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Abstract

Recent methods learn class-unified prompt contexts by im-

age data to adapt CLIP to zero-shot multi-label image clas-

sification, which achieves impressive performance. How-

ever, simply tuning prompts is insufficient to deal with novel

classes across different semantic granularity levels. This

limitation arises due to the sparse semantic detail in prompt

class names and the hierarchical granularity competition

among class names caused by CLIP’s contrastive loss. We

propose a language-driven zero-shot multi-label learning

framework to bridge associations among classes across

multiple granularity levels through class name reconstruc-

tion. To achieve this, we first leverage a language model to

generate structured text descriptions for each class, which

explicitly capture (1) visual attributes, (2) hierarchical re-

lationships, and (3) co-occurrence scenes. With the en-

riched descriptions, we then learn class names by extracting

and aligning semantic relationships and features from them

in the CLIP’s shared image-text embedding space. Fur-

thermore, we consider that similar text descriptions among

different classes may introduce ambiguities. We mitigate

these ambiguities by imposing a pair-based loss on learn-

able class names to enhance their distinctiveness. During

inference, we aggregate semantic predictions from multi-

ple image snippets to reinforce the identification of classes

across different granularity levels. Comprehensive experi-

ments demonstrate that our method surpasses state-of-the-

art methods in multi-label zero-shot learning and effectively

handles novel classes across different granularity levels.

1. Introduction

Many Multi-label classification (MLC) works [8, 10, 20,

38, 40, 41, 43, 46] have achieved remarkable classifica-

tion performance, but their model training requires a large

number of images with high-quality annotations. To reduce
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Figure 1. Comparison of classic multi-label zero-shot learning

frameworks and our language-driven method. (a) represents the

traditional separate alignment, while (b) and (c) illustrate the cur-

rent joint alignment. (a) and (b) require annotated image data for

training, whereas our method relies solely on text descriptions.

reliance on annotation data, multi-label zero-shot learning

(ML-ZSL) is proposed to learn the transfer mechanism from

seen classes to unseen (novel) classes.

Most ML-ZSL studies achieve transferability by aligning

visual and textual spaces. Pioneer works [3, 17, 21, 29, 45]

utilize separate images and text features for alignment

(Fig. 1(a)), with word embeddings of both seen and unseen

classes generated by a pre-trained language-based model,

e.g., GloVe[32]. These methods depend solely on image

data of seen classes to fine-tune the image encoder for align-

ing the separate textual space, significantly limiting trans-

ferability. Large-scale vision-language pre-trained models,

e.g., CLIP [33], are trained by image-text pairs, which has

shown impressive transferability. Recent ML-ZSL stud-

ies [15, 16, 37] utilize CLIP’s joint image-text alignment

(Fig. 1(b)) to learn class-unified prompt contexts, improving

cross-category generalizability, even on large-scale datasets

such as NUS-WIDE [11] and Open Images [18].

Indeed, classes in large-scale multi-label datasets ex-

hibit varying levels of semantic granularity, since the web-

sourced images in these datasets are freely annotated by

users with their own interests. For any given image, one

user might focus on fine-grained classes (e.g., “Golden Re-
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triever”), while another may emphasize broader, coarse-

grained categories (e.g., “dog” or even “animal”). Ideally,

predictions should remain consistent across different gran-

ularity levels. However, without considering the semantic

richness of class names, tuning prompts in prior ML-ZSL

methods fail to establish associations among classes at mul-

tiple granularity levels, making it challenging to handle the

semantic hierarchy in MLC. There are two main reasons:

1) In the “context + class name” paradigm, relying solely

on the class name results in a lack of additional semantic

information. This is especially problematic for class names

that are coarsely defined (e.g., “organism”, “urban”) or ab-

stractly defined (e.g., “travel”, “happiness”), as they tend to

be uninformative. 2) The contrastive loss of the pre-trained

CLIP causes class names with hierarchical granularity (e.g.,

“dog” and “animal”) to compete when matching the same

visual features, potentially leading to semantic inconsisten-

cies. Therefore, our focus is on enriching the semantics of

class names to handle the multi-label semantic granularity

while maintaining the zero-shot transfer capability of CLIP.

To this end, we propose a language-driven zero-shot

multi-label learning framework, which is illustrated in

Fig. 1(c). Unlike previous zero-shot learning frameworks

trained on image data, our framework only requires text

data. Specifically, we first design prompts based on visual

attributes, hierarchical relationships, and co-occurrence

scenes of a class, and then query the language model

GPT-4o mini [5] for text descriptions. These class-related

descriptions explicitly highlight visual specificity and es-

tablish inherent hierarchical and contextual relationships.

