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Abstract

This paper proposes LA-MOTR, a novel Tracking-by-
Learnable-Association framework that resolves the com-
peting optimization objectives between detection and as-
sociation in end-to-end Tracking-by-Attention (TbA) Multi-
Object Tracking. Current TbA methods employ shared de-
coders for simultaneous object detection and tracklet asso-
ciation, often resulting in task interference and suboptimal
accuracy. By contrast, our end-to-end framework decouples
these tasks into two specialized modules: Separated Object-
Tracklet Detection (SOTD) and Spatial-Guided Learnable
Association (SGLA). This decoupled design offers flexibil-
ity and explainability. In particular, SOTD independently
detects new objects and existing tracklets in each frame,
while SGLA associates them via Spatial-Weighted Learn-
able Attention module guided by relative spatial cues. Tem-
poral coherence is further maintained through Tracklet Up-
dates Module. The learnable association mechanism re-
solves the inherent suboptimal association issues in decou-
pled frameworks, avoiding the task interference commonly
observed in joint approaches. Evaluations on DanceTrack,
MOTI17, and SportMOT datasets demonstrate state-of-the-
art performance. Extensive ablation studies validate the ef-
fectiveness of the designed modules. Code is available at
https://github.com/PenK1nG/LA-MOTR.

1. Introduction

Multi-Object Tracking (MOT) [36, 47] involves associat-
ing targets across a continuous video sequence to main-
tain consistent IDs for each object. As a fundamental task
in computer vision, MOT has been crucial in applications
ranging from early video surveillance systems [10, 12, 22]
to modern autonomous driving technologies [6, 57]. Tra-
ditional MOT frameworks, such as Tracking-by-Detection
(TbD) [4, 29, 50, 53, 60], employ a sequential pipeline:
first detecting objects per-frame using established detectors
[15, 20, 38, 63], then associating [5, 26, 39, 53] these detec-
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Figure 1. Comparison of Different MOT Frameworks. (a) con-
sists of a training-based detector and a post-processing associa-
tion. (b) utilizes a decoder to simultaneously detect new targets
and associate tracklets. (c) the proposed framework LA-MOTR
introduces a learnable association mechanism to enhance the end-
to-end pipeline by decoupling the detection and association.

tions with existing tracklets, as illustrated in Figure 1(a).

However, decoupled frameworks find it challenging to
simultaneously optimize detection and association [58, 60].
With advancements in deep learning [9, 21, 48], recent stud-
ies [43, 46, 58] have attempted to use an end-to-end pipeline
to simultaneously address the object detection and the track-
let association. Among these, the Tracking-by-Attention
(TbA) framework, which utilizes Transformer-based mod-
els for end-to-end tracking, has achieved the best perfor-
mance. TbA [58] extends the DETR [9, 31, 65] framework
to use a single decoder based on queries to perform both the
detection the association tasks, as illustrated in Figure 1(b).
This approach of directly decoding new target detections
and matching them with historical trajectories through the
network performs exceptionally well in scenarios with com-
plex target movements [11, 47]. However, when applied
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to crowded environments such as MOT17 [36], the per-
formance significantly declines. This decline is primarily
due to the difficulty in detecting new targets, which subse-
quently reduces tracking accuracy. Studies [18, 54, 56, 62]
indicate that the number of new targets supervising the de-
tection queries is significantly smaller than the number of
the tracklets supervising the track queries. To mitigate this
issue, these methods adjust the supervision strength [54, 56]
across different query types.

We argue that a more fundamental issue in TbA arises
from the shared use of a single attention decoder network
for both the detect queries and the track queries, introducing
functional ambiguity. Detect queries utilize the attention
decoder to identify new objects, while track queries employ
the same decoder to associate current detections with ex-
isting tracklets. This dual usage blurs the decoder’s func-
tionality, reducing its effectiveness for both detecting new
targets and associating them with historical track queries.
Consequently, this increases the risk of tracking failures, as
shown in Figure 6(a). Additionally, end-to-end networks of-
ten prioritize track queries due to their stronger supervisory
signals [56, 62], which detracts the detection of new targets.

