. Captioning based on smaller ob-
ject crops is similarly ineffective compared to using en-
hanced vision-language features that maintain spatial lo-
cality. Moreover, while LISA provides LLM-guided cap-
tions, these lack the contextual specificity needed to estab-
lish an effective vocabulary for X-Decoder. Although Au-
toSeg also utilizes this segmentation backbone, it achieves a
substantially higher performance. This comparison not only
highlights the unique strengths of AutoSeg but also reveals
the practical limitations of current LLM-aided approaches
in segmenting scenes with multiple object categories.
Open-Vocabulary Segmentation Setting. We compare
our method against existing OVS methods that require class
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Figure 5. Qualitative Results. AutoSeg shows remarkable capability to identify out-of-vocabulary categories, such as hawk or coke, and
segment them accurately across different datasets. Images are from the VOC/PC, ADE and CS datasets.

names to be given. Tab. 5 shows the results. In addition
to the results mapped with LAVE, we provide results with
one manual mapper per dataset (note that we provide a man-
ual mapper for this table only, given the significant manual
effort to construct it). Without any specification of class
names through user input, AutoSeg matches 91%, 67%,
42% and 55% of the best OVS method performance on
VOC, PC, ADE and CS respectively. It should be noted that
this metric reflects the performance on the known, annotated
classes, while additional open-ended classes are potentially
mapped. Despite not being explicitly instructed with the
known vocabulary contrary to OVS methods, AutoSeg is
remarkably able to surpass six of them on VOC and PC,
such as OpenSeg [10], ODISE [41] or OVSeg [19]. While
still leaving room for improvement, our model compares
competitively with OVS methods on ADE and CS, two very
challenging datasets either high in number of unique classes
or instances. Compared to ZeroSeg, AutoSeg achieves su-
perior performance on VOC (88.2 over 20.1 mIoU) and
PC (12.8 over 11.4 mIoU). Furthermore, we set the first
benchmark on ADE and CS under the unknown vocabulary
task setting. This outcome underscores the efficacy of our
method in dealing with complex scenes that are open-ended
in nature, such as ADE with its large number of rare classes.
Finally, results obtained with LAVE mappings show little
difference with manually constructed ones. This indicates
that at marginal cost, LAVE can act as a feasible bridge be-
tween a known and unknown vocabulary. Our method deals
well with high numbers of instances and can successfully
identify various non-salient objects. While BBoost strug-

gles with producing high-quality masks by itself (as seen in
Tab. 2), it is highly effective in embedding target classes
accurately which can be segmented with precision after-
wards. Overall, our results demonstrate that the integration
of BBoost with OVS harnesses the strengths of both, lead-
ing to enhanced open-ended recognition capabilities.

5.4. Qualitative Analysis
Fig. 5 displays qualitative results on the four datasets, where
AutoSeg demonstrates its capability to accurately detect and
segment relevant object categories present in the images but
missing from the ground truth vocabulary. Remarkably, it
predicts segmentation masks for classes such as moped, pre-
sentation, coke, courtroom or hawk. Moreover, in certain
instances, AutoSeg successfully captures additional contex-
tual details, such as graduation or reflection, illustrating
the model’s capabilities at semantic segmentation in a gen-
uinely open-ended manner. Additional results, including
failure cases, are included in the supplementary material.

6. Conclusion
This paper introduced AutoSeg, a novel method which
leverages a vision-language model to automatically gener-
ate relevant target classes and segment them. Additionally,
we proposed LAVE, a new evaluation framework which
maps open-ended class names to ground-truth labels. Au-
toSeg shows open-ended recognition capabilities, achiev-
ing state-of-the-art performance in the zero label setting,
while being competitive with open-vocabulary segmenta-
tion models which require provided ground-truth labels.
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