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Abstract

6D pose confidence region estimation has emerged as a crit-
ical direction, aiming to perform uncertainty quantification
for assessing the reliability of estimated poses. However,
current sampling-based approach suffers from critical limi-
tations that severely impede their practical deployment: 1)
the sampling speed significantly decreases as the number
of samples increases. 2) the derived confidence regions
are often excessively large. To address these challenges,
we propose a deterministic and efficient method for esti-
mating pose confidence regions. Our approach uses in-
ductive conformal prediction to calibrate the determinis-
tically regressed Gaussian keypoint distributions into 2D
keypoint confidence regions. We then leverage the implicit
function theorem to propagate these keypoint confidence re-
gions directly into 6D pose confidence regions. This method
avoids the inefficiency and inflated region sizes associated
with sampling and ensembling. It provides compact con-
fidence regions that cover the ground-truth poses with a
user-defined confidence level. Experimental results on the
LineMOD Occlusion and SPEED datasets show that our
method achieves higher pose estimation accuracy with re-
duced computational time. For the same coverage rate,
our method yields significantly smaller confidence region
volumes, reducing them by up to 99.9% for rotations and
99.8% for translations. The code will be available soon.

1. Introduction

Determining the 6D pose of an object from an RGB image is
a fundamental task in computer vision, with extensive appli-
cations in autonomous driving [1], robotic manipulation [2],
augmented reality [3], and space robotics [4]. The majority
of pose estimation research [5–11] primarily focuses on de-
livering a single optimal pose. It is often for applications
that tolerate occasional inaccuracies. However, it underper-
forms where high reliability and precise uncertainty quan-
tification (UQ) are essential. Because visual ambiguities
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(a) Sampling method [9]

(b) Deterministic method

Figure 1. Narrower confidence regions of our deterministic ap-
proach compared to the sampling method [9]. (a) A heatmap-
guided keypoints are established for 2D confidence regions Kh via
ICP, with 6D pose confidence regions T s

h and Rs
h inferred through

sampling. (b) We directly regress keypoint Gaussian distributions
and generated Kr by ICP. To avoid inefficiency and broadened re-
gions due to sampling, we apply a Jacobian matrix from the IFT
to propagate Kr into the 6D pose.

undermine the accuracy of even the best algorithms, lead-
ing to disasters in safety-critical scenarios.

Driven by the need for safety and reliability in real-
world applications, UQ has been a critical research focus
in robotics for decades. UQ is vital for ensuring successful
object grasping and prevents collisions, and it can be cate-
gorized as either a probabilistic distribution of outcomes or
a scalar confidence [12]. However, both distribution esti-
mation [13–16] and confidence estimation [17, 18] are not
always reliable and often fail to provide statistically guaran-
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teed confidence regions. Additionally, evaluating predictive
uncertainty, especially in 6D pose estimation, is inherently
challenging due to the lack of ground truth uncertainty.

A practical approach involves deriving 6D pose predic-
tion confidence regions, which are designed to cover the
ground truth poses with a user-specified probability. As de-
picted in Fig. 1, the method proposed by Yang et al. [9]
uses inductive conformal prediction (ICP) [19] to confor-
malize heatmaps into keypoint confidence regions Kh. ICP
provides distribution-free, finite-sample guarantees by con-
structing confidence regions that adapt based on the non-
conformity between predictions and observations. By ap-
plying ICP to keypoint detection, we can specify a thresh-
old to generate a confidence region that covers the true po-
sition with a certain probability. Subsequently, a sampling-
based method constructs 6D pose confidence regions Csh =
{Rs

h, T s
h }, consisting of confidence regions for rotation

(Rs
h) and translation (T s

h ). For the confidence region, the
superscripts s denote the sampling approach, while the sub-
scripts h represent the heatmap method. Although Csh can
cover the ground truth, the sampling process increases the
confidence region volume and reduces computational effi-
ciency. Furthermore, common metrics for pose estimation,
such as reprojection, 5◦/5cm, ADD(-S) [20], VSD, MSSD,
and MSPD [21], assess correctness based on whether errors
fall below specific thresholds. These metrics focus solely on
measurement accuracy but do not account for the estimation
regions’ size.