To resolve the competing optimization objectives be-
tween detection and association, we introduce LA-MOTR,
a novel Tracking-by-Learnable-Association framework for
end-to-end MOT. LA-MOTR separately detects all objects
and historical tracklets within the current frame and asso-
ciates them using an online learnable association module
to update the tracklets. The updated tracklets in the cur-
rent frame then guide tracklet detection in the next frame.
The procedure is illustrated in Figure 1(c). In particular, for
each frame, we utilize the tracklet queries propagated across
frames alongside the blank object queries to separately de-
tect the targets of historical tracklets and all objects in the
current frame. Next, we propose a Spatial-Guided Learn-
able Association (SGLA) module that leverages relative
spatial cues from all objects and tracklets to guide feature
interaction and compute association scores. Specifically, in
SGLA, we employ Spatial-Weighted Attention to fuse ob-
ject features with tracklet features, providing mutual infor-
mation that enables more accurate detection and matching
of blurred or occluded objects to their corresponding trajec-
tories. Finally, we use the tracklet features obtained from
current frame as the tracklet queries for the next frame. The
key contributions can be summarized as following:

e We propose LA-MOTR, a novel Tracking-by-Learnable-
Association framework that effectively resolves com-
peting optimization, enabling more flexible and inter-
pretable detection and association in end-to-end MOT.

e We present the Separated Object-Tracklet Detection
module, Spatial-Guided Learnable Association module,
and Tracklet Update module to facilitate LA-MOTR.

e Our approach achieves state-of-the-art performance

among end-to-end MOT methods on challeng-
ing datasets, including DanceTrack, MOT17, and
SportsMOT. Experimental results and comprehensive
ablation studies validate its effectiveness in synchroniz-
ing detection accuracy and tracking consistency.

2. Related Work

2.1. Tracking-by-Detection

Tracking-by-Detection (TbD) [1, 4, 14, 16, 29] first de-
tects objects in each frame and then associates these de-
tections with existing trajectories. In pedestrian tracking
scenarios using fixed cameras [12, 28, 36], targets gener-
ally exhibit linear motion and maintain consistent appear-
ance features. Consequently, association in TbD primarily
relies on motion and appearance information. SORT [4] uti-
lizes a Kalman filter [26] to predict object positions based
on historical trajectories and computes the Intersection over
Union (IoU) with detected targets. Deep SORT [53] en-
hances SORT by incorporating a feature extraction network
and employing cosine similarity for matching. To balance
speed and performance, JDE [51] and FairMOT [60] inte-
grate detection and feature extraction into a unified network.

In more complex scenarios [11, 47, 52], the assumptions
of linear target motion and consistent appearance features
make association challenging. ByteTrack [01] addresses
this issue by reusing low-confidence detections to enhance
association robustness. OC-SORT [8] reduces error accu-
mulation in the Kalman filter during occlusion periods by
computing a virtual trajectory. Hybrid-SORT [55] incorpo-
rates confidence and height state as additional cues in the as-
sociation process. DroneMOT [49] decomposes the drone’s
motion and integrates it with the target’s motion to construct
the association matrix.

However, these two-stage TbD methods are unable to si-
multaneously optimize detection and association, often re-
quiring customized association strategies and manual pa-
rameter tuning. In contrast, our LA-MOTR introduces a
learnable association module within an end-to-end frame-
work, enabling the network to learn association relation-
ships across diverse scenarios.

2.2. Tracking-by-Attention

Tracking-by-Attention (TbA) employs an end-to-end
framework, eliminating the need for manual parameter
tuning across diverse scenarios. Inspired by DETR [9,
65], TbA utilizes learnable queries to detect objects and
historical trajectory queries to monitor them in the cur-
rent frame. In contrast to TransTrack [46] and Track-
Former [35], which rely on Intersection over Union (IoU)
or Non-Maximum Suppression (NMS) for matching final
trajectories, MOTR [58] uses track queries to associate
tracklets and detects newly appearing objects using de-
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Figure 2. The overall architecture of LA-MOTR along with a visualization of its corresponding processes. Initially, the image is processed
by the image encoder. Concurrently, the tracklet query and blank object query are input into the Separated Object-Tracklet Detection,
which outputs the tracklet and all objects detection embeddings for the current frame. Then, relative spatial cues between objects and
tracklets guide their feature interactions within the Spatial-Guided Learnable Association module to create an association matrix linking
objects to tracklets. Finally, the tracklet query for time ¢ + 1 is generated, completing the tracking cycle.

tect queries. This approach implicitly integrates detection
and trajectory association within a single attention decoder.
Overall, this learning-based, end-to-end methodology effec-
tively manages tracking across various scenarios.

