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Abstract

Open-vocabulary 3D scene understanding is indispens-
able for embodied agents. Recent works leverage pre-
trained vision-language models (VLMs) for object segmen-
tation and project them to point clouds to build 3D maps.
Despite progress, a point cloud is a set of unordered coor-
dinates that requires substantial storage space and does not
directly convey occupancy information or spatial relation,
making existing methods inefficient for downstream tasks,
e.g., path planning and text-based object retrieval. To ad-
dress these issues, we propose Octree-Graph, a novel scene
representation for open-vocabulary 3D scene understand-
ing. Specifically, a Chronological Group-wise Segment
Merging (CGSM) strategy and an Instance Feature Aggre-
gation (IFA) algorithm are first designed to get 3D instances
and corresponding semantic features. Subsequently, an
adaptive-octree structure is developed that stores semantics
and depicts the occupancy of an object adjustably accord-
ing to its shape. Finally, the Octree-Graph is constructed
where each adaptive-octree acts as a graph node, and edges
describe the spatial relations among nodes. Extensive ex-
periments on various tasks are conducted on several widely-
used datasets, demonstrating the versatility and effective-
ness of our method. Code is available here.

1. Introduction

3D scene understanding is receiving increasing attention
due to its widespread usage in robots [55] and VR/AR ap-
plications [17]. Previous works [19, 21, 34, 38, 42] trained
models on particular 3D scene datasets to complete this
task. Although significant progress has been achieved, they
are limited to a closed-set category. Recently, we have
witnessed the impressive generalization ability of founda-
tion models (e.g., SAM [18] and CLIP [33]) which can
perceive various objects in unseen scenarios, inspiring a
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Figure 1. (a) A 3D scene. (b) The corresponding semantic 3D map
based on point clouds (6.8M). (c) Our Octree-Graph where each
object is represented by the proposed adaptive-octree and each
edge contains rich spatial relations among objects. All adaptive-
octrees occupy 42KB of storage space in total.

lot of open-vocabulary 3D scene understanding methods
[4, 5, 7, 16, 25, 44, 49]. Given an RGB-D sequence with
camera poses, mainstream methods leverage the off-the-
shelf foundation models to generate 2D object masks and
corresponding visual-language features, and then project
them to point clouds to construct a semantic 3D map.

Despite the favorable open-vocabulary understanding
capability, they have two drawbacks. 1) Inefficient space
representation of 3D scenes. Most mainstream methods
[15, 31, 48] build the 3D map based on point clouds, as
shown in Fig. 1 (b). Point clouds are unordered discrete
coordinates that require considerable storage space, making
existing methods inefficient to deploy on embodied agents
with limited storage resources. Moreover, point clouds lack
explicit representation of occupancy information and spatial
connectivity which are critical for downstream tasks, e.g.,
path planning and text-based object retrieval. 2) Inaccu-
rate semantic object segmentation for 3D map construc-
tion. Most methods overlook the inaccuracy of foundation
models/vision-language models (VLMs) when conducting
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object segmentation and feature extraction, inevitably caus-
ing imprecise 3D object segments and degraded semantics.

To alleviate these problems, we propose Octree-Graph
as shown in Fig. 1 (c), a novel open-vocabulary scene
representation designed to characterize the occupancy and
semantics of each object, as well as the relations among
them. Specifically, the adaptive-octree is first proposed to
depict each object’s occupancy, which inherits the advan-
tages of the octree structure by hierarchically represent-
ing a 3D space with structured sub-regions. Compared to
the point cloud without regional or hierarchical informa-
tion, it can save significant storage space. Furthermore, our
adaptive-octree initializes each object adaptively according
to its shape, enabling a precise description of the occupancy
within a limited octree depth. This is particularly suitable
for objects with large aspect ratios, e.g., walls and floors.
Based on this, the Octree-Graph is constructed where each
adaptive-octree acts as a graph node, and each edge encom-
passes rich relations among objects, e.g., distances and rel-
ative orientations. The proposed Octree-Graph can be di-
rectly applied to downstream tasks such as object retrieval,
occupancy queries, and path planning, thus providing sig-
nificant convenience.