Next, we extract semantic relationships and features from

the generated text descriptions to learn class names. How-

ever, relying solely on text for training can create a modality

gap between textual and visual representations. To bridge

the modality gap, the distance between text descriptions and

learnable class names is optimized within the shared image-

text embedding space. Moreover, similar text descriptions

among different classes may introduce ambiguities, mak-

ing it difficult to distinguish between them. To improve

discrimination, we impose a pair-based loss between learn-

able class names. Reconstructed class names enriched with

semantic knowledge are encoded to enhance the recogni-

tion of diverse class granularities. To further facilitate the

matching of visual features with class embeddings at var-

ious granularity levels, we propose multi-snippet semantic

aggregation across scales, enhancing the complementarity

between global and local semantic prediction.

Our main contributions are summarized as follows:

1. We propose a novel framework of language-driven multi-

label zero-shot learning with semantic granularity, which

is only trained on text data. To the best of our knowledge,

this is the first work to focus on zero-shot multi-label im-

age classification across various semantic granularities.

2. The method can obtain Reconstructed Class Names with

rich semantics (RCNn) by class-related text descriptions,

increasing the interpretability of the method. The pro-

posed pair-based loss makes class names more distin-

guishable. Furthermore, we introduce a multi-snippet se-

mantic aggregation module to improve the recognition of

classes at different granularity levels.

3. Extensive experimental results demonstrate that our

method significantly outperforms state-of-the-art ap-

proaches in the zero-shot learning task. For the gener-

alized zero-shot learning task, we treat seen classes as

novel classes, and our method still outperforms most ap-

proaches trained on image data. We also demonstrate the

effectiveness of our approach in handling semantic granu-

larity problems. https://github.com/wangshouwen/RCNn

2. Related work

Multi-Label Zero-Shot Learning. Traditional multi-label

classification methods [8, 10, 20, 38, 40, 41, 43, 46] rely on

large amounts of labeled image data. To reduce this depen-

dency, alternative approaches such as multi-label partial-

label learning [9, 39] and multi-label zero-shot learning

(ML-ZSL) [17, 37] have been proposed. Recent ML-ZSL

methods can be broadly categorized into vision-driven and

language-driven approaches.

Vision-driven ML-ZSL typically utilizes the image su-

pervision of seen classes to align the image-text space, en-

abling zero-shot transfer capabilities. Fast0Tag [45] and

SDL [3] learn per-image principal directions to align the

directions along which relevant labels rank ahead of irrele-

vant labels in the word vector space. LESA [17] generates

multiple shared and label-agnostic attention maps for the

selection of each label semantic vector. Considering that

such shared maps lead to diffused attention, BiAM [29] en-

riches region-level features and maps them to class seman-

tics for each class. Structured knowledge graphs [21] and

ML-Decoder [35] use GNN and cross-attention for modal-

ity interaction, respectively. Despite their differences, these

methods share a common limitation: they depend on a sep-

arate alignment approach, where textual embeddings are in-

dependently encoded by a pre-trained language model. The

emergence of CLIP introduces a more integrated solution

by enabling joint alignment of visual and textual spaces.

Leveraging this capability, recent ML-ZSL methods such

as DualCoOp [37] and MKT [16] optimize prompts to en-

hance image-text matching performance. However, despite

this advancement, these approaches still require labeled im-

ages of seen classes for training. This reliance becomes

particularly challenging for large-scale datasets (e.g., NUS-

WIDE [11], OpenImages [18]), where the extensive number

of seen classes results in prohibitively high annotation costs.

To reduce such costs, language-driven ML-ZSL meth-

ods are proposed. TaI-DPT [15] utilizes text data instead
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Figure 2. Illustration of our language-driven framework. Our backbone comprises pre-trained CLIP image and text encoders, which remain

frozen. During training (Top), we reconstruct class names using semantic knowledge extracted from class-related text descriptions, which

are generated by LLMs. During inference (Bottom), we align the global and local tokens of image features with the class embedding

to generate predictions for class c. To better enable the recognition of classes across different granularity levels, we aggregate semantic

predictions from multiple snippets through both global and local perspectives, with only the aggregation of class c shown.

of images for prompt tuning. Similarly, CoMC [26] trains

a cross-modal classifier using language data. These meth-

ods use captions that describe image content and their de-

rived class labels for supervised learning. In contrast, our

method utilizes class-related textual descriptions to recon-

struct class names, enhancing their semantic richness. We

further consider the semantic granularity relationships ex-

isting within categories.

Semantic Hierarchy. Semantic hierarchy, based on a tree-

like taxonomy [42] or a DAG-like semantic concept struc-

ture [36], has been widely utilized in prior studies to en-

hance various vision tasks [2, 4, 12, 13]. Building on

this, leveraging label hierarchies has emerged as a promis-

ing strategy for addressing the zero-shot learning challenge,

with applications extending to zero-shot multi-label text

classification [6, 24]. In addition, hierarchical semantic-

visual adaptation training [7, 44] effectively tackles separate

feature alignment issues in zero-shot learning, whereas re-

cent approaches such as CHiLS [31] and H-CLIP [14] har-

ness semantic hierarchy to improve CLIP’s zero-shot per-

formance. Different from previous methods, our approach

removes these constraints, which neither requires hierarchi-

cal annotations nor a specific semantic hierarchy, by lever-

aging hierarchical descriptions generated by large language

models (LLMs) [5] to enrich class names dynamically.