To address these issues, we present a deterministic
method for estimating pose confidence regions as shown
in Fig. 1. We incorporate uncertainty into the loss function
to efficiently regress keypoint Gaussian distributions. Uti-
lizing ICP, these distributions are calibrated into keypoint
confidence regions Kr. To avoid expanding the confidence
region due to low-quality sampled poses, we deterministi-
cally propagate Kr into the pose confidence region Cdr us-
ing the Jacobian derived from the implicit function theo-
rem (IFT). The superscripts d denote the deterministical ap-
proach, while the subscripts r represent the regress method.
Additionally, we introduce metrics for evaluating measure-
ment uncertainty, including coverage rates and radii for 2D
keypoint confidence regions, as well as the coverage rates
and volumes of 6D pose confidence region. These met-
rics provide a more comprehensive assessment of the es-
timated pose. On the SPEED [22] and LMO [23] datasets,
our method reduces the pose confidence region volume by
63.8%, 99.9% for rotations and 92.2%, 99.8% for transla-
tions. In summary, our work makes the following contribu-
tions:
1. We present an ICP-based method for predicting keypoint

confidence regions, which relies on deterministic regres-
sion of Gaussian keypoint distributions.

2. Using IFT, we propagate the keypoint confidence regions

directly into the 6D pose, while maintaining a pose cov-
erage rate comparable to that of [9].

3. We propose thorough metrics to evaluate the estimated
pose confidence region.

2. Related Work

2.1. Single Point Object Pose Estimation
Current pose estimation methods can be categorized into
regression-based and correspondence-based approaches.
Regression-based methods directly recover object poses
from images, either in a coupled [24–26] or decoupled
manner [5–8]. They show better computational efficiency
but still struggle with the nonlinear nature of rotation
representation. Correspondence-based methods establish
dense [27, 28] or sparse correspondences [29, 30] between
the input image and a 3D model, then use algorithms like
PnP [31] for pose estimation. Dense methods offer higher
accuracy but at the cost of significant computational over-
head, while sparse methods predict predefined keypoints via
voting [11], heatmaps [9, 10], or direct regression [30, 32].
Recent approaches integrate differentiable PnP [33–35] into
end-to-end pipelines to enhance performance.

While both regression-based and correspondence-based
approaches perform well on standard benchmarks, a key
limitation, especially in safety-critical applications, is their
inability to provide reliable statistical guarantees and pose
confidence regions. Inspired by [9], we propose a deter-
ministic 6D pose confidence region estimation approach to
address these issues.

Additionally, current 6D pose evaluation metrics pri-
marily emphasize precision assessment through geometric
alignment criteria. The reprojection metric assesses key-
point localization accuracy by measuring compliance with
predefined pixel-error thresholds, while the 5◦/5cm bench-
mark requires simultaneous satisfaction of angular (5°) and
translational (5cm) error bounds. For detailed geometric
verification, the ADD(-S) metric computes mean keypoint
displacement normalized by object diameter (10% thresh-
old). However, these conventional metrics systematically
neglect the critical dimension of measurement uncertainty
in pose estimation. To bridge this critical gap, we propose
novel quantification metrics for confidence region in Sec-
tion 4.2, considering both of ground-truth coverage proba-
bility and volumetric compactness.

2.2. Uncertainty Quantification of 6D Pose
The increasing application of DNNs in safety-critical fields
has heightened the demand for reliable uncertainty quantifi-
cation (UQ) methods. These methods primarily address two
types of uncertainties: aleatoric uncertainty, which arises
from data noise, and epistemic uncertainty, associated with
model parameters [36]. Both types of uncertainties have
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Figure 2. Given an input image, we deterministically regress semantic keypoints (crosses) along with their uncertainties (hollow circles) to
generate 2D keypoint confidence regions (translucent circles). These regions are calibrated to ensure coverage of the ground truth keypoints
(solid dots), achieving, e.g., 90% coverage using inductive conformal prediction. We then apply the PnP algorithm once to predict the 6D
pose (pentagram). Through IFT, we propagate 2D into 6D confidence regions around the predicted pose, maintaining the same coverage
rate for the ground truth (red dots).

been estimated across various visual applications, includ-
ing semantic segmentation [37], optical flow [38], keypoint
detection [39, 40], and object detection [41]. In this study,
we focus specifically on aleatoric uncertainty.