To obtain accurate semantic objects for Octree-Graph
construction, we devise a training-free pipeline. First,
given input images, 2D proposals are segmented via an
off-the-shelf segmenter, and corresponding visual-language
features are extracted by pretrained VLMs. Then, they are
projected into 3D space as point cloud segments. Second, to
correctly merge segments belonging to the same instance,
a Chronological Group-wise Segment Merging (CGSM)
strategy is proposed, where the segments are partitioned
into several groups in time order. Each group is individu-
ally processed to leverage spatiotemporal details from the
neighborhood while avoiding interference from global re-
dundancy. Third, an Instance Feature Aggregation (IFA)
method is proposed to obtain semantic representations for
each object. Unlike existing works that directly average fea-
tures as a result, we simultaneously consider the represen-
tativeness and distinctiveness of a feature during the fusion
process. Our contributions are summarized as follows.

• We propose the Octree-Graph for open-vocabulary 3D
scene understanding, which efficiently depicts objects’
occupancies, semantics, and relations, benefiting several
downstream tasks.

• We propose a Chronological Group-wise Segment Merg-
ing (CGSM) strategy and an Instance Feature Aggrega-
tion (IFA) method to obtain accurate semantic objects.

• We conduct extensive experiments, demonstrating the
versatility, effectiveness, and efficiency of our method.

2. Related Work
Foundation Models. Recently, foundation models have
exhibited impressive zero-shot perception ability. Here,
we review several foundation models related to our work.
CLIP [33] is a popular vision-language model that asso-
ciates images and texts through contrastive learning, sig-
nificantly promoting many vision-language tasks. SAM
[18] is a class-agnostic 2D segmentation model trained
with over 1 billion masks, demonstrating powerful zero-
shot performance. OVSeg [22] finetunes CLIP to gain the
ability of open-vocabulary semantic segmentation. Crop-
Former [32] fuses the full image and high-resolution im-
age crops to improve segmentation performance. TAP
[30] can simultaneously conduct recognition, segmentation,
and caption generation. Additionally, many other methods
[6, 8, 10, 14, 20, 24, 28, 35, 43, 45] are proposed for 2D
open-vocabulary object detection and segmentation.
Open-Vocabulary 3D Scene Understanding. Based on
the organization form of scene representation, we categorize
these works into four types. 1) NeRF/Gaussian 3D map-
ping. These methods perform 3D scene understanding and
scene/object reconstruction simultaneously, e.g., OpenObj
[3]. Although achieving good performance, they need ex-
tra effort to train the NeRF or 3D Gaussian models. 2)
point/grid-wise 3D mapping. This branch involves directly
projecting semantic features to each 3D point. OpenScene
[31] and ConceptFusion [15] extract CLIP features from
the images and densely project them to the point cloud.
VLMaps [12] adopts a similar pipeline to project visual-
language features to a grid-based BEV map. 3) instance-
wise 3D mapping. These works explicitly obtain each
3D instance and fuse its visual-language features for 3D
mapping. OpenIns3D [13] is a 3D-input-only framework
that gets objects by open-vocabulary 3D detection. OVIR-
3D [25], SAM3D [51], and MaskClustering [48] follow a
2D-to-3D pipeline where 2D masks are projected into 3D
space for instance merging based on semantic similarity
and 3D overlap. SAI3D [53] uses both 2D proposals and
3D super points for instance segmentation. OpenMask3D
[40], Open3DIS [29], and SA3DIP [50] leverage extra 3D
instance detectors to get more accurate object proposals.
However, the used 3D models cannot be considered purely
zero-shot methods. 4) 3D scene graph/octree. A few works
use a graph or octree to organize the scene. ConceptGraph
[7] and Clio [27] cluster object segments and construct a
scene graph to enhance spatial reasoning. HOV-SG [44]
proposes a hierarchical 3D scene graph to enable scene rep-
resentation of different granularities. OctreeOcc [26] and
PlenOctrees [54] use the octree structure to store semantic
class and rendering information, respectively. In contrast,
our Octree-Graph represents each object using an adaptive-
octree and models their relations using a graph, supporting
efficient occupancy queries and spatial reasoning.
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Figure 2. Overview of our Octree-Graph. (a) Chronological Group-wise Segment Merging (CGSM). Given posed RGB-D inputs, 2D
masks with semantic features are first extracted and then projected into the 3D space, where CGSM is conducted to merge segments. (b)
Instance Feature Aggregation (IFA). Feature aggregation is performed for each merged object, which considers both intra- and inter-object
similarity. (c) The Octree-Graph is constructed to efficiently and accurately represent the scene, facilitating various downstream tasks.