3. Method

3.1. Problem Definition

For the traditional ML-ZSL problem [16, 29], it is neces-

sary to define a seen class set and an unseen class set. The

seen class set CS includes categories annotated during train-

ing, whereas the unseen class set CU consists of categories

absent from the training annotations. The language-driven

ML-ZSL aims to improve the class embeddings used as a

classifier through text data without training with image data.

let D = {(ti, ci)}Mi=1 denote a training text corpus, where ti
is a text-based training sample, ci ∈ C is its corresponding

category, and M is the total number of text samples. C is the

vocabulary of novel classes. For the language-driven ML-

ZSL, both CS and CU are novel class sets. The evaluation is

conducted on the standard zero-shot learning (ZSL) and the

generalized zero-shot learning (GZSL) tasks. The scope of

category for ZSL is CU , i.e., C = CU , and for GZSL is both

CS and CU , i.e., C = CS ∪ CU .

3.2. Preliminary

CLIP model [33] includes an image encoder and a text en-

coder, and both encoders are trained on a large number of

image-text pairs to align with each other. For the ViT-based

image encoder with L residual attention blocks, the forward

propagation of the L-th block is formulated as

q = Fq(LN(xL−1)),k = Fk(LN(xL−1)),

v = Fv(LN(xL−1)), Attnqk = Softmax(
qk⊤
√
dk

)

x̄ = xL−1 + xattn = xL−1 + F (Attnqk · v),
xL = x̄+ FFN(LN(x̄)),

(1)

where xL−1 is the output of the (L − 1)-th block, F de-

notes a linear layer, LN represents the layer normalization,

and FFN is a feed-forward network. Attnqk means the self-

attention of query and key, where dk stands for the dimen-

sion of k. xL = [xL
cls,x

L
patch] is the output of the ViT

architecture, where the class token x
L
cls ∈ R

1×d is used as

the global feature of the image to align with the text em-

bedding, and x
L
patch ∈ R

N×d represents the N local patch

tokens in the d-dimensional space.
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The alignment of the class token in CLIP is not friendly

to the MLC task of identifying multiple categories. The

class token tends to be dominated by salient categories,

leading to the neglect of discriminative local features.

ClearCLIP [19] tries to align local tokens with the text em-

bedding. It makes three modifications to the L-th block:

cutting the residual connection, selecting the self-attention

of query and query, and discarding FFN. After modifica-

tion, the matrix x
L
local ∈ R

N×d of the local tokens aligned

with the text embedding is denoted as

xattn = [xattn
cls ,xattn

patch] = F (Attnqq · v),
x
L
local = x

attn
patch.

(2)

For a candidate class c, we use the class token x
L
cls and

the local tokens x
L
local to predict its logit score on the im-

age x in the inference stage. The CLIP’s text encoder Et

encodes the context prompt t(·) (e.g., “a photo of a

{·}”) for c and outputs the normalized class embedding

zc ∈ R
1×d, i.e., zc = Et(t(c)). The logit score pglobal

for the class token is as follows:

x̃
L
cls = Norm(Fp(LN(xL

cls))),

pglobal = x̃
L
cls · z⊤c ,

(3)

where Fp projects visual features into the image-text shared

space and Norm represents the L2-norm. The aggregated

logit score plocal for the local tokens is as follows:

x̃
L
local =Norm(Fp(LN(xL

local))),

s = x̃
L
local · z⊤c , plocal =

N∑

i=1

softmax(si/τs)si,
(4)

where the score map s = [s1, s2, . . . , sN ]⊤ represents the

logit scores of the local tokens for class c and τs is is a

temperature coefficient. Finally, the logit score pc of class c
is computed as

pc = (plocal + pglobal)/2. (5)

3.3. Text Description Generation Based on LLM

A large-scale dataset (e.g., NUS-WIDE, Open Image) con-

tains hundreds of categories with rich semantic granular-

ity. Such a large number of categories and different lev-

els of semantic granularity have to be considered for an-

notating each image, which is an incredible labor. The

language-driven ML-ZSL eliminates the dependence on an-

notated images through text training. Moreover, the emer-

gence of large language models (LLMs), such as ChatGPT

[5], makes it easier to collect text data. It is worth con-

sidering what text data should be collected to cope with

rich semantic granularity.

Class names often provide limited information, particu-

larly for coarse-grained, abstract, or scene-related classes.