The complexity of an integrated attention decoder poses
challenges in balancing new object detection with existing
trajectory tracking. To address this, MOTRv2 [62] incor-
porates a YOLOx [20] detector to generate queries for all
objects, reducing conflicts between detection and associa-
tion tasks. Building on this, MOTRv3 [56] enhances de-
tection and association supervision by correcting label as-
signment imbalances during training. Similarly, CoMOT
[54] resolves label assignment disparities, enabling a track-
ing system that operates without periodic renewal or re-
initialization. LAID [25] follows the TbD pipeline by us-
ing a frozen detector and adding an association network
to specifically optimize association and minimize compe-
tition. MOTIP [19] redefines the association task as the
ID prediction identification. Additionally, some methods
leverage extended temporal information to improve perfor-
mance. MeMOT [7] utilizes a tracking memory bank, while
MeMOTR [18] employs long-term memory through a cus-
tomized memory-attention layer to maintain stable IDs.

Despite these advancements, these methods remain
within the DETR framework, embedding association within
the same decoder that handles both historical information
and new trajectory detection. In contrast, LA-MOTR de-
couples the entire process into separate network modules,
thereby preserving the robust functionalities of object de-

tection and specialized association components.

3. Method

We propose LA-MOTR, a novel end-to-end framework
with learnable association. As illustrated in Figure 2,
our method divides the tracking process into three spe-
cialized components: Separated Object-Tracklet Detection
(Section 3.1), Spatial-Guided Learnable Association (Sec-
tion 3.2), and Tracklet Update (Section 3.4). At each frame
t, the captured image I; € R"W >3 is processed to ex-
tract image features F;. These features, along with blank
object queries Q° and previous tracklet queries Q% , are
input into a decoder to generate corresponding detection
embeddings E°% and E!*. Subsequently, the Separated
Object-Tracklet Detection component utilizes spatial cues
from E° and E!* to construct Spatial-Guided Attention,
guiding embedding features interactions. This process gen-
erates the outputs O°, O'°, and an association matrix M.
Finally, the tracklet query output O'* serves as the detec-
tion for existing tracklets in the current frame, while the ob-
ject query output O° contains the detection results for all
targets (see Section 3.3). The association matrix M, which
matches the object and tracklet query outputs, is used to
update the tracklet queries Q'* for the next frame and to
identify newly appeared targets in the current frame.

3.1. Separated Object-Tracklet Detection

In the Separated Object-Tracklet Detection module, the im-
age I; at the t-th frame is first processed by a ResNet-
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50 [21] backbone and a transformer encoder [31] to extract
the image features F;. These features serve as keys and
values in a cross-attention mechanism. The tracklet queries
Q%X from the previous frame are concatenated with the ob-
ject queries Q° to form the input queries. This architecture
produces two types of detection embeddings: E'** for track-
lets and E° for objects. In contrast to end-to-end mod-
els like the decoder in MOTR [58], which supervise object
queries only with newly detected objects, our approachs ob-
ject queries include detections for all objects in the current
frame to facilitate better feature interaction and association,
as illustrated in Figure 2(a).

Separating tracklet queries and object queries to obtain
detection embeddings for existing tracklets and all targets
in the current frame forms the foundation of the new frame-
work. This method effectively captures contextual informa-
tion and the relationships between the two types of outputs,
providing reliable embeddings for subsequent learnable as-
sociation. These embeddings are crucial for accurate detec-
tion and robust tracking over time.

3.2. Spatial-Guided Learnable Association

After obtaining the detection embeddings for historical
tracklets and all objects, we perform implicit association
to acquire the interaction embeddings and association re-
lationships. To achieve this, we propose the Spatial-Guided
Learnable Association (SGLA), a learned association mod-
ule based on the Edge-Augmented Graph Transformer[13,
24], to obtain the association matrix. SGLA leverages
Relative-Spatial Cues between tracklets and objects to en-
hance the association matrix while simultaneously generat-
ing weights for Spatial-Weighted Attention. The Spatial-
Weighted Attention within SGLA comprises a multi-layer
structure, where the association matrix M, 0 from each layer
[ is used as input for the subsequent layer. In the initial

layer, O?gj) and OE%“) represent the object detection embed-

ding E°% € RNa*d and the tracklet detection embedding
E'* ¢ RNt*d from the Separated Object-Tracklet Detec-
tion Module, respectively. Additionally, the association ma-
trix Mg, € RNe*Nexd jg initialized as a zero matrix.