3. Method

3.1. Framework Overview

As shown in Fig 2, given a sequence of RGB images
Ic = {Ict}Tt=1 and depth images Id = {Idt }Tt=1 scanned in
a scene, we first leverage VLMs to extract segment propos-
als (§ 3.2). Next, we chronologically merge these segments
into an instance map M via a group-wise merging strategy
(§ 3.3). Then we dynamically aggregate the redundant se-
mantics of each instance into a distinctive feature (§ 3.4).
Finally, we build an Octree-Graph G to represent spatial re-
lations among instances, with the adaptive-octree to detail
instance occupancy. Based on this, we implemented LLM-
based object retrieval and path planning algorithms (§ 3.5).

3.2. Segment Proposal and Comprehension

For each frame Ict at time t, we first adopt an off-the-shelf
proposal generator, e.g., CropFormer [32], to extract a set
of 2D masks P2d

t = {mi}nt
i=1, where nt is the mask num-

ber. We then filter out tiny and marginal masks to ensure
the proposal quality. Next, each mi is fed into the visual
encoder and caption generator to obtain the visual feature
fvi and caption feature f ci . Finally, we project each mask mi

into the 3D space as a point cloud segment and perform DB-
SCAN [37] denoise, obtaining segments P3d

t = {Si}nt
i=1.

......
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Figure 3. Illustration of group split and CGSM merging.

3.3. Chronological Group-wise Segment Merging
Existing segment merging strategies are typically catego-
rized into two types: 1) frame-wise, which sequentially
or hierarchically merges the adjacent frames [7, 25], inte-
grating similar segments efficiently. 2) graph-wise, which
merges segments across all frames [44, 48]. These meth-
ods have achieved great success, while the former solely
relying on a single frame can be easily affected by proposal
noises, e.g., associating unrelated instances once an under-
segment is merged. The latter, which processes all seg-
ments together, may introduce redundant computations and
be affected by irrelevant segments. To this end, we propose
a Chronological Group-wise Segment Merging (CGSM)
strategy with semantic-guided under-segment filtering and
a dynamic threshold decay strategy.
Chronological Group-Wise Split. Given the prior that an
instance often appears in multiple consecutive frames, as
shown in Fig. 3, CGSM first partitions all frames into sev-
eral groups in time order with interval I , obtaining the set of
segments Gi for each group. In this way, a group can retain
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the adjacent segments while avoiding interference caused
by global segments. Based on these groups, we perform it-
erations of merging to integrate separate segments into an
instance map M. Concretely, we start by merging G0 into
an intermediate instance map M0. Subsequently, we itera-
tively take the union {Mk−1,Gk} as input for the kth merg-
ing, until the final instance map M is constructed. Next, we
elaborate on the details of a single merging step.
Segment Group Merging. For two segments {Sm,Sn},
we define ϕv

sem(m,n) as the cosine similarity between their
visual features, and ϕc

sem(m,n) the cosine similarity be-
tween caption features. Regarding geometric similarity,
we compute ϕiou

geo(m,n) as the intersection over union of
two segments. Additionally, we calculate the ratio of Sn

contained within Sm as ϕior
geo(m,n) = |Sm ∩ Sn| / |Sn|.

|·| denotes the amount of points in a 3D segment. Intu-
itively, assuming Sm is an under-segment containing a cor-
rect segment Sn, ϕior

geo(m,n) will be relatively large. Based
on this, we can collect all segments contained in Sm as
{Sj | ϕior

geo(m, j) ≥ 0.8}. If the semantic feature vari-
ance of these contained segments exceeds a threshold τu,
it indicates that Sm is probably an under-segment contain-
ing different objects, and Sm will be filtered out. We term
this process as semantic-guided under-segment filtering. To
merge the left segments, we compute an overall similarity
ϕ = ϕiou

geo + ϕior
geo + ϕv

sem + ϕc
sem, and iteratively merge seg-

ments within group Gi. At each iteration, we merge highly
similar segments satisfying ϕ(m,n) ≥ θi. However, sim-
ply doing so struggles to merge partially observed segments
or over-segments sharing low spatial similarity. To this end,
we linearly decay θi at each step inspired by [44, 53].