There are three main approaches to UQ in deep learn-
ing. Deep Ensembles train multiple networks, aggregat-
ing their outputs through diverse initializations and train-
ing data [12]. MC-Dropout, grounded in variational infer-
ence [42], approximates Bayesian posterior distributions us-
ing multiple stochastic forward passes with active dropout
layers. Both methods face scalability challenges due to
high computational and memory requirements. Another ap-
proach is Direct Modeling, where a probability distribution
over network outputs is assumed, and the network’s output
layers directly estimate the parameters of this distribution.

By applying Direct Modeling approaches, recent ad-
vances in 6D pose estimation have systematically adopted
the Bingham distribution for modeling rotational uncer-
tainty. Gilitschenski et al. [13] introduced a differentiable
Bingham loss function, enabling direct learning of rotation
distributions. Building on this, Okorn et al. [14] demon-
strated effective modeling of asymmetric object rotations
through isotropic Bingham parametrization, while Deng et
al. [15] proposed Deep Bingham Networks to account for a
family of pose hypotheses. However, these methods do not
provide confidence regions for 6D pose estimation.

The most related work to ours is by Yang et al. [9].
It uses ICP for keypoint confidence region prediction and
a sampling-based method to propagate uncertainty to 6D
pose. However, sampling methods are computationally in-

efficient and increase confidence region volume. The GPU-
accelerated sampling by Gao et al. [43] merely re-samples
the output of [9], failing to reduce time while still produc-
ing conservative confidence regions. So we propose a de-
terministic approach using the IFT to propagate keypoint
confidence regions directly to pose confidence regions.

3. Method
As depicted in Fig. 2, we present a deterministic method
for 6D pose confidence region estimation. Starting with
an input image, we regress the Gaussian distributions of
keypoints (Sec. 3.1) to create keypoint confidence regions
(Sec. 3.2) that ensure a specified coverage of ground truth
keypoints. We then apply the single-shot PnP to predict the
6D pose and use the IFT to propagate the keypoint confi-
dence regions into 6D pose (Sec. 3.3).

3.1. Keypoint Deterministic Regression
Heatmap-based methods, while accurate, require significant
computational and storage resources, limiting their flexibil-
ity [44]. To address this, we adopt an efficient and deter-
ministic regression-based keypoint detection approach [45],
which directly maps the input image I ∈ RH×W×3 to a set
of N Gaussian distributions, PΘ(xn|I), where n = 1...N
andN is the total number of predefined semantic keypoints.
Each distribution PΘ(xn|I) represents the probability of the
true keypoint x̃n ∈ R2 being at position xn ∈ R2. To han-
dle the aleatoric uncertainty, the variance term is integrated
into the training loss, enabling the unsupervised generation
of these distributions. The objective is to optimize model
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parameters Θ by maximizing the likelihood of annotated
keypoints. This approach helps account for ambiguities in
labeled data, due to perspective variations and occlusion.
We utilize the Negative Log-Likelihood (NLL) loss func-
tion to quantify the divergence between the predicted distri-
butions and the ground-truth Dirichlet distribution [46].

LNLL = −
N∑
n=1

logPΘ(xn|I)
∣∣∣∣
xn=x̃n

(1)

The trained model on the train dataset Dtrain serves as
the prediction function F for conformal prediction, and is
applied for keypoint confidence region estimation in the
next section. The network architecture follows the design
in [45], where the model outputs F (I)n represent a Gaus-
sian distribution N (xn,σ

2
n). Its probability density func-

tion (PDF) is parameterized as PΘ(xn|I). Where xn is the
mean vector xn and σ2

n ∈ R2×2 is the covariance matrix,
both are predicted through multi-layer perceptrons (MLPs).