Relying solely on class names to identify novel classes

with rich semantic granularity is difficult, and also in-

consistent with human cognition. We humans generally

start from visual features, semantic hierarchies, and co-

occurrence scenes to summarize key features to determine

categories. Inspired by this, we collect text data based on

the above three aspects to reconstruct class names. We

query a large language model (e.g., GPT-4o mini) through

the prompts containing class names to generate text de-

scriptions as training samples. In particular, this genera-

tion method is not restricted by category. Our training text

corpus D consists of class-related text descriptions, which

encapsulate visual attributes, hierarchical relationships, and

co-occurrence scenes. Details of text description generation

are provided in Section B of the supplementary material.

3.4. Class Name Reconstruction

A class name alone containing limited information makes

it difficult to cope with the semantic granularity problem

of MLC; it is necessary to use the class-related knowl-

edge from the descriptions to enrich the semantics of class

names. A straightforward approach [25, 28] is to directly in-

tegrate the embeddings of all class-related text descriptions

into a unified embedding for each class, such as mean and

principal eigenvector. However, the mean does not consider

the importance of significant features, and the principal

eigenvector overlooks many details. We choose the method

of learning class names to obtain a better embedding for

each class, as shown in the training phase of Fig. 2. To

maintain alignment with visual features, the class names are

reconstructed in the shared image-text embedding space.

In the “context + class name” paradigm of CLIP,

the prompt for class c can be denoted as t(c) =
{v1, v2, . . . , vNt

, vc}, where {v1, v2, . . . , vNt
} are the con-

text prompt vectors and Nt is the number of context vectors.

vc = {v1c , v2c , . . . , vNc

c } is the corresponding embedding set

of the class name tokens and Nc is the token length, which

is just a word-mapped embedding set of the class name and

contains limited information. We aim to reconstruct class

names using semantic descriptions of visual features, se-

mantic hierarchies, and co-occurrence scenes. The learn-

able class name vectors vc∗ = {v1c∗ , v2c∗ , . . . , vNc∗

c∗ } are in-

troduced to learn the optimal class name c∗, where c∗ and

class c correspond one to one, and Nc∗ is the same hyper-

parameter for all classes. The context prompt “a photo

of a” and the learnable class name c∗ are integrated to

obtain the prompt t(c∗) = {v1, v2, . . . , vNt
, vc∗}, where

Nt = 4. The collected class-related text descriptions are

used to learn vc∗ for each class. For a set DB ⊆ D of the

training text corpus, a text sample ti and its corresponding

class prompt t(c∗i ) are projected into the shared image-text

embedding space by CLIP’s text encoder Et(·). We extract

semantic knowledge from the text description into the learn-

1971



able class name by minimizing the Euclidean distance be-

tween the two embeddings in the shared space, as follows:

LMSE =
∑

(ti,ci)∈DB

||Et(t(c
∗
i ))− Et(ti)||22. (6)

Generally, it is assumed that the discriminative infor-

mation carried by class names serves as the foundation

for identifying each class. Although knowledge extraction

from text descriptions improves the semantic richness of

class names, it cannot guarantee the distinguishability be-

tween classes. For similar classes, especially fine-grained

classes (e.g., Husky and Shiba), their text descriptions from

three perspectives are very similar, so the learned class

names contain limited discriminative information. To en-

hance the discrimination between classes, we introduce a

pair-based loss for regularization in the shared space, for-

mulated as

LD =
∑

c∈C

∑

ĉ∈C
(1 +

Et(t(c
∗)) · Et(t(ĉ

∗))

||Et(t(c∗))||2 · ||Et(t(ĉ∗))||2
). (7)

Thus, the overall object optimized by the collected text

corpus is a combination of the above two losses, that is,

L = LMSE + λLD, (8)

where λ is a balance hyperparameter. vc∗ for each class is

optimized by minimizing L.

3.5. Multi­Snippet Semantic Aggregation

In the inference phase of Fig. 2, the optimized class names

are encoded into class embeddings to identify multiple la-

bels for each image. For the MLC task with semantic gran-

ularity, coarse-grained and scene classes focus more on the

global feature of an image, whereas fine-grained and object

classes focus more on the discriminative local features of

an image. Therefore, we integrate the predictions from both

the class token and local tokens of an image to generate

the final prediction for each class in Eq. 5. To enhance the

complementarity of global and local image features, we fur-

ther propose multi-snippet semantic aggregation (MSSA)

in the scale dimension. MSSA improves the alignment of

class embeddings and enhances the adaptability to various

semantic granularities.

Specifically, MSSA is a split-to-integrate strategy.