3.4. Instance Feature Aggregation

After obtaining the instance map M, each 3D instance Oi

in M is associated with multiple segment features Fi =
{fvi,j | fvi,j ∈ Oi} based on 2D-3D relations (for simplic-
ity, we omit caption features here). To aggregate these fea-
tures, previous methods either perform averaging [7, 25] or
select the dominant feature via clustering [40, 44]. How-
ever, they overlook the distinction between different in-
stance features. Hence, we propose a weighted average
method to fuse an instance’s features for an optimal fea-
ture both representative and distinctive, as shown in Fig.
2 (b). Specifically, taking the visual modality for illustra-
tion, we average Fi to a central feature f̄vi for each instance,
and the neighboring instances of Oi are then defined by
Ni = {Ok | cos

(
f̄vi , f̄

v
k

)
≥ τd}. Based on this, we ag-

gregate the features Fi into an optimal fvi
∗ via assigning a

dynamic fusion weight avi,j to each fvi,j in Fi:

avi,j = cos
(
fvi,j , f̄

v
i

)
−

∑
Ok∈Ni

cos
(
fvi,j , f̄

v
k

)
, (1)
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Figure 4. Illustration of the nodes and edges in Octree-Graph.

where cos(·) denotes cosine similarity, and avi,j is normal-
ized via softmax. Intuitively, a feature gets a larger weight if
it is closer to its own cluster center and farther from neigh-
boring instances. The caption feature f ci

∗ can be formulated
by replacing fvi,j with f ci,j in the above process. The final
instance feature f∗i is the average of fvi

∗ and f ci
∗.

3.5. Octree-Graph Construction and Applications
To efficiently and accurately represent a scene, we design a
hybrid structure, termed Octree-Graph. This structure uti-
lizes a graph as the high-level architecture to organize ob-
jects and their spatial relations. Furthermore, we propose
an adaptive-octree to depict the occupancy information of
each object, which acts as a node of the Octree-Graph.
Graph Construction. An Octree-Graph can be defined as
G with nodes N∗ and edges E∗. The node Ni consists of
correlated semantics ns

i (e.g., captions and features), center
nc
i , and adaptive-octree no

i . While the edge Ei,j comprises
the semantic relation esi,j , spatial distance edi,j and the 3D
vector evi,j between node i and node j. Notably, the seman-
tic relations between nodes are aligned with the world coor-
dinate system of the corresponding point cloud. As shown
in Fig. 4, the semantic relation esi,j between node Ni and
Nj is characterized as “right”.
Adaptive-Octree Construction. The classical octree [11]
is a tree-based structure capable of efficiently representing
a 3D space with much less storage requirements than point
clouds. During octree construction, the root node is defined
by the minimal bounding box containing the point cloud.
This box, centered at c ∈ R3 with a side length of d, is di-
vided into eight sub-regions of side length d/2 using axis-
aligned planes. Each sub-region serves as a child node, and
the process continues recursively for each node until the de-
sired octree depth Lmax is reached or no point clouds are
present within the node. We recommend referring to [11]
for more details about the octree.

However, the traditional octree is proposed to represent
an entire 3D space, which uses cubic voxels as units to de-
pict occupancy details. This leads to dilemmas of redundant
representation when depicting an object, e.g., an object with
a large aspect ratio requires a very deep octree to approxi-
mate its shape. To this end, we propose the adaptive-octree
with varying voxels that adaptively adjust their sizes and
shapes according to the object’s shape. As shown in Fig.
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Figure 5. Illustration of the construction of the adaptive-octree.
The above displays the process, and the below shows an example.