Relative-Spatial Cue. For each layer [, the object em-
beddings O((’;’)J and tracklet embeddings Ot(cl')‘ are processed

through a detection head to generate bounding boxes BE’;’)j

and BE‘?)‘, as illustrated in Figure 3. This design enables di-
rect extraction of spatial cues within both object and histor-
ical tracklet embeddings. Notably, the head is shared with
the one used in Section 3.3. 4

Subsequently, the box differences B?;)f I are calculated

by determining the pairwise differences between B?lb)] and

BE?)‘ The aggregated box differences Bd;f F e RNaxNex4
are embedded using an MLP, generating the relative devia-
tion encoding Ef;)f F e RNaxNixd \which encodes the rel-
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Figure 3. The Spatial-Weighted Attention consists of L layers.
Each layer receives outputs from the preceding layer, O?}’;, O‘(‘ili,
and M(;y. This design ensures relative spatial cues within each

layer can effectively guide the association matrix M.

ative spatial relationships between the boxes.
Spatial-Weighted Attention. In Figure 3, we improve the
self-attention mechanism by incorporating relative spatial
cues between objects and tracklets as weights to guide the
association matrix M. For each layer [, the object output
O‘(’;’)J and the tracklet output O‘&‘; are concatenated into a
unified representation O(;y € R(NetNe)xd  We add E?l‘;‘
to the association matrix M,y and integrate it into the self-
attention computation to produce the attention matrix A,
defined as

OWWE)OWWE)T

—dk + M(Z)W(als)so> .

This integration utilizes the spatial cue to strengthen con-
textual relationships between objects and tracklets. The
computed attention matrix A ;) is applied to the value ma-
trix and combined with O through a residual connec-
tion, producing the output for the next layer: O 1) =
Owy+Aw (O W(‘l/) ). Furthermore, we dynamically update

A(;) = softmax <

the association matrix as M1y = M) + A(l)W(ul‘;d, en-
abling iterative refinement of the associations between ob-
jects and tracklets. This closed-loop design ensures spatial
and temporal consistency across layers.

The Spatial-Guided Learnable Association design ex-
ploits spatial consistency across consecutive frames by uti-
lizing relative spatial positions as weighting factors. This
promotes bidirectional information exchange between ob-
ject and tracklet embeddings via the Spatial-Weighted At-
tention module. As shown in Figure 2(a), tracklet embed-
dings acquire additional features from object embeddings
for targets lost in prior frames, enhancing robustness to tem-
porary occlusions and reappearances. Simultaneously, ob-
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Figure 4. Details of Decoupled Tracking-Detection Loss. Steps
1, 2, and 3 respectively describe the matching processes for calcu-
lating the detection loss, tracking loss, and association loss.

ject queries benefit from the temporal information in track-
let queries, improving detection accuracy as illustrated in
Figure 6(a).

3.3. Decoupled Tracking-Detection Loss

After obtaining the object output O°, the track output Ok,
and the association matrix M , the detection head first pro-
duces the predicted object detections P°% and the predicted
tracklets P'°*. A sigmoid function is then applied to the as-
sociation matrix M to calculate the association scores S for
all tracklet-detection pairs.

As illustrated in Figure 4, objects P°" are matched with
existing targets in the current frame using the Hungarian al-
gorithm [27], establishing the detection ground truth gdt.
Similarly, predicted tracklets P'** are matched with histor-
ical tracklets by their identifiers to determine the tracklet
ground truth ¢'*. If a target matches both a detection and
a track, the association score is set to 1; otherwise, it is set
to 0, resulting in the ground truth association score ¢*“°°.
Unmatched detections are then initialized as new trajecto-
ries. During inference, detected objects and tracklets are
directly matched using association scores S. Objects with
scores above 0.5 are initialized as new trajectories, defin-
ing the trajectories for the current frame. Detailed inference
procedures are provided in the supplementary materials.

For a training sequence comprising 7" frames, the to-
tal loss is decomposed into detection loss Lge, track loss
Lk, and association loss L,go. Both Lge and L con-
sist of classification loss L (Focal Loss [41]), regression
loss Lreg (L1 loss [37]), and bounding box loss Lpox (GIoU
loss [38]). The association loss L, is computed using
binary cross-entropy [42] on the two score matrices. The
overall loss for the training sequence is formulated as

MH

(AdetLer + Mex Lix) + ZAM o (D

t=1 t=2

3.4. Tracklet Update

In previous Tracking-by-Attention methods, the tracklet
query for the next frame, Qﬁl, is typically updated by
introducing various learnable networks between frames or
across multiple frames. This strategy aims to ensure conti-
nuity in the target feature representation and maintain long-
term memory. In contrast, our method derives the tracklet
features through Spatial-Guided Learnable Association, ef-
fectively integrating them with the feature representations
of all objects in the current frame. Consequently, we only
need to ensure the continuity of inter-frame features, as the
features of all current tracklet can be fused with all objects
from the association process. Therefore, we utilize only
the object outputs O°® and tracklet outputs O'* from the
current frame to generate the tracklet queries for the next
frame:

Q= w- O + (1 —w) - O™ )
As illustrated in Figure 6(a), the tracklet query results
demonstrate high accuracy, enabling effective object de-
tection even in crowded or motion-blurred scenarios. This
method not only reduces model complexity but also main-
tains tracking continuity without adding additional learn-
able parameters, as shown in Table 6.

