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Abstract

Spherical motion is a special case of camera motion where
the camera moves on the imaginary surface of a sphere with
the optical axis normal to the surface. Common sources of
spherical motion are a person capturing a stereo panorama
with a phone held in an outstretched hand, or a hemi-
spherical camera rig used for multi-view scene capture.
However, traditional structure-from-motion pipelines tend
to fail on spherical camera motion sequences, especially
when the camera is facing outward. Building upon prior
work addressing the calibrated case, we explore uncali-
brated reconstruction from spherical motion, assuming a
fixed but unknown focal length parameter. We show that,
although two-view spherical motion is always a critical
case, self-calibration is possible from three or more views.
Through analysis of the relationship between focal length
and spherical relative pose, we devise a global structure-
from-motion approach for uncalibrated reconstruction. We
demonstrate the effectiveness of our approach on real-world
captures in various settings, even when the camera motion
deviates from perfect spherical motion. Code and data for
our method are available at https://github.com/
jonathanventura/spherical-sfm.

1. Introduction

Given a collection of input images of a scene or object, the
problem of structure from motion (SFM) is to estimate both
the camera parameters and the 3D structure of the scene [23,
25]. Ventura [37] introduced a special case of SFM where
the cameras lie on the surface of an imaginary sphere, with
the optical axis parallel to the surface normal. In an inward-
facing configuration, each camera faces to the center of the
sphere, as in the case of a camera gantry for object scanning.
In an outward-facing configuration, each camera faces away
from the center, as in the case of a person turning while
holding a phone [2—-4, 27, 28], or a hemi-spherical multi-
camera rig for one-shot scene capture [5, 7].
General structure-from-motion  systems
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Figure 1. Comparison of our SFM results to COLMAP [29] and
GLOMAP [26] on handheld camera sequence arboretum4 from
our Phone Sweep dataset. (a) COLMAP is unable to find a good
camera pair for initialization and produces an incomplete and in-
accurate reconstruction. (b) GLOMAP erroneously estimates the
motion to be inward-facing and thus produces an inside-out recon-
struction. (c) Our SFM method accurately estimates all of the cam-
era poses, as can be seen by comparison to (d) the pseudo ground
truth camera poses obtained by running COLMAP with additional
images to ensure a successful reconstruction.

COLMAP [29] and GLOMAP [26] tend to fail on image
collections in an outward-facing spherical configuration,
often producing either partial reconstructions or highly
inaccurate reconstructions [2]. See Figure | for an example.

Building upon previous work on spherical SFM [36, 37],
in this work we explore the uncalibrated case, assuming
a single unknown focal length for all cameras. It is well
known that any two-view camera configuration with inter-
secting optical axes is a critical motion for self-calibration
[17, 19, 34]; thus two-view spherical motion is always a
critical motion. However, we show that self-calibration is
always possible from three or more distinct viewpoints with
spherical motion. We show that essential matrices and fun-
damental matrices are in fact interchangeable under spher-




ical motion with a single unknown focal length, which al-
lows us to re-use Ventura’s calibrated minimal solver [37]
for the uncalibrated case. Furthermore, we analyze the ge-
ometry of two-view uncalibrated spherical motion to deter-
mine the relationship between focal length and relative ro-
tation for a given fundamental matrix. Based on these re-
sults, we develop a global SFM pipeline in which we first
solve for all pairwise fundamental matrices, then find the
focal length setting that maximizes agreement among the
pairwise rotations through parameter search and refinement,
and finally perform point triangulation and bundle adjust-
ment to optimize the result. By removing the spherical con-
straint in the final step, we are able to accurately perform
3D reconstruction even when the camera motion deviates
from the spherical assumption.

To evaluate our proposed approach and compare to
baseline methods, we developed a new dataset called
PhoneSweep, consisting of thirteen sequences captured by
hand with two different smartphones and including pseudo-
ground truth produced using traditional SFM methods. We
also evaluated our approach using data from a hemispher-
ical camera rig. Our evaluation demonstrates the clear ad-
vantage of our approach over traditional SFM systems in
accurately processing sequences with near-spherical cam-
era motion. Furthermore, we demonstrate the usefulness of
our technique for downstream applications such as dense
multi-view stereo and view synthesis.