5, an adaptive-octree is constructed from an instance-level
point cloud P . The size of each node in this adaptive-octree
can be computed as follows:

dl = (bmax − bmin) /2
l, (2)

where bmax and bmin are the coordinates of the lower left
corner and the upper right corner of P ’s bounding box. l ∈
{1, 2, · · · , Lmax} denotes the depth of the adaptive-octree.
As shown in Fig. 5, the center cl ∈ R3 of the l-th layer node
can be determined by the center cl−1 of the parent node and
the edge length dl of the current node. The adaptive-octree
can be quickly constructed from the point cloud.
Octree-Graph Applications. Based on the Octree-Graph,
we offer object retrieval and path planning functionalities
which are critical for embodied agents. For object retrieval,
two types of queries are supported, i.e., Query (target) and
Query (reference, relation, target). The former allows for
directly locating an object by comparing the similarity be-
tween queries and stored semantics. The latter supports
complex queries by sequentially locating the reference ob-
ject, the edge that matches the described relation, and fi-
nally the target. For more complex queries, we leverage the
reasoning capabilities of LLMs to decompose the task and
flexibly call two types of functions to achieve the goal.

In path planning tasks, querying occupancy information
is fundamental. The proposed Octree-Graph supports such
queries, enabling us to easily implement path planning al-
gorithms like classical A∗ [9] and the recent [52].

4. Experiment

To validate the versatility and effectiveness of our method,
we carry out extensive experiments, including semantic
segmentation, instance segmentation, text-based object re-
trieval, and path planning. We compare our method with
different SOTA methods in these tasks, and conduct com-
prehensive ablation studies to investigate several key com-
ponents, demonstrating the effectiveness of our designs.

4.1. Implementation Details

We use CropFormer [32] as the 2D proposal generator fol-
lowing [48]. To extract visual features, we test two com-
monly used VLMs, i.e., CLIP ViT-H [33] and OVSeg ViT-
L [22]. We adopt TAP [30] for generating the mask cap-
tion. Additionally, we filtered out masks with pixels less
than 25 and segments with points less than 50. The simi-
larity threshold τd is empirically set to 0.7. The group split
interval I , the under-segment filtering threshold τu, and the
decay parameter θi are set to 200, 0.02, and 0.8 through
hyper-parameter experiments. Considering the dimensions
of indoor objects, we set the maximum depth Lmax of the
adaptive-octree to 4.

4.2. Dataset and Evaluation Metrics

Dataset. For zero-shot 3D semantic segmentation, we eval-
uate our method on common scenes following [7, 15, 44],
i.e., 8 scenes from Replica [39] dataset and 5 scenes from
ScanNet [2]. For zero-shot 3D instance segmentation, we
assess our method on the widely-used ScanNet200 [36]
benchmark, including a validation set of 312 scenes with
200 categories. For text-based object retrieval, we test our
method on Sr3D [1] dataset, and follow the experiment set-
ting of BBQ [23] that subsampled 526 free-form queries
from 8 scenes. For the path planning task, we employ the
HM3DSem [46] dataset used in HOV-SG [44], where 8
scenes are selected for evaluation. Moreover, we also con-
duct real-world experiments to validate our effectiveness.
Evaluation Metrics. Following the mainstream evaluation
metrics [44], we assess 3D semantic segmentation results
via commonly used mean IoU (mIoU), frequency-weighted
mean IoU (F-mIoU), and mean Accuracy (mAcc). For 3D
instance segmentation, we report the standard Average Pre-
cision (AP) at IoU thresholds 25% and 50%, along with the
mean of AP from 50% to 95% at 5% interval. For text-based
object retrieval, we follow BBQ [23], using Acc@0.1 and
Acc@0.25 as evaluation metrics where retrieval is treated
as a true positive if the IoU between the predicted object’s
bounding box and the ground-truth bounding box surpasses
0.1 and 0.25, respectively. For the path planning task, we
randomly select positions in the empty areas of a scene
as the starting point and destination. When the endpoint
of navigation is within a threshold s (i.e., 1m, 0.5m, and
0.25m) from the destination, the path planning is consid-
ered successful.