An image x is cropped into K snippets, denoted as

{x1,x2, . . . ,xK}. Each snippet is resized back to the size

of x and fed into CLIP’s image encoder. The cosine sim-

ilarities between the class tokens and local tokens of these

snippets and the class embedding zc∗ = Et(t(c
∗)) for class

c are {p1global, p2global, . . . , pKglobal} and {s1, s2, . . . , sK} re-

spectively, which are calculated by Eq. 3 and Eq. 4. Each

s
j ∈ R

N×1 is reshaped into a semantic map with height

H and width W, i.e., N = H × W . Leveraging spatial

Methods
ZSL GZSL

P R F1 P R F1

CONSE [30] 11.4 28.3 16.2 23.8 28.8 26.1

Fast0Tag [45] 24.7 61.4 25.3 38.5 46.5 42.1

Deep0Tag [34] 26.5 65.9 37.8 43.2 52.2 47.3

SDL (M=2) [3] 26.3 65.3 37.5 59.0 60.8 59.9

DualCoOp [37] 35.3 87.6 50.3 58.4 68.1 62.9

TagCLIP∗ [23] 33.0 81.9 47.0 45.1 52.7 48.6

RCNn(ours) 37.6 93.4 53.6 56.4 65.8 60.7

Table 1. Method comparison for ZSL and GZSL tasks on MS-

COCO. Precision (P), recall (R), and F1 score (F1) at Top-3 pre-

dictions per image are reported. The best results are bolded and the

second-best results are underlined. ∗ means reproduced results.

invariance, the semantic map of each snippet is concate-

nated into sI according to its spatial position in the original

image, formulated as sI = Concat({s1, s2, . . . , sK}) and

sI ∈ R

√
KH×

√
KW . To enhance the discriminability of lo-

cal tokens, we perform semantic fusion at different scales.

First, we ensure that sI and s share the same dimensions by

applying max pooling with a kernel size of (
√
K,

√
K) on

sI . The pooled sI is then reshaped to N × 1. Finally, we

aggregate the semantic information from both sI and s, de-

noted as ŝ = (sI +s)/2. After aggregating the semantics of

multi-snippet class tokens and local tokens, the logit scores

p̂global and p̂local are computed as

p̂global = ( max
j=1,...,K

pjglobal + pglobal)/2,

p̂local =

N∑

i=1

softmax(ŝi/τs)ŝi.
(9)

Thus, Eq. 5 is further rewritten as

p̂c = (p̂global + p̂local)/2. (10)

4. Experiments

4.1. Experimental Setup

Datasets. Following the split of seen and unseen classes in

previous works [3, 16, 17], we evaluate on MS-COCO [22],

NUS-WIDE [11], and Open Images (v4) [18]. In contrast,

our method is trained only on texts without training images,

and thus both seen and unseen classes can be considered as

novel classes.

Metrics. As in the work [3], precision, recall, and F1

score at the Top-3 predictions per image are reported on

the MS-COCO dataset. Similarly, following the works

[3, 16, 17, 29], the mAP across all categories along with

precision, recall, and F1 scores for the Top-3 and Top-

5 predictions per image are presented on the NUS-WIDE

dataset. Except for differences in the F1 scores for the Top-

10 and Top-20 predictions per image, other evaluation met-

rics on Open Images are identical to those on NUS-WIDE.
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Methods Task

NUS-WIDE ( #seen / #unseen = 925/81)

mAP

Open Images ( #seen / #unseen = 7186/400)

mAPTop-3 Top-5 Top-10 Top-20

P R F1 P R F1 P R F1 P R F1

CONSE [30]
ZSL 17.5 28.0 21.6 13.9 37.0 20.2 9.4 0.2 7.3 0.4 0.2 11.3 0.3 40.4

GZSL 11.5 5.1 7.0 9.6 7.1 8.1 2.1 2.4 2.8 2.6 1.7 3.9 2.4 43.5

LabelEM [1]
ZSL 15.6 25.0 19.2 13.4 35.7 19.5 7.1 0.2 8.7 0.5 0.2 15.8 0.4 40.5

GZSL 15.5 6.8 9.5 13.4 9.8 11.3 2.2 4.8 5.6 5.2 3.7 8.5 5.1 45.2

Fast0Tag [45]
ZSL 22.6 36.2 27.8 18.2 48.4 26.4 15.1 0.3 12.6 0.7 0.3 21.3 0.6 41.2