4. Experiments

4.1. Datasets and Metrics

Datasets. We evaluate our method primarily on the Dance-
track [47], SportsMOT [11], MOT17 [36]. Dancetrack [47]
focuses on dance performances, featuring over 105k anno-
tated frames. The rapid movements of dancers with similar
appearances significantly increase the difficulty of the track-
ing task. SportsMOT [11] consists of approximately 150K
annotated frames capturing various sports events, providing
a rich set of scenarios with fast-moving athletes and high-
speed cameras. MOT17 [36] is a widely used benchmark in
multi-object tracking characterized by crowded scenes and
challenging occlusions.

Evaluation Metrics. We assess the performance of multi-
object tracking systems using Higher Order Tracking Ac-
curacy (HOTA) [33], which evaluates detection accuracy,
association accuracy, and temporal consistency. Addition-
ally, we follow standard evaluation protocols by employing
Multiple-Object Tracking Accuracy (MOTA) [3], Identity
Switches (IDS) [2], and Identity F1 Score (IDF1) [40].

4.2. Implementation Details

LA-MOTR employs Dab-Deformable-DETR [31] with a
ResNet50 [21] backbone. The model is initialized using the
official pre-trained weights from the COCO [30] dataset. In
addition, we apply data augmentation techniques such as
random scaling and cropping. Specifically, we resize input
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images so that the shorter side is 800 pixels and the longer
side does not exceed 1536 pixels.

As discussed in Section 3.4, training track query updates
over the long term is unnecessary. Instead, we train LA-
MOTR using fixed three-frame clips as batches across the
three datasets. Within each clip, input frames are sampled at
random intervals ranging from 1 to 10. For the DanceTrack
dataset [47], we train for 18 epochs, reducing the learning
rate by a factor of ten at the 12" epoch. Similarly, training
on SportsMOT [11] is conducted over 28 epochs, with the
learning rate decreased at the 18" epoch. Following MeM-
OTR [18], we combine the CrowdHuman [44] validation set
with the MOT17 [36] training data to create an augmented
training set, which helps prevent overfitting due to limited
data. We train the model on this set for 130 epochs, reduc-
ing the learning rate at the 120" epoch.

All experiments were performed using PyTorch on four
NVIDIA 3090 GPUs. The batch size was set to one per
GPU, with each batch comprising a video clip. We em-
ployed the AdamW [32] optimizer with an initial learning
rate of 2.0 x 10~*. During training, tracked targets with de-
tection scores below the threshold 74, = 0.5 and IoU below
Tou = 0.5 were excluded. The weight parameter w in the
tracklet query update is set to 1, 0.9, and 0.5 for the Dance-
Track, SportsMOT, and MOT 17 datasets, respectively. The
loss coefficients are set as follows: A¢s = 2, Areg = 5,
Abox = 2, and A0 = 10. As shown in Table 7, LA-MOTR
maintained network parameters and speed despite the inclu-
sion of the learnable association module compared to other
end-to-end methods.

4.3. Comparison with State-of-the-art Methods

We compare LA-MOTR with major end-to-end online
methods, including TransTrack [46], MOTR [58], MeM-
OTR [18], Co-MOT [54], MOTRvV2 [62], MOTRvV3 [56],
MOTIP [19], and LAID [25]. Additionally, we evaluate
LA-MOTR against state-of-the-art traditional two-stage on-
line methods such as QDTrack [17], FairMOT [60], Center-
Track [64], ByteTrack [61], and OC-SORT [8].