Besides, to quantify spatial representation accuracy, we
introduce the Effective Occupancy Ratio (EOR) as a metric.
The occupancy range Opc of a point cloud is determined by
expanding this point cloud with a dilation △r = 0.005, and
the occupancy range of the octree is denoted as Ooct. Then,
the EOR is calculated as EOR =

Ooct∩Opc

Ooct
. We denote the

mean EOR for all objects in a scene as mEOR.
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Replica ScanNet

Method CLIP Backbone mIoU↑ F-mIoU↑ mAcc↑ mIoU↑ F-mIoU↑ mAcc↑

ConceptFusion [15] OVSeg 0.10 0.21 0.16 0.08 0.11 0.15
Vit-H-14 0.10 0.18 0.17 0.11 0.12 0.21

ConceptGraph [7] OVSeg 0.13 0.27 0.21 0.15 0.18 0.23
Vit-H-14 0.18 0.23 0.30 0.16 0.20 0.28

HOV-SG [44] OVSeg 0.144 0.255 0.212 0.214 0.258 0.420
Vit-H-14 0.231 0.386 0.304 0.222 0.303 0.431

Ours OVSeg 0.320 0.553 0.414 0.393 0.508 0.601
Vit-H-14 0.263 0.479 0.387 0.356 0.477 0.574

Table 1. Zero-shot 3D semantic segmentation results on Replica and ScanNet benchmark.

Method AP↑ AP50↑ AP25↑
sup. mask + sup. semantic
Mask3D [38] 26.9 36.2 41.4

sup. mask + z.s. semantic
Open3DIS [29] 23.7 29.4 32.8
Open3DIS [29] (3D only) 18.6 23.1 27.3
OpenMask3D [40] (Mask3D) 15.4 19.9 23.1
Ours (Mask3D) 23.2 30.3 33.3

z.s. mask + z.s. semantic
OVIR-3D [25] 9.3 18.7 25.0
SAM3D [51] 9.8 15.2 20.7
SAI3D [53] 12.7 18.8 24.1
Mask-Clustering [48] 12.0 23.3 30.1
Ours 14.3 25.8 33.6

Table 2. 3D instance segmentation results on ScanNet200. sup.
means supervised training, z.s. denotes the zero-shot setting.

Method Retrieval
Algorithm

Acc↑
@0.1

Acc↑
@0.25

ConceptGraphs [7] Deductive [23] 0.15 0.08
Open-Fusion [47] CLIP [33] 0.13 0.02
BBQ [23] CLIP [33] 0.10 0.06
BBQ [23] Deductive [23] 0.23 0.18
Ours Octree-Graph+LLM 0.26 0.23

Table 3. Text-based object retrieval results on the Sr3D dataset.

4.3. Quantitative Comparison

3D Semantic Segmentation. Tab. 1 reports the numerical
results for zero-shot 3D semantic segmentation on Replica
and ScanNet datasets. In this experiment, we compare the
results generated by our CGSM and IFA with other works.
It can be seen that our method significantly outperforms ex-

Method SR(s=1.0m) SR(s=0.5m) SR(s=0.25m)

HOV-SG [44] 55.25 46.75 32.16
Ours 97.88 96.88 96.38

Table 4. Path planning results on HM3DSem. SR denotes success
rate (%). s is the threshold within which the distance between the
navigation endpoint and the destination is considered successful.

isting methods across all metrics on both datasets, demon-
strating the effectiveness of the proposed CGSM and IFA.
Compared to the existing SoTA 3D scene graph, HOV-SG
[44], we achieve +8.9% mIoU and +11.0% mAcc on the
Replica dataset. Similarly, we present a +17.1% mIoU and
a +17.0% mAcc on ScanNet with the same settings.
3D Instance Segmentation. The quantitative results for
3D instance segmentation are shown in Tab. 2. We fol-
low [48] to categorize all methods into 3 groups based on
whether the proposal generation and semantic prediction
are trained. Under the fully zero-shot setting, our method
surpasses the previous most advanced method with gains
of 2.3%, 2.5%, and 3.5% in AP, AP25 and AP50, respec-
tively. These results further demonstrate the effectiveness
of the proposed CGSM and IFA. When using supervised
3D models for proposal generation, our method signifi-
cantly outperforms OpenMask3D [40] and the Open3DIS
[29] variant with only the 3D proposals, validating the supe-
riority of our feature aggregation method IFA. Besides, our
method achieves comparable results with the correspond-
ing SOTA method Open3DIS [29], which specially designs
a combination of 2D and 3D proposals.
Text-based Object Retrieval. Tab. 3 presents the compari-
son results of text-based object retrieval on Sr3D [1] dataset.
Our method outperforms the SOTA method BBQ [23] by
3.0% and 5.0% in terms of Acc@0.1 and Acc@0.25, re-
spectively. We attribute the performance gain to our ac-
curate semantic object segmentation and the rich relations
stored in the Octree-Graph.
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Merging Strategy mIoU↑ F-mIoU↑ mAcc↑
Frame-wise 0.323 0.439 0.519
Global-wise 0.286 0.414 0.476
Ours (CGSM) I=400 0.338 0.463 0.555
Ours (CGSM) I=200 0.356 0.477 0.574
Ours (CGSM) I=100 0.344 0.462 0.571