GZSL 18.8 8.3 11.5 15.9 11.7 13.5 3.7 14.8 17.3 16.0 9.3 21.5 12.9 45.2

LESA (M=10) [17]
ZSL 25.7 41.1 31.6 19.7 52.5 28.7 19.4 0.7 25.6 1.4 0.5 37.4 1.0 41.7

GZSL 23.6 10.4 14.4 19.8 14.6 16.8 5.6 16.2 18.9 17.4 10.2 23.9 14.3 45.4

BiAM [29]
ZSL 26.6 42.5 32.7 20.5 54.6 29.8 25.9 3.9 30.7 7.0 2.7 41.9 5.5 65.6

GZSL 25.2 11.1 15.4 21.6 15.9 18.2 9.4 13.8 15.9 14.8 9.7 22.3 14.8 81.7

SDL (M=7) [3]
ZSL 24.2 41.3 30.5 18.8 53.4 27.8 25.9 6.1 47.0 10.7 4.4 68.1 8.3 62.9

GZSL 27.7 13.9 18.5 23.0 19.3 21.0 12.1 35.3 40.8 37.8 23.6 54.5 32.9 75.3

(ML)2-Enc [27]
ZSL - - 32.8 - - 32.3 29.4 - - 7.5 - - 6.5 65.7

GZSL - - 15.8 - - 19.2 10.2 - - 27.6 - - 24.1 79.9

CLIP-FT [16]
ZSL 19.1 30.5 23.5 14.9 39.7 21.7 30.5 10.8 84.0 19.1 5.9 92.1 11.1 66.2

GZSL 33.2 14.6 20.3 27.4 20.2 23.2 16.8 37.5 43.3 40.2 25.4 58.7 35.4 77.5

DualCoOp [37]
ZSL 37.3 46.2 41.3 28.7 59.3 38.7 43.6 - - - - - - -

GZSL 31.9 13.9 19.4 26.2 19.1 22.1 12.0 - - - - - - -

MKT [16]
ZSL 27.7 44.3 34.1 21.4 57.0 31.1 37.6 11.1 86.8 19.7 6.1 94.7 11.4 68.1

GZSL 35.9 15.8 22.0 29.9 22.0 25.4 18.3 37.8 43.6 40.5 25.4 58.5 35.4 81.4

TagCLIP∗ [23]
ZSL 31.4 39.0 34.8 26.0 53.9 35.1 40.1 7.2 56.1 12.8 4.7 72.8 8.8 32.0

GZSL 24.8 10.8 15.1 20.3 14.7 17.0 12.7 12.6 14.5 13.5 9.1 20.9 12.7 24.2

CoMC [26]
ZSL 33.5 53.5 41.2 24.8 66.1 36.1 48.2 - - - - - - -

GZSL - - - - - - - - - - - - - -

RCNn(ours)
ZSL 43.7 54.3 48.4 33.6 69.6 45.3 53.3 12.0 93.3 21.2 6.3 98.0 11.8 70.2

GZSL 31.8 13.8 19.3 26.7 19.4 22.4 17.9 23.3 26.8 24.9 16.8 38.6 23.4 79.2

Table 2. Comparison between our method and the state-of-the-art methods for ZSL and GZSL tasks on NUS-WIDE and Open Images.

The results of mAP over all classes, as well as precision (P), recall (R), and F1 score (F1) are reported. Top-3 and Top-5 predictions for

NUS-WIDE and Top-10 and Top-20 predictions for Open Images in each image are used to compute P, R, and F1. The best results are

marked in bold, and the second-place results are underlined. ∗ means reproduced results.

All methods are evaluated under both the ZSL task and the

GZSL task. More experimental settings are provided in

Section C of the supplementary material.

4.2. Comparison with State­of­the­Arts

The vision-driven methods include CONSE [30], LabelEM

[1], Fast0Tag [45], Deep0Tag [34], LESA [17], BiAM [29],

SDL [3], (ML)2-Enc [27], CLIP-FT [16], DualCoOp [37]

and MKT [16]. All methods belong to the separate align-

ment other than CLIP-FT, DualCoOp, and MKT. CLIP-FT,

DualCoOp, and MKT fine-tune the image encoder or con-

textual prompts for CLIP via image data. TagCLIP [23] di-

rectly utilizes the transfer capabilities of the original CLIP

without any extra training. The language-driven CoMC [26]

only uses text data for training. The above methods serve as

the baseline for comparison with our method, and the results

are shown on three datasets.

Performance on MS-COCO. Tab. 1 shows the perfor-

mance comparison between our method and the state-of-

the-art methods on MS-COCO. Our method achieves the

best results for each metric in the ZSL task, which is 2.3%,

5.8%, and 3.3% higher than the second-best DualCoOp in

precision, recall, and F1 score, respectively. Most of the

categories in GZSL are seen classes, which are trained with

image data in the vision-driven methods. Ideally, the per-

formance of those methods has an advantage in the GZSL

task. In contrast, our method treats the seen classes as novel

classes, yet still achieves competitive performance. Our re-

call and F1 scores are surpassed only by those of the vision-

driven DualCoOp, outperforming all other vision-driven

methods. Although the training-free TagCLIP also treats

the seen classes as novel classes like ours, our approach sig-

nificantly outperforms TagCLIP by more than 10% in three

metrics for the GZSL task.

Performance on NUS-WIDE. As shown in Tab. 2, our

method achieves the best performance of all metrics in ZSL.