3.2. Conformal Keypoint Confidence Region
We adopt an ICP framework to predict the conformal key-
point confidence region, denoted by Kr as shown in Fig. 2
(e). The ICP process for the trained prediction function F
involves two key steps: conformal calibration on the cali-
bration dataset Dcal = {Ii, x̃i}li=1 and conformal predic-
tion on the test dataset Dtest. l denotes the total number
of samples in Dcal. During calibration, a sequence of non-
conformity scores is generated. These scores are applied
in the prediction stage to compute Kr. Given a new sam-
ple (Il+1, x̃l+1) ∈ Dtest that satisfies the exchangeability
condition [9], ICP predicts a confidence region Kr(Il+1, ϵ),
parameterized by a user-specified error rate ϵ, such that:

P
[
x̃l+1 ∈ Kr(Il+1, ϵ)

]
≥ 1− ϵ, (2)

This implies that the prediction region Kr(Il+1, ϵ) for the
new sample covers the true keypoint location x̃l+1 with a
probability of at least 1− ϵ.

The ICP framework addresses a bi-objective problem:
while ensuring the coverage condition stated Eq. (2), the
goal is to minimize the size of the prediction region
Kr(Il+1, ϵ). By balancing the above two objectives, ICP
provides a principled approach to constructing confidence
regions that are both reliable and as tight as possible.

The most critical aspect of ICP conformal calibration is
designing the nonconformity function, which is denoted by
r. It is constructed to quantify the discrepancy between the
new sample and the training dataset Dtrain. The neural net-
work trained using Dtrain is referred to as the function F .
Hence, the nonconformity function can be denoted as:

r(x̃, F (I)) = max {ϕ(x̃n, F (I)n)}Nn=1 (3)

where the function ϕ computes the nonconformity score for
each keypoint, with the highest score representing the over-
all score. For the n-th keypoint, ϕ is defined as follows:

ϕ(x̃n, F (I)n) =
∥x̃n − xn∥
det(σn)

(4)

For the i-th sample in the calibration set Dcal, the non-
conformity score, calculated using Eq. (3), is denoted as
αi = r(x̃i, F (Ii)) for i = 1, . . . , l. These scores are then
ranked in descending order as αψ(1) ≥ · · · ≥ αψ(l), where
ψ(·) denotes the ranking index. Next, given ϵ ∈ (0, 1), the
⌊lϵ⌋-th largest nonconformity score is denoted as αψ(⌊lϵ⌋).
Using this score and considering Eq. (2) and Eq. (3), the
keypoint confidence regions Kr(Il+1, ϵ) of the newly intro-
duced test image Il+1 from Dtest is derived as:

Kr(Il+1, ϵ)

= {x′ | max{ϕ(x′
n, F (I

l+1)n)}Nn=1 ≤ αψ(⌊lϵ⌋)}
= {x′ | ϕ(x′

n, F (I
l+1)n) ≤ αψ(⌊lϵ⌋),∀n},

(5)

Note that max{ϕ1, . . . , ϕn, . . . , ϕN} ≤ α holds if and
only if ϕn ≤ α for every n. We then substitute Eq. (4)
into Eq. (5) and arrive at the desired result.

Kr(Il+1, ϵ) =
{
x′ | ∥x′

n − xn∥ ≤ det(σn)αψ(⌊lϵ⌋),∀n
}
(6)

Eq. (6) describes an ball region for the k-th keypoint
centered at xn. The area of the ball is proportional to the
determinant of the covariance matrix det(σn) and a scal-
ing factor αψ(⌊lϵ⌋). Note that the size of the confidence re-
gion increases when the keypoint’s Gaussian distributions
are uncertain. It can be indicated by a large determinant in
the covariance matrix, and the kepoint regression perform
poorly on Dcal, leading to a large αψ(⌊lϵ⌋).

The distinction between pose confidence region Kr pro-
posed in this paper and those by Yang et al. Kh [9] lies
in our introduction of a novel nonconformity function ϕ re-
lated to PΘ(xn|I) in Sec. 3.1. As shown in Tab. 1, Kr is
generated faster compared to Kh. Additionally, Kr is more
stable, avoiding the generation of excessively large confi-
dence regions compared with Kh (e.g., keypoint 4 of object
2 and keypoints 1 and 9 of object 8 in Fig. 6).