Dancetrack dataset. Target movements in Dancetrack [47]
are nonlinear and irregular, frequently experiencing occlu-
sions and blurring. Consequently, associating targets with
tracklets presents a significant challenge. As shown in Ta-
ble 1, we trained LA-MOTR on the DanceTrack training
set and compared it with state-of-the-art methods on the
DanceTrack test set [47]. LA-MOTR demonstrates compet-
itive performance across various metrics. Compared to OC-
SORT, LA-MOTR improves HOTA, DetA, and AssA by
17.0%, 4.1%, and 20.7%, respectively. These results high-
light the effectiveness of LA-MOTR as an end-to-end ob-
ject tracking approach in complex scenarios. Furthermore,
when compared to other end-to-end methods such as MeM-
OTR, LA-MOTR exhibits significant advantages, including

Method HOTAT MOTAT IDFIf AssAT DetAt

FairMOT[60] 39.7 82.2 40.8 23.8 66.7
CenterTrack[64] 41.8 86.8 35.7 22.6 78.1
ByteTrack[61]  47.7 89.6 53.9 32.1 71.0
QDTrack[17] 54.2 87.7 50.4 36.8 80.1
OC-SORTI8] 55.1 92.0 54.6 38.3 80.3

TransTrack[46] 45.5 88.4 45.2 27.5 75.9
MOTR*[58] 54.2 797 515 402 735
MeMOTR*[18] 63.4 854 655 523 710
MeMOTR[18]  68.5 899 712 584  80.5
CO-MOT*T[54] 69.4 912 719 589 821
MOTRv2*T[62] 69.9 919 717 590  83.0
MOTRvV3*T[56] 70.4 929 723 593 838
MOTIP*[19] 67.5 903 722 576 794
MOTIP[19] 70.0 910 751 60.8 80.8
LAID[25] 69.6 899 735 599 818
LA-MOTR* 66.5 925 697 539 804
LA-MOTR 71.1 935 718 590 844

Table 1. Tracking results on the DanceTrack test set. Results
for existing methods are sourced from DanceTrack. * indicates
the use of the standard Deformable-DETR as the backbone, and
T denotes the use of an additional data. The best performance is
presented in bold, and the second-best performance is underlined.

a 1.8% increase in HOTA. Additionally, we implemented
LA-MOTR with the standard Deformable-DETR backbone,
achieving a HOTA score of 66.5%.

Our proposed Spatial-Guided Learnable Association ef-

fectively integrates relative spatial cues, achieving associa-
tion performance with 93.5% MOTA and 59.0% AssA. Im-
portantly, unlike some methods [56, 62] that utilize an addi-
tional detector, LA-MOTR achieves state-of-the-art perfor-
mance in DetA by reaching 84.4%, demonstrating its effec-
tiveness without requiring auxiliary detection.
MOT17 dataset. The MOT17 dataset serves as a widely
recognized benchmark for pedestrian detection and track-
ing, characterized by densely packed targets and linear mo-
tion patterns. As previously discussed, TbA methods face
challenges in effectively balancing detection and tracking.
In contrast, TbD approaches employ more robust detec-
tors and accurately predict target positions, resulting in
improved performance. LA-MOTR addresses these chal-
lenges by decoupling detection and tracking tasks. This ar-
chitecture enables the model to leverage advanced detection
capabilities while maintaining effective tracking perfor-
mance. On the MOT17 benchmarks, LA-MOTR achieves
a 57.4% HOTA and 75.3% MOTA when trained only on
the MOT 17 training set, surpassing multiple state-of-the-art
end-to-end MOT approaches, as demonstrated in Table 2.

However, Transformer-based methods often overfit the
MOT17 dataset due to its limited training set of approxi-
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Method Add. Data HOTAT MOTA?1 IDF11T AssAt DetAt
FairMOT[60] CH,CPETHZ 59.3 73.7 723 580  60.9
CenterTrack[64] CH 52.2 67.8 64.7 51.0 53.8
ByteTrack[61] CH,CPETHZ 63.1 80.3 773 620 645
QDTrack[17] CH 63.5 77.5 787 645  62.6
OC-SORT(8] CH,CPETHZ 63.2 78.0 715 634 632
TransTrack[46] CH 54.1 74.5 639 479 616
MOTR*[58] CH 57.8 73.4 68.6 557 603
Co-MOT*[54] X 60.1 72.6 727  60.6  59.5
MOTRv2*[62] CH 57.6 70.1 70.3 575  58.1
62
MeMOTR*[18] CH 58.8 72.8 715 584  59.6
MOTRvV3*[56] CH 60.2 75.9 724 587  62.1
MOTIP[19] CH 59.2 75.5 712 569 620
LA-MOTR* X 53.8 72.1 674 605 539
LA-MOTR* CH 60.8 79.8 722 633 592
LA-MOTR X 57.4 75.3 70.1 61.7 58.0
LA-MOTR CH 62.6 80.7 738 639 629