In summary, our novel contributions are as follows:

* Theoretical analysis of uncalibrated spherical two-view
and multi-view geometry;

* Global initialization procedure for uncalibrated spherical
SFM;

» PhoneSweep dataset with pseudo-ground truth for evalu-
ating spherical SFM methods;

» Comparative evaluation with traditional SFM techniques;

* Demonstration of view synthesis and dense depth estima-
tion using our SFM results.

2. Related work

2.1. General structure-from-motion

General approaches to SFM can be categorized as taking ei-
ther an incremental (cf. [29, 31]) or global (cf. [26, 41]) ap-
proach. COLMAP [29] is a widely used incremental SFM
system which first estimates two-view geometry for an ini-
tial image pair and then incrementally incorporates other
images into the reconstruction. In the uncalibrated case
without any priors on the camera calibration, COLMAP
initializes the focal length using a heuristic and then re-
fines it as the reconstruction proceeds. GLOMAP [26] is
arecent global SFM system which provides competitive ac-
curacy compared to COLMAP but is usually much faster.
GLOMAP randomly initializes all of the camera poses and
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3D points and then iteratively optimizes them. In the un-
calibrated case, GLOMAP applies view graph optimization
over image triplets [35] to find an initial estimate for the
focal length.

2.2. Spherical structure-from-motion

Ventura [37] introduced a three-point minimal solver for
the essential matrix under the spherical motion assumption
and showed how to uniquely decompose the essential ma-
trix into a relative pose solution, assuming knowledge of
whether the motion is inward- or outward-facing. They
integrated this solver into a global structure-from-motion
pipeline which uses rotation averaging [9, 12] to initialize
the camera poses. In the paper we show that each spheri-
cal fundamental matrix is also a spherical essential matrix
(belonging to a different focal length). This non-trivial ob-
servation allows us to use the three-point solver [37], which
was previously only used for calibrated reconstruction, to
also estimate the spherical fundamental matrix.

Baker et al. [2] refined the approach of Ventura [37]
and demonstrated its use for stereo panorama creation [28]
from handheld camera video. Other applications include si-
multaneous localization and mapping (SLAM) [3] and aug-
mented reality [4]. Joo et al. [15, 16] extended the spherical
motion concept to “spherical joint” motion, where the cam-
era is at a fixed offset from the sphere surface, as in the case
of a camera on a selfie stick.

While these methods assumed calibrated cameras,
Sweeney et al. [36] proposed minimal solvers and a global
method for uncalibrated spherical SFM. Their method how-
ever uses a rotation-only solver [8] to determine the calibra-
tion parameters, limiting its applicabilty to scenes with dis-
tant points. Zhang et al. [43] introduced a technique called
DFR for uncalibrated stereo pair rectification under a lati-
tudinal motion constraint; however their method only esti-
mates rectifying homographies, not the camera motion it-
self, and is limited to latitudinal motion.

Larsson et al. [21] introduced a three-view solver for
uncalibrated relative pose based on the 1D radial camera
model and integrated it into an incremental SFM pipeline
[29]. Hruby et al. [14] later introduced a four-view solver
which improves the efficiency of the SFM initialization.
Their techniques are applicable for spherical camera mo-
tion; however, in our evaluation our approach achieves both
higher accuracy and faster run times.

3. Multi-view geometry of calibrated and un-
calibrated spherical motion

3.1. Calibrated two-view geometry

Here we review the basics of calibrated two-view geometry
with spherical motion [37]. A unique property of spherical
motion is that, although the camera does observe parallax



since it is translating, the translation is entirely determined
by the camera rotation. As a result, the absolute pose and
relative pose under spherical motion are completely speci-
fied by three rotational degrees of freedom.

Suppose we have two outward-facing cameras on the
unit sphere with extrinsics P! = [R! | — z] and P, =
[R2| — z] where z = [0 0 1]". Writing the relative ro-
tation as R = R2R!”, the relative pose P bringing points
from camera 1 to 2 is

P=[R|R.,3—z] (1)
where R. 3 is the third column of R.

The essential matrix E relates corresponding homoge-
neous points u and v in cameras 1 and 2, respectively, such
that v Eu = 0. The essential matrix for outward-facing
cameras undergoing spherical motion is

E~[R.3—z]xR 2)
where [a] « is the skew-symmetric matrix such that [a] «b =
a X b V b. In the case of inward-facing cameras, the trans-
lation vector is negated. Since the essential matrix is only
defined up to scale, this means the essential matrices for
inward-facing and outward-facing cameras undergoing the
same relative rotation are equivalent.