3.3. Deterministic Pose Confidence Region
The sampling-based approach [9] for propagating keypoint
confidence regions (Kh) to a pose confidence region (Csh)
is inefficient and presents several challenges. Randomly
sampled keypoints are not only computationally expensive
but also struggles to find sufficient valid samples in difficult
cases. Moreover, the low accuracy of the P3P algorithm
leads to pose samples with large deviations from the ground
truth, unnecessarily inflating the volume of the final confi-
dence region Csh.
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To address the above issues, as shown in Fig. 2 (f), we
calculate the Jacobians of 6D pose with respect to the 2D
keypoints based on implicit function theorem (IFT) [47].
Then we deterministicly propagate Kr to Cdr using the un-
certainty propagation theorem. The Jacobian is difficult to
compute due to the non-linear relationship in perspective
geometry. The IFT implicitly computes Jacobians by lever-
aging geometric constraints, avoiding the need for an ex-
plicit solution. Following [34], we define a single-shot PnP
solver, which outputs the pose y = [y1, ..., ym]T , denoted
as g:

y = g(x, z,K) (7)

where x ∈ R2×N and z ∈ R3×N represent N 2D-3D cor-
respondences, and K ∈ R3×3 is the camera intrinsic matrix.
The objective function of g is defined as follow:

O(x,y, z,K) =

N∑
n=1

∥rn∥22 (8)

where rn = xn − πn is the reprojection error of the n-
th correspondence. πn = Π(zn|y,K) is the reprojected
points, calculated by the projective function Π.

A stationary condition is formulated by computing the
first-order derivative of O with respect to y.

∂O(x,y, z,K)

∂y
= 0 (9)

The IFT constraint function f is constructed based
on Eq. (9).

f(x,y, z,K) = [f1, ..., fm]T (10)

The dimensionality of the pose, i.e., m, depends on the pa-
rameterization of the rotation SO(3). Chen et al. [34] use
the less intuitive axis-angle representation m = 6. For bet-
ter user comprehension, we adopt the Euler angle in this
work and m = 6. For each parameter of the pose represen-
tation, the constraint function fj is expressed as:

fj =
∂O(x,y, z,K)

∂yj
= 2

N∑
n=1

⟨rn,−2
∂πn
∂yj

⟩ (11)

Furthermore, based on the IFT, we can apply the constraint
function f to compute ∂g

∂x .

∂g

∂x
= −

[
∂f

∂y

]−1 [
∂f

∂x

]
(12)

Subsequently, the covariance matrix Σx ∈ R2N×2N rep-
resenting Kr is directly propagated to Σy ∈ R6×6 standing
for Cdr using the uncertainty propagation.

Σy =
∂g

∂x
Σx

∂g

∂x

T

(13)

The covariance matrices for the Euler angles and the trans-
lation vector are denoted as ΣR = Σy(1 : 3, 1 : 3) and
Σt = Σy(4 : 6, 4 : 6), respectively.

In summary, as shown in Fig. 2, our method eliminates
the need for inefficient sampling and integration processes
by developing a deterministic method for tighter 6D pose
confidence regions Cdr = {Rd

r , T d
r }.

Rd
r = {x ∈ R3 : (x− y1:3)

⊤Σ−1
R (x− y1:3) ≤ 1} (14)

T d
r = {x ∈ R3 : (x− y4:6)

⊤Σ−1
t (x− y4:6) ≤ 1} (15)

In contrast to the sample-based approach Csh, we apply the
IFT to derive parameterized, ellipsoidal confidence regions
for both rotation and translation.

4. Experiment

4.1. Datasets and implementation details

We conduct experiments on the LMO [23] and the
SPEED [22] datasets. Both are designed for 6D pose esti-
mation task. LMO includes photorealistic rendered training
images of randomly cluttered scenes. We split the dataset
following [9], with 200 images allocated to Dcal and 1,214
images to Dtest. LMO includes 8 labeled objects with sig-
nificant occlusion. SPEED is used to test the safety-critical
applicability of the proposed pose confidence region. To en-
sure a rigorous analysis, we apply a sixfold cross-validation
(CV) method, dividing the 12,000 simulated images into six
subsets. Five-sixths are designated as Dtrain, while one-
sixth is split equally into Dcal and Dtest.