Compared with the second-best results, F1 score improves

by 7.1% @ Top-3 and 6.6% @ Top-5, and mAP improves

by 5.1%. Our method has obvious advantages over both

language-driven CoMC and vision-driven DualCoOp. In

the GZSL task, our method can achieve comparable perfor-

mance on NUS-WIDE without training on image data. Our

mAP is only 0.4% lower than the highest MKT. Compared

with the vision-driven DualCoOp, our F1 score @ Top-5

and mAP improve by 0.3% and 5.9%, respectively. In ad-

dition, our F1 @ Top-3, F1 @ Top-5, and mAP exceed the
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Baseline CNR PBL MSSA Task
MS-COCO NUS-WIDE

mAP F1 (Top-3) F1 (Top-5) mAP F1 (Top-3) F1 (Top-5)

✓
ZSL 74.6 48.0 35.1 46.5 38.4 35.5

GZSL 57.0 46.4 41.2 16.3 18.2 20.8

✓
ZSL 82.2 52.2 37.5 51.7 45.9 43.2

GZSL 66.7 54.8 49.0 17.7 19.5 22.5

✓ ✓
ZSL 84.1 52.8 37.4 51.7 47.4 44.4

GZSL 69.6 59.4 51.0 17.9 19.5 22.5

✓ ✓ ✓
ZSL 86.3 53.6 37.7 53.3 48.4 45.3

GZSL 73.1 60.7 52.0 17.9 19.3 22.4

Table 3. Ablation study on the main components of our method. For the ZSL and GZSL tasks, mAP over all classes and F1 scores of Top-3

and Top-5 predictions on MS-COCO and NUS-WIDE are reported.

GT: buildings, lake, moon, ocean, sky,

sun, water

CLIP: temple, castle, sunset, harbor,

buildings

MKT: sunset, castle, temple, tower, sun

Ours: lake, sunset, sun, water, ocean

GT: bridge, clouds, grass, sky, water,

reflection

CLIP: bridge, tower, cityscape, town,

valley

MKT: bridge, sunset, birds, tower, sky

Ours: bridge, sky, clouds, cityscape,

town

GT: clouds, coral, ocean, sky, water

CLIP: coral, ocean, beach, water,

swimmers

MKT: ocean, coral, beach, water,

whales

Ours: ocean, coral, water, beach, sky

GT: white, orange, gold, happy, kitten,

adult, animal, cat, fish

CLIP: pet, fish, cat, cats, feline, agua,

kitty, pets, interestingness, water

MKT: glass, cat, water, cats, kitten,

kitty, agua, feline, pet, fish

Ours: cat, kitty, cats, feline, kitten,

water, white, pets, pet, agua

GT: blue, bravo, india, rain, waves, grey,

model, actor, rainy, clouds, sky,

photographer

CLIP: waves, wave, flood, seascape,

seaside, windy, storm, wind, storms,

weather

MKT: natural, storm, waves, bravo,

nature, wave, water, tornado, storms,

blue

Ours: clouds, cloud, cloudy, waves,

wave, storms, storm, shore, sky,

seascape

GT: bravo, white, black, orange, quality,

insect, butterfly, georgia, adult, animal,

flowers, plants

CLIP: butterfly, male, female, flora,

wings, individual, wildlife, insect,

macro, mother

MKT: butterfly, nature, macro, inset,

flower, orange, bravo, wildlife, flowers,

green

Ours: butterfly, flowers, blooms, flower,

flora, plants, plant, garden, blossoms,

petals

Figure 3. Prediction comparison on test samples from NUS-

WIDE. GT means ground truth labels. Top-5 (top row) and Top-10

(bottom row) predictions are shown for ZSL and GZSL, respec-

tively. The green, red, and black fonts denote true positive predic-

tions, incorrect predictions, and reasonable predictions.

performance of all separate alignment methods (above the

middle dividing line in Tab. 2).

Performance on Open Images. For the ZSL task, in Tab. 2,

our F1 @ Top-10, F1 @ Top-20, and mAP are 1.5%, 0.4%

and 2.1% higher than those of MKT respectively. Com-

pared with SDL (M=7), our F1 @ Top-10, F1 @ Top-

20, and mAP improve by 10.5%, 3.5%, and 7.3%. In the

GZSL task, our method achieves a higher F1 score than

CONSE, LabelEM, Fast0tag, LESA, BiAM, and TagCLIP.

The vision-driven MKT and CLIP-FT benefit from seen

classes with at least 100 images each, providing sufficient

training data and leading to significant F1 scores. Despite

the absence of training images, our method still delivers

competitive performance, achieving an mAP that surpasses

CLIP-FT by 1.7%.

4.3. Ablation Study

We encode prompts with the original class names as class

embeddings to match visual features in CLIP, establish-

ing our baseline. The key components compared to this

baseline include class name reconstruction (CNR), pair-

based loss (PBL), and multi-snippet semantic aggregation

(MSSA). As shown in Tab. 3, compared with the baseline,

the prompts containing reconstructed class names are en-

coded into class embeddings for the ZSL and GZSL tasks,

which significantly improves mAP, F1 @ Top-3, and F1

@ Top-5 on both two datasets. For MS-COCO, both seen

and unseen classes are objects, with no inherent scene or

semantic hierarchy. Extracting visual features, semantic

hierarchies, and co-occurrence scenes can enhance class

name semantics and improve classification performance.

PBL strengthens the distinction between reconstructed class

names to facilitate better recognition, especially F1 based

on ranking predictions of each image in GZSL. MSSA fur-

ther improves performance across all metrics.