Table 2. Tracking results on the MOT17 test set. Additional
training datasets include CrowdHuman[44] (CH), CityPersons[59]
(CP), and ETHZ[45]. The best and second performance among the
End-to-End methods is marked in bold and underline.

indicates method with offline post-processing, which are excluded
from comparison. * indicates the use of the standard Deformable-
DETR as the backbone.

mately 5K frames [18]. To mitigate this, we incorporated
the CrowdHuman validation set (about 4.37K frames) into
the training process, resulting in a 62.6% increase in the
HOTA score. This improvement suggests that the small size
of MOT17 contributes to lower performance compared to
TbD approaches. Nevertheless, our results demonstrate that
LA-MOTR competes effectively with advanced TbD meth-
ods that use sophisticated detectors, highlighting its poten-
tial for robust multiple object tracking.

SportsMOT dataset. To further demonstrate the associa-
tion capabilities of LA-MOTR, we evaluate our method on
SportsMOT, where the targets exhibit highly similar appear-
ances and move simultaneously with the camera. Notably,
all models are trained only on the SportsMOT training set.
The results demonstrate that our method achieves impres-
sive performance with a HOTA score of 72.4%, particularly
excelling in the AssA metric with a score of 61.8%.

4.4. Ablation Study

This section analyzes key components of our pipeline: the
association method, tracklet query updates, and training clip
length. We perform ablation experiments on the Dance-
Track [47] dataset, which includes challenging scenarios
such as severe target motion blur, occlusions, and difficult
object associations. The model is trained on the training set
and evaluated on the validation set.

Association Methods. Table 4 presents an ablation study
comparing various association methods following object
and tracklet detections. The methods are categorized into

Method HOTAT MOTAT IDFI1 AssAT DetAf

FairMOT[60] 49.3 86.4 53.5 34.7 70.2
CenterTrack[64] 62.7 90.8 60.0 48.0 82.1
ByteTrack[61] 62.8 94.1 69.8 51.2 77.1

OC-SORT([8] 71.9 94.5 722  59.8 864
QDTrack [17] 60.4 90.1 623 472 715
DiffMOT[34] 72.1 94.5 72.8  60.5 86.0

Deep-IOU[23] 74.1 95.1 75.0  63.1 87.2

TransTrack*[46]  68.9 92.6 715 575 82.7
MeMOTR*[18] 68.8 90.2 699 578 820
MeMOTR[18] 70.0 91.5 714 59.1 83.1
SambaMOTR*[43] 69.8 90.3 719 594 822

MOTIP[19] 71.9 92.9 750 62.0 834
LAID[25] 71.7 89.2 727 624 825
LA-MOTR* 69.5 93.5 70.0 579 844
LA-MOTR 724 95.6 733 61.8  86.6

Table 3. Tracking results on the SportsMOT test set. The
best and second performance among the End-to-End methods is
marked in bold and underline. * indicates the use of the standard
Deformable-DETR as the backbone Results for existing methods
are sourced from SportsMOT.

| HOTAT MOTAT IDFIT AssAT DetAf

Association

Hand-Craft
IoU 49.864 73.729  50.522 37.642 66.458
Feature 46.977 70.211 47210 34509 64.336
Combination 57.920 81.970 58.866 45.076 73.397

End-to-End
Single Decoder | 60.220 86.075 61.648 47.509 75.994
SGLA w/o RSC | 62.753 88.237  64.651 49.084 78.992

SGLA 64474  90.537 66.956 51913 80.366

Table 4. Ablation Experiments on Association Methods. IoU
refers to matching based on bounding box IoU, Feature refers to
matching based on feature representations.

q kv | HOTAt MOTAT IDFI? AssAt DetAf
EY  E< | 63896 89.374 66.483 50397 80.672
Eic EoY | 64008 90280 67.194 51.779 80.201

concat 64.474 90537 66.956 51.913 80.366

Table 5. Ablation Experiments on attention mechanism in
SGLA. We evaluate using £°® and Ei* as queries, keys, and val-
ues in cross-attention, and their concatenation for self-attention.

hand-crafted and end-to-end approaches, each retrained to
ensure a fair comparison. Hand-crafted methods combine
FairMOT’s[60] detection and classification heads with LA-
MOTR’s SOTD to obtain bounding boxes and appearance
features. For association, ByteTrack’s[61] strategy is em-
ployed, utilizing IoU, appearance similarity, or their combi-
nation.