The runtimes are evaluated on a workstation equipped
with Nvidia A6000 GPUs. The network architecture is
based on [45]. The regression model undergoes 96 epochs
of training, utilizing a pre-trained model based on the
COCO dataset [48]. The training employs the AdamW op-
timizer [49]. The fixed learning rate is set as 3 × 10−5.
The upper bound for the keypoint confidence region radius
is set to the image diagonal length, as this value sufficiently
covers the entire image, making larger radii unnecessary.

4.2. Evaluation metrics

We adopt keypoint reprojection accuracy [11], denoted by
Acc, to evaluate the accuracy. However, the existing met-
rics for pose estimation mainly focus on accuracy, neglect-
ing the evaluation of confidence regions. Hence, we pro-
pose 4 metrics beyond accuracy, including the size of the
confidence regions and coverage rate.

2D keypoint coverage rate: The validity of the region
is assessed by the probability of all ground truth keypoints
x̃ falling within Kh or Kr aiming to align with 1 − ϵ, as
stated in (2). For example, the coverage rate ηkpt of Kh for
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Dtest containing K images is:

ηkpt =
1

K

K∑
k=1

I
(
x̃k ∈ Kh(Ik, ϵ)

)
(16)

2D keypoint confidence region radius: We denote
the region size by the keypoint confidence region radius,
det(σn)αψ(⌊lϵ⌋) in Eq. (6). The greater keypoints’ uncer-
tainty, the larger the confidence region radius.

6D pose coverage rate: Yang et al. [9] employ 2D points
sampled within Kh and use the PnP method to obtain pose
samples, the convex hull of these samples formed a 6D pose
confidence region Csh = {Rs

h, T s
h }, as shown in Fig. 1.

In contrast, we deterministicly propagate Kr to ellipsoidal
pose confidence region Cdr = {Rd

r , T d
r } based on IFT. For

both Euler angles and translation vectors, we calculate the
coverage rate of the ground truth. Taking Csh as an example,
the coverage rate for the Euler angles ηR is as follows:

ηR =
1

K

K∑
k=1

I
(
R ∈ Rs

h(I
k, ϵ)

)
(17)

For translation coverage rate ηt follows a similar form.
6D pose confidence region volume: However, if

achieving a high coverage rate requires an excessively large
confidence region, its practical utility may be greatly dimin-
ished. Taking the Euler angles of rotation as an example, if
the region spans 360◦×180◦×360◦, it will inevitably con-
tain any true Euler angle. Therefore, we also compute the
volume of the pose confidence region as a metric. The vol-
ume of Cdr is:

VR =
4

3
π
√
det(ΣR), Vt =

4

3
π
√

det(Σt) (18)

We set the volume threshold τR = 903 deg3 for VR, and
τt = 13 m3 for Vt. Any sample-based confidence region Csh
whose volume—defined as the convex hull of its pose sam-
ples—exceeds a predefined threshold is excluded from the
mean volume calculation and simultaneously considered a
pose coverage failure.

Ours [9]
Kr Cd

r Kh Cs
h

LMO [23] 0.0038 0.0361 0.0076 0.0550
SPEED [22] 0.0032 0.0358 0.0064 0.0521

Table 1. Time consumption for keypoint and pose confidence re-
gion estimation (unit: s).

4.3. Experimental Results
Accuracy and speed: We provide a concise comparison of
Acc with baseline methods in Tab. 2 (a). While prior meth-
ods such as [9] rely on heatmap calibration and occlusion-

Acc Ours [9] Kh [11]
Kr ϵ = 0.1 ϵ = 0.4

LMO mean 74.45 67.33 70.71 61.06
SPEED [22] 97.09 57.80 57.40 57.46

(a) Acc of baseline methods and our approach
ηkpt Ours Kr [9] Kh

ϵ = 0.1 ϵ = 0.4 ϵ = 0.1 ϵ = 0.4
LMO mean 90.65 60.38 91.16 63.38
SPEED [22] 89.66 61.25 88.88 62.64