Table 5. Ablation study on the segment merging strategy and dif-
ferent temporal intervals for group partitioning of our CGSM.

under-segment
filtering

threshold
decay mIoU↑ F-IoU↑ mAcc↑

✗ ✗ 0.337 0.460 0.547
✓ ✗ 0.346 0.471 0.557
✓ ✓ 0.356 0.477 0.574

Table 6. Ablations study on the strategies for segment merging.

Aggregation Strategy mIoU↑ F-mIoU↑ mAcc↑
Average 0.338 0.453 0.563
Top-5 0.342 0.470 0.570
DBSCAN 0.345 0.459 0.566
Ours (IFA) 0.356 0.477 0.574

Table 7. Ablation study on various feature aggregation strategies.

Replica ScanNet

Method Storage↓ mEOR↑ Storage↓ mEOR↑
Point cloud 18.5MB 6.4MB
Octree 17.6KB 0.0057 41.1KB 0.0041
Adaptive-Octree 29.8KB 0.0108 69.3KB 0.0070

Table 8. Ablation study on the efficiency of the adaptive-octree.

Path Planning. For each sense in the HM3DSem [46]
dataset, we randomly select 100 pairs of starting points and
destinations in navigable areas. HOV-SG [44] can be di-
rectly used for path planning, thus it is evaluated and com-
pared with our method in this task. Tab. 4 shows the
results, from which we can see that our method signifi-
cantly surpasses HOV-SG, especially when the threshold s
is small. This is because HOV-SG relies on Voronoi graph
[41] for path planning, where the waypoints and paths are
pre-calculated, making it improper for precise navigation.
In contrast, our Octree-Graph supports navigation to any
empty area, unless the destination is mistakenly occupied
by the adaptive-octree.

Method Structure Storage↓ time↓
A* Octree-Graph 268.41Kb 0.032s
A* Point Cloud 71.16Mb 2.154s

Jump Point Search Octree-Graph 268.41Kb 0.081s
Jump Point Search Point Cloud 71.16Mb 2.153s

Table 9. Ablation study on path planning efficiency.

4.4. Ablation Studies
We analyze the impact of our key designs via zero-shot se-
mantic segmentation experiments on ScanNet.
Effect of Group-Wise Split. We compare the proposed
Chronological Group-wise Segment Merging (CGSM) with
the vanilla frame-wise and global-wise merging strategies.
As shown in Tab. 5, we achieve notable gains compared
to both methods, with +3.3% mIoU over frame-wise merg-
ing and +7.0% mIoU over global-wise merging. We also
analyze the impact of hyper-parameter I , and the results in
Rows 3-5 show that our method exhibits robustness to I
ranging from 100 to 400.
Analysis of Designs on Segment Merging. Tab. 6 presents
the results with two key components for merging a single
group. Row 0 serves as a fixed-threshold group-wise merg-
ing baseline with no extra design. Row 1 is equipped with
our semantic-guided under-segment filtering, and achieves
+0.9% mIoU and +1.0% mAcc. Row 2 further incorporates
the threshold decay strategy, resulting in an additional 1.0%
mIoU and 1.7% mAcc gains. These validate the effective-
ness of the two strategies during each group-wise merging.
Effect of Instance Feature Aggregation. In Tab. 7, we
compare the proposed Instance Feature Aggregation (IFA)
method with several commonly used methods. For fairness,
all methods use the same features as our IFA. Row 1 simply
averages features across all views, yielding unsatisfactory
results. Row 2 and Row 3 leverage Top-5 criterion [38, 40]
and DBSCAN algorithm [44] to select the predominant fea-
ture, achieving gains of +0.4% and +0.7% mIoU, respec-
tively. By contrast, our IFA achieves an improvement of
1.8% mIoU over Row 1.
Adaptive-Octree Efficiency. Based on the results of in-
stance generation in Replica and ScanNet, Tab. 8 provides
a comparison of different spatial representations with re-
spect to storage space and the accuracy of occupancy. For
the same scene, octree and our adaptive-octree consume two
orders of magnitude less storage compared to point clouds.
Our adaptive-octree requires a bit more storage than the
traditional octree due to its additional record of bounding
boxes for each object. However, at the same depth, the
adaptive-octree exhibits a much higher mEOR compared
to the octree. This means that the space described by the
adaptive-octree is more closely aligned with the target re-
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(a)
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Inputs GT Concept-Graphs HOV-SG Ours Ours Octree-Graph 