3.2. Spherical essential matrix parameterizations

Here we introduce a new form for the spherical essential
matrix E, which directly expresses E using elements of R:

Ro1+Ri2 Reo— Ry Ry 3
E~ |Re2—Ri1 —Ro1—Rip —Rig 3
R3 2 —R31 0

See the supplemental material (SM) for a full derivation.

Any rotation R can be decomposed into a rotation Ry,
of angle 60,, about a unit norm vector rg, in the z-y plane
and a rotation R, about the z axis s.t. R(rgy, 05y,6.) =
Ray(Tzy, 02y )R- (6,). The rotations can be written as fol-
lows:

(Cay — 1)r§ +1 —rary(cay — 1) TySzy
Raoy = | rary(Cay — 1)  (Cay — Hr2 +1 —T2 Sy
—TySay T2 Szy Cay
“4)
where ¢, = cos(6y,) and s;, = sin(,,), and
c, —s, 0
R.=1|s, ¢ O &)
0 0 1

where ¢, = cos(f,) and s, = sin(6,). In this paper we
assume that 0., # 0, since otherwise there is no camera
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translation and we are unable to estimate two-view geome-
try.

Plugging (4) and (5) into (3) we obtain a second form
for the essential matrix, which will be useful when we next
derive the relationship between focal length and rotation in

two-view geometry:
—SgyTz
—SayTy

Say(Cary — T452) 0

(6)

(Cay — 1)S(rg, 1y, 02)

E(T.'r,yu 0:1:3/7 92) ~
Say(Cary +Tys2)

where

S(rz,ry,0:) =

{szri — 2C.TreTy — szrz

2 2] -
—8:T3 + 22Ty + 52Ty

czri + 28,77y — czri
c.r + 25,72y — czrg

3.3. Uncalibrated two-view geometry

In the uncalibrated case we assume a single unknown fo-
cal length f and known principal point and skew, such that
the intrinsics matrix is K(f) = diag(f, f,1). Correspond-
ing homogeneous points x, y in two uncalibrated views are
related by the fundamental matrix F' such that y” Fx = 0.
The fundamental matrix is related to the essential one by

K(f)"TE(ray, Oy, 0)K(F)™L (7)

En/f Ew/f Eis
Esi/f Ex/f Eas
B3y E3g 0

F(fa Txy, Hwya ez)

i

®)

Since two-view spherical motion is always a critical mo-
tion [18, 33], from any fundamental matrix arising from
spherical motion, we cannot uniquely determine the focal
length which leads to a metric reconstruction. Accordingly,
the following proposition describes how a 1D family of fun-
damental matrices are equivalent to a given essential matrix.

Proposition 1. Assuming a single unknown focal length,
any spherical essential matrix E(ryy, 0y, 0. ) is equivalent
to a family of spherical fundamental matrices parameter-
ized by the focal length f:

E(szaezyaez) ~ F(f7 Tmy79/zyvez) 9)
for any choice of f, where
0 (f,0,) = atan2(2fsin(0,,),
wy(.f Z/) atan. ( fSll’l( y) (10)

(L4 S*)cos(0ay) + (1= f2)).

In the SM we prove Proposition 1 and the following con-
verse proposition:

Proposition 2. Any spherical fundamental matrix with con-
stant focal length is equivalent to a spherical essential ma-
trix.
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Figure 2. The critical motions for unknown and possibly varying
focal lengths derived in [19, 34]. The motions are critical if the
camera centers lie on either the critical hyperbola or the critical
ellipse with the principal axes tangent to the hyperbola or ellipse
respectively.

Since any spherical fundamental matrix is also a spher-
ical essential matrix, it follows that any minimal solver for
the spherical essential matrix [37] can be applied, without
modification, to estimate the spherical fundamental matrix.

3.4. Three views and more

Now consider n cameras P*, P2, ..., P™ where n > 2. We
will assume that there are at least three distinct optical axes.
As before, we also assume a spherical camera motion and
that the only self-calibration parameter is a single, unknown
focal length, common for all cameras.