End-to-end methods include using MOTR with a single
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Query Update | HOTAT MOTAT IDF11T AssAT DetA?T

TAN[58] 62740  88.994 64.608 51.694 79.376
TIM[ 18] 64.589 91.074 66910 52.159 79.831
LA-MOTR | 64474 90.537 66.956 51913 80.366

Table 6. Ablation Experiments on Tracklet Query Update.
TAN and TIM are learning-based methods for updating tracklet
queries.

decoder for detection and matching, as well as our pro-
posed Spatial-Guided Learnable Association (GLA). Addi-
tionally, we assess the impact of removing Relative Spatial
Cues (RSC). The results indicate that end-to-end associa-
tion methods outperform hand-crafted approaches. Com-
pared to single-decoder models, our decoupled method,
LA-MOTR, achieves a HOTA improvement of 64.474%.
Furthermore, incorporating RSC enhances the interaction
between objects and tracklets, resulting in an additional
1.721% increase in HOTA.

Attention Mechanism in SGLA. We perform ablation
experiments on the Spatial-Guided Learnable Association
(SGLA) attention mechanism, as shown in Table 5. Perfor-
mance was evaluated using E°% and E'°f in various combi-
nations of queries, keys, and values within cross-attention
modules. Additionally, we replaced cross-attention with
concatenated E° and E'¥ in self-attention modules to as-
sess their combined effects. The first row results show that
integrating £°% significantly improves DetA, while the sec-
ond row indicates that E'* substantially enhances associa-
tion. These findings demonstrate that £°% and E'* repre-
sent the model’s detection and association capabilities, re-
spectively. This validates our choice of using self-attention
for comprehensive interaction on both embeddings, achiev-
ing a HOTA score of 64.474%.

Tracklet Query Update Method. We evaluated various
track query update strategies through ablation experiments
(Table 6). TAN [58] with a learned update achieved a HOTA
of 62.740%, while TIM [18], which integrates long-term
memory features, attained 64.589%. Our proposed method
(Section 3.4) directly combines tracklet and object outputs
for the next frame without additional learning mechanisms,
resulting in a HOTA of 64.474% and a higher DetA of
80.366%. These results demonstrate that LA-MOTR’s asso-
ciation transformer effectively facilitates information inter-
action among current frame targets and efficiently performs
feature association without relying on long-term strategies.
Tracklet Query Update Weight. We conducted an abla-
tion study on the weight parameter w used in the query up-
date process (Section 3.4). We sampled 10 uniformly dis-
tributed values of w between 0 and 1, trained all models on
three datasets in Figure 5. The results indicate that the opti-
mal w is dataset-dependent. For datasets with complex tar-
get motion, such as DanceTrack and SportsMOT, the best

© 661 /YH—M Method | Params  FPS

5 MOTR[58] 4391M  13.47

& 644 MeMOTR[18] | 50.13M  12.33

< DanceTrack @ LA-MOTR 50.29M  11.96

= Sponior 8

Q© 62 >

e Table 7. Network Parameters
60 4 and Inference Frame Per Sec-

0.1 03 0.5 0.7 0.9  ond of End-to-End MOT Meth-
Weight (w) ods.
Figure 5. Ablation study on

tracklet update weight w.

Tracking Result

Figure 6. Visualization of LA-MOTR and MeMOTR under oc-
clusion. MeMOTR loses two trajectories and fails to detect them
through query decoding, whereas LA-MOTR successfully tracks
all trajectories with corresponding object and tracklet queries.

w values are 1 and 0.9, respectively. In contrast, for lin-
ear motion datasets like MOT17, an optimal w of 0.5 was
identified. This suggests that for more nonlinear target mo-
tions, the model relies more on historical tracklet features,
whereas for linear motion, the current frame object features
provide sufficient information to predict the next frame’s
tracklets.

5. Conclusion

We introduce LA-MOTR, a pioneering end-to-end frame-
work that integrates a learnable association module to sep-
arately manage object and tracklet queries. This separa-
tion effectively alleviates the functional ambiguities present
in existing Tracking-by-Attention approaches. Compre-
hensive experiments conducted on challenging datasets
demonstrate that our method outperforms current end-to-
end multi-object tracking techniques, achieving state-of-
the-art performance.

Limitations and Future Work. Ablation studies indicate
that the long-term memory component in track query up-
dates enhances MOT accuracy. In future work, we will
explore learnable associations across additional dimensions
and develop improved query update mechanisms to more
effectively preserve essential temporal information.
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