For NUS-WIDE, we can find that PBL and MSSA can

not improve the performance of GZSL. Seen and unseen

classes contain rich semantic granularity (see section A of

supplementary material for details), and seen classes with-

out human validation have too many synonyms (Fig. 3 bot-

tom, such as clouds, cloud, cloudy). The textual descrip-

tions of a class include the hierarchical relationship with

its superclasses, and the class and its synonyms often share

highly similar descriptions. Consequently, CNR strongly

links it to its superclasses and synonyms. This association

is difficult to penalize using PBL. As shown in Fig. 3, a

class, along with its synonyms and superclasses, is often

predicted simultaneously in each image for GZSL, which is

reasonable. However, the ground truth for GZSL consists of

a diverse set of classes with only a few superclasses and syn-

onyms. As a result, ranking-based evaluation metrics such

as mAP and F1 struggle to accurately assess the predic-

tions. MSSA utilizes more detailed features that are more

friendly to predicting its synonyms and superclasses. This

may further reduce the diversity of the top-ranked predic-

tion classes, resulting in a decrease in performance. For the
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Figure 4. t-SNE visualization of class embeddings based on origi-

nal class names (left) and reconstructed class names (right).

ZSL task, unseen classes include objects, scenes, and su-

perclasses but lack synonyms. Since most classes have fun-

damentally distinct semantics, PBL is prone to impose dis-

similarity penalties. MSSA provides more discriminative

semantic information for recognition. Thus, PBL makes F1

@ Top-3 and Top-5 improve by 1.5% and 1.2% , and MSSA

also boosts them by 1.0% and 0.9%.

4.4. Qualitative Evaluation

In Fig. 3, compared to CLIP and MKT, our predictions

align more closely with the GT in ZSL, which is also re-

flected in the higher F1 scores of our method. Additionally,

our predictions better capture semantic granularity relation-

ships, such as ”sunset” and ”sun” or ”clouds” and ”sky.” For

GZSL, the GT and predictions of MKT and CLIP contain

a wider variety of classes than ours. However, our method

prioritizes predicting synonyms and superclasses of the top-

ranked categories in the outputs, ensuring semantic consis-

tency. This highlights the effectiveness of our approach in

handling semantic granularity issues.

4.5. Semantic Granularity Analysis

Qualitative Analysis. To illustrate the semantic relation-

ships between reconstructed class names, prompts with re-

constructed class names are encoded into class embeddings

for t-SNE visualization. The class embeddings of the orig-

inal class names are also visualized for comparison. We

select some categories from the 81 unseen classes of NUS-

WIDE to create eight semantically related groups, namely

animal, person, vehicle, buildings, plants, sports, water, and

sky. These group names are also part of the unseen classes.

As shown in Fig. 4, compared with class embeddings of

original class names, the class embedding distribution of

the reconstructed class names is tighter in each group. For

example, “leaf” and “plants”, “sun” and “sky”, as well as

“dancing” and “sports” are closer. Meanwhile, “fish” is lo-

Figure 5. Pairwise recall at Top-10 predictions, along with label-

level precision and recall at Top-5 predictions, for CLIP, MKT, and

our method on the NUS-WIDE test set.

cated between “water” and “animal”, and “swimmers” is

located between “water” and “sports”.

Quantitative Analysis. To further validate the effective-

ness of our approach in handling the semantic granularity

problem, we present quantitative results in Fig. 5. Pair-

wise recall is proposed to measure the recognition abil-

ity of true hierarchical pairs (e.g., cat-animal) in the pre-

dictions. It is the proportion of true hierarchical pairs in

the predictions to all hierarchical pairs in the ground truth

(GT). We find that the parent classes of many categories

are often overlooked in the ground truth. Therefore, we

complement the parent classes and count the hierarchical

pairs for the ground truth, based on the hierarchical rela-

tionships within the eight groups above. We can see that

the number of hierarchical pairs in GT before complement

is very limited in Fig. 5. Compared with CLIP and MKT,

our method achieves higher pairwise recall when maintain-

ing high label-level precision and recall. This means that

our method is better at predicting hierarchical pairs.

5. Conclusion

In this work, we propose a novel language-driven zero-

shot framework for multi-label classification with seman-

tic granularity. To this end, we prompt a large language

model to generate class-related text descriptions, includ-

ing visual attributes, hierarchical relationships, and co-

occurrence scenes for each class. Then, the collected text

descriptions are utilized to reconstruct class names. Addi-

tionally, we impose a pair-based loss to enhance the dis-

tinctiveness of reconstructed class names. During infer-

ence, we aggregate semantic predictions from multiple im-

age snippets at both global and local levels. Extensive

experimental results demonstrate that our language-driven

method achieves state-of-the-art performance in the zero-

shot task and surpasses most image-trained methods in the

generalized zero-shot task. The results highlight the effec-

tiveness of our approach in cross-granularity classification.
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