A well-established result (see [19, 34]) in the self-
calibration literature is that the only critical motions for un-
known but possibly varying focal lengths are the follow-
ing: (i) camera motions with one optical axis, or (ii) motion
on two conics (one ellipse and one hyperbola) whose sup-
porting planes are orthogonal and where the optical axis is
tangent to the conic at each position, see Figure 2. The po-
tential (or false) absolute conic is on the plane orthogonal
to these two supporting planes. If we can show that nei-
ther of these cases are feasible for spherical camera motion,
then we have also shown that there are no critical motions
for the constant focal length case that we are interested in.
Note that assuming constant focal length is an additional
constraint and therefore the critical motions will be a subset
of those for varying focal lengths.

First, case (i) is by assumption excluded so it is not crit-
ical. Now, consider case (ii). If it were to be critical for a
spherical motion, then the optical axes must intersect. In the
following discussion, we will consider the locus of points
that have one or more optical axes intersecting. We will
show that there is no single point that has strictly more than
two optical axes intersecting.

As the optical axes are tangent to the conics, optical axes
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intersections only occur at the supporting planes of the con-
ics. First, consider the planar elliptical curve. For any point
p outside the ellipse in the supporting plane, there are ex-
actly two real tangent lines to the ellipse that intersect at
p- This follows from the pole-polar relationship in pro-
jective geometry [30]: The polar line of pole p intersects
the conic curve in exactly two tangency points. For points
inside the elliptic curve, there are no real polar lines and
hence no optical axes intersections. Second, consider the
supporting plane of the hyperbola. Analogously, for a point
in this plane, there are at most two optical axes emanating
from the hyperbola. The only possibility that there would
be strictly more than two optical axes intersecting at a sin-
gle point p would be on the intersection line of the two sup-
porting planes. In Figure 2, the intersection line is marked
in green.

Along this line, there are four points that meet the two
conics which can be ordered: first an ellipse point (nr. 1),
followed by two hyperbola points (nr. 2 and 3), and then
the other ellipse point (nr. 4). In Figure 2, these four points
are numbered and marked with crosses. The ordering is al-
ways the same — see the formula in [19]. In the first interval
(before point nr. 1), there can only be two optical axes in-
tersecting as the polar lines to the hyperbola are not real.
Then, from point nr. 1 to nr. 2, there are no optical axes
intersections, and then, from nr. 2 to nr. 3, for points on
the finite interval inside the hyperbola, there are again ex-
actly two intersecting optical axes. The remaining intervals
have by symmetry no more than two intersection points. In
conclusion, nowhere along this line are there more than two
optical axes intersecting and therefore the potential absolute
conic cannot be critical for a spherical camera motion with
three or more cameras.

Proposition 3. Multi-view spherical camera motion with at
least three distinct optical axes never constitutes a critical
motion.

4. Uncalibrated global structure-from-motion

Buildings on the results presented above, we present a
global SFM approach for uncalibrated reconstruction from
a spherical motion video. The pipeline is summarized in the
following steps:

1. Estimate the spherical fundamental matrix '/ between
each pair of images ¢, j (Section 4.1).

2. Initialize the focal length and camera rotations through
one-dimensional search and minimization over the focal
length and then refine the focal length and rotations us-
ing non-linear optimization (Section 4.2).

3. Triangulate points and apply spherical followed by gen-
eral bundle adjustment (Section 4.3).



4.1. Pairwise fundamental matrix estimation

Between each pair of views 7, 7 we match feature points and
attempt to estimate the spherical fundamental matrix F'*J
using LO-RANSAC [11, 22] with the spherical essential
matrix solver [37]. We accept any image pair with greater
than 7, inliers using an inlier threshold of 7;,;,- to form
the set of image matches M.

For numerical stability we normalize point observations
by an initial intrinsics matrix K;,,;; with focal length f;,;.

The essential matrix E%/ is then computed as K7 ., F7K,,;.

4.2. Camera initialization and refinement

Given the essential matrix E*/ we decompose the underly-
ing rotation into r/, , 07, 07 (see SM). From (9) we param-
eterize the family of rotations R¥ (f) between views i and

j by the focal length f:

RY(f) = R(rd,, 0, (f,05,),07). (11)
We define a cost function C'(R!,...,R™, f) that evaluates

the agreement between the absolute rotations and the rel-
ative rotations according to the choice of focal length f:

CRY,....R, )= Y & (Rij(f),RjRi‘l) (12)

i,jeEM

where dR(Ry, Rz) = pr ([l 108003 (RiRE)|[2) and pr(-) is
a robust loss function.