Inputs GT OpenMask3D OVIR-3D Ours Ours Octree-Graph 

Figure 6. Visual comparisons. (a) Semantic segmentation results on Replica. (b) Instance segmentation results on ScanNet200.

gions. In summary, the adaptive-octree requires much less
storage space than point clouds and provides more accurate
occupancy information than a traditional octree.
Path Planning Efficiency based on Octree-Graph. To
further verify the efficiency of our method, we conduct path
planning experiments using A* [9] and Jump Point Search
[52] algorithms on the HM3DSem [46] dataset, where the
point cloud representation and our Octree-Graph are com-
pared. It can be seen from Tab. 9 that Octree-Graph uses
much less storage space and spends much less time. This is
crucial for real-world deployment.

4.5. Qualitative Analysis
Visualization Results. Fig. 6 visualizes the results of
semantic segmentation and instance segmentation, respec-
tively. We can see that our method exhibits more accurate
object semantics and fewer incorrect segments than com-
parison methods. Fig. 8 demonstrates the segment merg-
ing results of our CGSM and its baseline (i.e., frame-wise
sequential merging), where CGSM correctly resolves the
over-segmented long table without introducing excessive
merges between different objects.
Object Retrieval and Path Planning. We also conduct
real-world experiments to further validate the effectiveness
of our method. Fig. 7 presents the results where a real scene
is set up and scanned by an Intel Realsense D435i camera.
Then we reconstruct the colored point cloud and establish
the Octree-Graph. Based on these, we deploy our method
on a robotic dog and a drone with NVIDIA Orin NX as on-
board computers. As shown in Fig. 7, robots can accurately
find the target and successfully navigate to it relying on our
Octree-Graph. The dynamic process of this experiment can
be found in the supplementary video demo.

5. Conclusion
In this paper, we propose Octree-Graph, a novel scene rep-
resentation for open-vocabulary 3D scene understanding.
Specifically, an adaptive-octree structure is devised to char-
acterize the occupancy of an object, which acts as the node

Path Planning 
 Robotic dog navigation

Drone navigation

Object retrieval   

(a)  

Real scene object retrieval

graph.query(“trash 
can”,“closest”,“table”) Fly to the low table next to the stove

Find the table closest to the trash can

Go to the table next to the black chair

Figure 7. Visualization of the real-world experiment. The left
column shows a real scene and the reconstructed colored point
cloud with the retrieval target highlighted by our adaptive-octree.
The right column presents path planning using a robotic dog and a
drone based on our Octree-Graph.

(a) Over-Segmented Merging (b) CGSM

Figure 8. Segment merging comparison.

of the Octree-Graph. The edges describe rich relations
among objects for spatial reasoning. For Octree-Graph con-
struction, we also develop a training-free pipeline to con-
duct semantic object segmentation, where a Chronological
Group-wise Segment Merging (CGSM) strategy is designed
to alleviate inaccurate segment proposals, and an Instance
Feature Aggregation (IFA) method is devised to get a se-
mantic feature both representative and distinctive. Exten-
sive evaluations on several tasks validate the versatility and
effectiveness of our Octree-Graph.
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