(b) ηkpt of baseline methods and our approach

Table 2. 2D keypoint confidence region results

LMO Ours [9] + Samp. [9] + Det.
Objects T d

r Rd
r T s

h Rs
h T d

h Rd
h

1 70.52 91.26 97.26 N/A 76.88 93.38
2 88.73 89.98 99.25 N/A 99.59 98.18
3 77.28 87.55 98.29 N/A 88.02 90.59
4 85.09 96.62 97.12 N/A 90.28 98.85
5 97.18 79.70 99.81 N/A 90.13 76.41
6 98.36 1.46 77.81 N/A 98.63 1.37
7 79.73 87.76 98.64 N/A 89.99 91.84
8 69.01 86.94 99.92 N/A 98.51 98.02

mean 83.24 77.66 96.61 N/A 91.50 81.08
SPEED 86.69 88.81 6.40 N/A 87.10 90.92

Table 3. ηR and ηt of baselines and ours with ϵ = 0.1. ’N/A’: The
volume in all regions exceeds the threshold.

aware sampling to improve accuracy in challenging scenar-
ios, their improvements diminish in occlusion-free environ-
ments (e.g., on SPEED [22]). Our method universally sur-
passes [9, 11] across both cases with various ϵ. The com-
prehensive results for the 8 LMO objects are presented in
supplementary Tab. 5.

For heatmap-based keypoint detection and sampling-
based confidence region prediction, increasing the size of
heatmaps and the number of samples significantly raises
inference and sampling time. As shown in Tab. 1, our
regression-based keypoint detection and deterministic con-
fidence region prediction reduce time consumption by 50%
and 31.3% on SPEED, and by 50% and 34.4% on LMO,
compared to [9]. In [9], Faster R-CNN and the Stacked
Hourglass are used for bounding box detection and keypoint
detection, respectively. For a fair comparison, we use the
same bounding box results as [9]. The Stacked Hourglass
has 26.4 million parameters and 26.77 GFlops, while our
method has only 11.1 million parameters and 7.19 GFlops.

2D Keypoint Confidence Region: After applying ICP,
the confidence region coverage rates of Kh and Kr closely
align with 1−ϵ in both SPEED and LMO datasets, as shown
in Tab. 2 (b). The comprehensive results for the each object
in the LMO dataset are presented in supplementary Tab. 6.
However, the 2D keypoint coverage can not fully reflect the
6D pose coverage. Therefore, we proceed to evaluate the
confidence region coverage and volume for the 6D pose.

6D Pose Confidence Region Coverage Rates: To com-
pare the sampling-based method with our deterministic ap-
proach, Tab. 3 presents the 6D pose coverage rates for three
pose confidence regions: regions obtained by direct propa-
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(a) Kr (b) Rd
r : VR = 19.6 (c) T d

r : Vt = 0.05 (d) Rs
h : VR = 2479.6 (e) T s

h : Vt = 0.5

(f) Kr (g) Rd
r : VR = 1.0 (h) T d

r : Vt = 0.01 (i) Rs
h : VR = 8472.9 (j) T s

h : Vt = 53.8

(k) Kr (l) Rd
r : VR = 1.9 (m) T d

r : Vt = 0.03 (n) Rs
h : VR = 5779.0 (o) T s

h : Vt = 14.8

Figure 3. Visualization of the 6D confidence region for objects in LMO. Our Kr can cover the true keypoint within a user-defined ϵ, while
the volumes of Rd

r and T d
r are significantly smaller than that of Rs

h and T s
h .
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Figure 4. Cumulative distribution function of the VR with ϵ = 0.1 for the 8 objects in the LMO, the unit for VR is 103 deg3. A CDF curve
that is closer to the upper-left corner indicates a smaller VR.

gation (Cdh) and sampling (Csh) from Kh generated by [9],
and our deterministically propagated Cdr from Kh. Our
single-shot PnP algorithm for pose estimation (Sec. 6.3)
does not utilize sampling or the RANSAC method. For
translation in the LMO dataset, although T s

h achieves a
higher coverage rate compared to T d

r (96.61% vs. 83.24%),
its volume is significantly larger, as shown in Tab. 4 (109.9
dm3 vs. 8.6 dm3). On the SPEED dataset, the larger range

of translation causes more T s
h volumes to exceed the thresh-

old, thereby lowering its pose coverage rate.