We search for an optimal setting for the focal length by
selecting random samples for f € [fiin, fmaz) and eval-
uating the cost function C'. For a given setting of f, to
evaluate C' we need to initialize the rotations according to
the relative rotations. If the images were captured sequen-
tially in a video, we use the temporal sequence of relative
rotations to initialize the poses; i.e., we set R! = | and
R = RO-DIRI=L for all ; > 1. Otherwise, for an un-
ordered image set, we apply hybrid rotation averaging [10]
to initialize the rotations.

In the SM we analyze the behavior of the cost function
(12) on the datasets used in our real data experiments.

After finding the best focal length setting by random
search, we refine the best estimate for f and the rotations
R!,..., R™ using iterative non-linear optimization on C.

4.3. Point triangulation and bundle adjustment

Now that we have initialized and refined the rotations and
focal length estimate, we proceed to triangulate 3D points
and apply bundle adjustment. After collecting point obser-
vations into feature tracks, we use a robust point triangula-
tion procedure similar to COLMAP [29] by wrapping the
triangulation procedure in a LO-RANSAC loop [11, 22].
We then apply robust bundle adjustment (BA) with a spher-
ical motion constraint by fixing the translation vector of
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Figure 3. Comparison of error in fundamental matrix estimation

under spherical motion with increasing rotation angle and 1 px

std. dev. observation noise. The solid line shows the average error
and the shaded area shows one std. dev. above and below the mean.

each camera to [0 0 — 1]T. After BA we re-triangulate
the points and apply BA a second time. Re-triangulating al-
lows for points that were previously considered outliers to
be re-considered as the camera pose estimates become more
accurate.

Finally we remove the spherical motion constraint by in-
cluding the translation vectors in the bundle adjustment, and
run two more rounds of re-triangulation and BA. For these
final refinement steps we use COLMAP’s functions for tri-
angulation and BA, for fair comparison against COLMAP’s
camera pose initialization procedure.

5. Experiments

5.1. Synthetic data experiment

We performed a synthetic experiment data as an ini-
tial investigation of why traditional structure-from-motion
pipelines tend to fail on spherical motion sequences. Since
COLMAP [29] and GLOMAP [26] both rely on fundamen-
tal matrix estimation as the basis for uncalibrated SFM, we
compared the accuracy of the traditional eight-point linear
and seven-point non-linear solvers [13] versus the three-
point solver [37] for fundamental matrix estimation. See
the SM for more detail.

Figure 3 plots the Frobenius norm of the error in the es-
timated fundamental matrix as the rotation angle increases.
The seven- and eight-point solvers are unstable on this par-
ticular class of relative pose problem, while the three-point
solver is far more reliable. This motivates our use of the
three-point solver in our proposed uncalibrated spherical
SEFM pipeline.

5.2. Real data experiments

5.2.1. Methods

We tested the following uncalibrated SFM systems in our
real data experiments: COLMAP [29], GLOMAP [26], Ra-
dialSFM [14, 21] and Ours. All methods used the same
features [24] and features matches extracted by COLMAP.
We were unable to test the method of Sweeney et al. [36] as
there is no public implementation available.



GLOMAP RadialSFM

Figure 4. Example reconstruction results. COLMAP, GLOMAP and RadialSFM exhibit many failed reconstructions, where often the
camera motion is incorrectly interpreted as inward-facing instead of outward-facing. In contrast, our method reliably reconstructs these
scenes. From top to bottom: iPhone 13 scenes deck and ocean and Nexus 5X scenes arboretum?7 and educationl from the PhoneSweep
dataset; scene 01 _Welder from the Deep View Video dataset.
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Table 1. Results for PhoneSweep dataset. Our method is consistently the best performer across all metrics.

RRAT RTAT
Device Method @5 @15 @30| @5 @15 @30 | AUC@301 | AFE|
iPhone 13 | COLMAP 7550 83.80  96.02 | 59.10 81.64 90.59 70.99 | 2.81
GLOMAP 6555 7722 86.59 | 57.76 77.84 86.81 66.93 | 4.50
RadialSFM 89.13 91.13 9247 | 59.48 83.77 89.85 74.52 -
Ours 100.00 100.00 100.00 | 86.65 98.77 99.77 9145 | 025
Nexus 5X | COLMAP 86.91 98.80 100.00 | 6842 85.68 91.78 7833 | 321
GLOMAP 4091 6722  89.66 | 29.12 57.68 86.49 4749 | 4770
RadialSFM 70.89 81.83  85.85 | 3340 58.67 69.55 48.98 -
Ours 100.00 100.00 100.00 | 83.48 96.56 98.83 90.43 | 0.97
Combined | COLMAP 7880 9191 97.62 | 56.18 7547 83.54 67.04 | 295
GLOMAP 5143 7149 8835 | 4134 6628 86.63 5579 | 4.59
RadialSFM 79.05 8599 88.81 | 45.07 69.90 78.63 60.41 -
Ours 100.00 100.00 100.00 | 84.83 97.50 99.23 90.87 | 0.58
COLMAP (calib.) | 92.00 9225 92.25 | 76.85 90.88 94.73 83.16 | 0.00

Table 2. Results for Deep View Video dataset. Our method consistently the best performer across all metrics. We observed the best
performance from our method when skipping the final general BA steps.

RRA? RTAD
Method Recallt @5 @15 @30| @5 @15 @30 /| AUC@301 | AFE|
COLMAP 58.15 | 78.09 9540 100.00 | 18.76 38.55 59.07 36.44 | 4.01
GLOMAP 1580 | 2235 6529 89.78 | 6.71 2538 50.20 21.03 | 13.33
RadialSFM 2750 | 7261 8032 85.01 | 17.02 3345 46.12 30.04 -
Ours (with general BA) 87.74 | 99.71 100.00 100.00 | 74.53 91.56 96.42 83.87 | 0.70
Ours (without general BA) | 93.12 | 99.56 100.00 100.00 | 93.63 99.78 99.97 91.99 | 0.59
COLMAP (calib.) 91.18 | 100.00 100.00 100.00 | 74.97 94.02 98.86 86.17 | 0.00

Our method was implemented in C++ using the Ceres
library [1] for non-linear optimization. For all experiments
we used the following settings: Tinier = 2 PX, Tnum =
100, finit = (W + H)/2 where W and H are the width
and height of the image, respectively, fmin = finit/4, and
Sfmaz = 2finst. For the robust cost function in (12) we used
the “Soft L1 Loss” from Ceres: pr(s) = 2a?(\/1 + s/a®—
1) with ¢ = 0.03. For robust BA we use the Cauchy loss
p(s) = log(1 + s). All experiments were run on a Linux
server with a 2.0 GHz 32-core CPU and 256 GB of RAM.

5.2.2. Datasets

PhoneSweep We introduce the PhoneSweep dataset
which consist of thirteen scenes captured with both spher-
ical camera motion. We captured seven scenes with an
iPhone 13 camera and six scenes with a Nexus 5X camera.
The iPhone 13 camera has a field-of-view (FOV) of 120°
and the Nexus 5X FOV is 94°. We captured the scenes with
the phone in portrait orientation to maximize the vertical
FOV.

In each scene we recorded a video with outward-facing
spherical motion by holding the phone in an outstretched
hand and slowly turning in a circle. The scenes include a
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variety of indoor and outdoor locations in both urban and
natural settings. We sub-sampled the 30 frames per second
(FPS) videos to either 6 or 3 FPS, depending on the speed of
motion in the video and the distance to the scene, to ensure
sufficient feature matches between frames.

Because we recorded these sequences outside of a labo-
ratory setting, we could not capture precise ground truth for
the camera motion using an external tracking system. In-
stead, we opted to use SFM techniques to produce pseudo-
ground truth. However, traditional SFM techniques perform
unreliably on spherical motion sequences — hence the moti-
vation for this work. So, in each scene we captured a second
video with general motion. We first reconstructed each gen-
eral motion video in COLMAP and then localized the spher-
ical motion video to the COLMAP reconstruction. The esti-
mated camera poses for the spherical motion video are used
as pseudo-ground truth in the subsequent evaluation of each
method.