6D Pose Confidence Region Volume: As shown in
Tab. 4, replacing the sampling method of [9] with our deter-
ministic propagation reduces the volume of Rd

h below the
required threshold while maintaining coverage. While the
heatmap-based approach of [9] performs comparably on the
LMO, it yields significantly larger rotation (VR) and trans-
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Figure 5. A boxplot analysis of baseline and proposed method for Vt on the LMO dataset. The boxplot for T d
r exhibits consistently lower

values across all key statistical measures compared to T s
h . After applying T d

h , Vt also decreases.

LMO Ours [9] + Samp. [9] + Det.
Objects T d

r Out Rd
r Out T s

h Out Rs
h Out T d

h Out Rd
h Out

1 0.9 0 28.96 69 12.6 0 252.2 1041 0.5 0 50.3 64
2 0.7 0 9.9 9 28.3 0 N/A 1207 0.9 0 45.0 12
3 2.8 3 50.7 113 66.8 0 N/A 1052 1.4 0 42.9 73
4 1.5 0 6.5 12 52.0 0 N/A 1214 0.1 0 3.5 2
5 0.4 0 52.8 43 63.1 0 N/A 1064 0.2 0 24.7 24
6 57.6 11 514.4 1055 82.2 1 N/A 1095 59.9 10 515.7 1057
7 4.8 0 62.9 98 252.4 0 N/A 809 0.8 0 67.5 56
8 0.03 0 4.6 3 322.2 0 N/A 1210 0.3 0 51.6 9

mean 8.6 2 91.3 175 109.9 0 252.2 1070 8.0 1 100.1 162
SPEED 0.7 0 0.2 0 287.8 920 210.6 898 73.4 50 4.4 18

Table 4. Vt and VR with ϵ = 0.1: The unit for the rotational and translational confidence region are 103 deg3 and 10−3 m3. ’N/A’ means
all confidence regions are over the threshold, while ’Out’ is the count of images that are.

lation (Vt) volumes on the occlusion-free SPEED. Conse-
quently, our method achieves a significant reduction in both
VR and Vt compared to [9] (Fig. 3). Other visualizations
can be found in the supplementary material. The largest
pose confidence region volume is observed with Csh, where
most Rs

h volumes exceed the threshold. The mean volume
of T s

h remains within the threshold but is still the high-
est, indicating that sampling-based confidence regions fail
to cover the ground truth pose within a narrow range.

Transitioning from Csh to Cdr reduces VR by 63.8% and
99.9%, and Vt by 92.2% and 99.8% across the two datasets.
In the occlusion-free SPEED, our proposed method reduces
the volumes of T d

r and Rd
r to as low as 0.7× 10−3 m3 and

0.2×103 deg3. To elucidate the statistical disparities in re-
gion volumes across diverse methods, we visualize the CDF
curves of VR (Fig. 4) and the boxplot of Vt (Fig. 5) within
the LMO. In the CDF curve, Rd

r is closer to the top-left
corner, while most Rs

h exceeds τR, validating the efficacy
of our deterministic propagation method in reducing region
size. Furthermore, as shown in Fig. 5, Vt of T d

r is reduced
by several orders of magnitude compared to T s

h .

5. Conclusions
Our framework introduces an efficient pipeline for estimat-
ing compact 6D pose confidence regions that achieve real-
time operational capability. Crucially, we develop novel

evaluation metrics that consider both ground-truth coverage
probability and volumetric compactness of the confidence
regions. Benchmark evaluations on the LineMOD Occlu-
sion and SPEED datasets demonstrate significant improve-
ments: 1) 33% faster inference speeds compared to the
baseline, 2) up to 99% decrease in confidence region vol-
ume, while maintaining comparable coverage rates across
test scenarios. But our Gaussian pose assumption is a key
limitation, as the non-linear 2D-to-6D transformation chal-
lenges its coverage guarantees, which we will address by
exploring more suitable distributions.
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