Deep View Video The Deep View Video dataset [5] was
captured with a hemi-spherical rig of 16 Yi cameras and
provides metric ground truth for the camera extrinsics and
intrinsics obtained via external calibration. We used the



Table 3. Comparison of reconstruction speed, measured as time per image reconstructed. On the the PhoneSweep dataset, GLOMAP is the
fastest on our method is second fastest. One Deep View Video, our method (without the general BA steps) is the fastest.

COLMAP | GLOMAP | RadialSEM Ours
Dataset N| N, T/N,| N, TIN,| N, TIN,| N, TIN,
PhoneSweep 1109 [ 975 897 | 1109 256 | 1019 11.53 | 1109  3.97
Deep View Video 669 | 573 4.96 | 667  1.73 ‘ 596 14.16 | 624 113

provided ground truth intrinsics to remove the distortion
in the images, resulting in perspective images with a FOV
of about 108°. This dataset includes 15 multi-view videos
of both indoor and outdoor scenes captured in a variety of
lighting conditions. We used the first timestamp in each
video for our experiments.

This dataset was created for the purpose of evaluating
view synthesis techniques, rather than SFM. Accordingly,
some of the images are less than ideal for feature matching,
and for example capture a view of the sky or clouds.

5.2.3. Metrics

To evaluate camera pose accuracy, we compute the Relative
Rotation Accuracy (RRA), Relative Translation Accuracy
(RTA), and Area Under Curve (AUC) metrics [38]. These
metrics are invariant to global scale and thus are appropriate
for evaluating monocular SfM reconstruction.

For the Deep View Video Dataset, which has metric
ground truth, we also robustly align the predicted camera
centers to the ground truth and compute the Recall metric
as the percentage of cameras with an error below 10 cm.

To evaluate camera calibration accuracy, we compute the
Absolute Focal Error (AFE) as AFE = | fyred — fqt|/ fot-

To evaluate reconstruction speed, we compute the time
per reconstructed image as T/N,. where T is the process-
ing time in seconds and /V,. is the number of images recon-
structed by the method out of all N images. We did not
include feature extraction and matching in the timing since
these steps are common to all of the methods.

5.2.4. Results

Tables 1 and 2 present accuracy metrics for the PhoneSweep
and Deep View Video datasets. Our method consistently
outperforms the other methods across all metrics.

On the Deep View Video dataset we found that while our
method accurately estimated the camera rotations, in some
cases there was error in the camera positions (mostly along
the optical axis). This indicates that in some scenes there
may be insufficient feature matches to fully constrain the
camera translation. We tested our method without the gen-
eral BA step, so that the cameras are restricted to a perfect
spherical configuration, and saw a significant improvement
in the translation accuracy (Table 2, second-to-last row).

The last row of Tables | and 2, indicated by COLMAP
(calib.), provide accuracy metrics for COLMAP when pro-
vided with the ground truth focal length and the intrinsics
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fixed during optimization. Even when provided the correct
focal length, COLMAP still produces less accurate results
than our method.

Table 3 compares the methods in terms of reconstruction
speed. Our method was the second fastest after GLOMAP
on the PhoneSweep dataset, with a runtime of about 4 sec-
onds per image, and was the fastest on the Deep View
Dataset, with a runtime of about 1 second per image.

Figures | and 4 compare example reconstructions on
several scenes. COLMAP in some cases produces incom-
plete and inaccurate reconstructions, while GLOMAP and
RadialSFM tend to reconstruct more cameras but in some
cases produces inaccurate camera poses. All three com-
peting methods have a tendency to confuse the motion as
inward-facing instead of outward-facing.

In the SM we highlight view synthesis and dense depth
results based on the camera poses and 3D points estimated
by our method.

6. Conclusions and Future Work

Our work provides a thorough analysis of uncalibrated
spherical SFM in the case of a single unknown focal length.
We elucidate the relationship between focal length and ro-
tation in two-view spherical motion, and prove that self-
calibration is possible from three or more views. We de-
velop and validate a global SFM approach based on the
tools of uncalibrated spherical SFM that can accurately
handle deviations from perfect spherical motion. In our
comparative evaluation, our method outperformed general
SFM methods on data from handheld cameras and a hemi-
spherical camera rig. Our method enables a casual user to
easily make a dense 3D reconstruction of a scene by simply
holding their phone and spinning in a circle.

Future work includes alternate optimization strategies
and extending the method to handle radial distortion, as well
as exploring learning-based approaches as a complementary
direction [6, 39, 40].
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