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Abstract

Quantization techniques, including quantization-aware
training (QAT) and post-training quantization (PTQ), have
become essential for inference acceleration of image super-
resolution (SR) networks. Compared to QAT, PTQ has
garnered significant attention as it eliminates the need for
ground truth and model retraining. However, existing PTQ
methods for SR often fail to achieve satisfactory perfor-
mance as they overlook the impact of outliers in activation.
Our empirical analysis reveals that these prevalent activa-
tion outliers are strongly correlated with image color in-
formation, and directly removing them leads to significant
performance degradation. Motivated by this, we propose a
dual-region quantization strategy that partitions activations
into an outlier region and a dense region, applying uniform
quantization to each region independently to better balance
bit-width allocation. Furthermore, we observe that differ-
ent network layers exhibit varying sensitivities to quantiza-
tion, leading to different levels of performance degradation.
To address this, we introduce sensitivity-aware finetuning
that encourages the model to focus more on highly sensitive
layers, further enhancing quantization performance. Exten-
sive experiments demonstrate that our method outperforms
existing PTQ approaches across various SR networks and
datasets, while achieving performance comparable to QAT
methods in most scenarios with at least a 75 speedup.

1. Introduction
The goal of image super-resolution (SR) is to enhance
image resolution, often by factors of 4× or more, while
preserving content and detail. Although deep learning-
driven SR models have attained superior results [6, 27, 48],
these advancements come at the cost of increased parameter
counts. With the growing demand for deploying SR models
on edge devices and handling larger input sizes, there is an
increasing need for models that balance both parameter ef-
ficiency and computational speed. To mitigate this issue, a
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Figure 1. Comparison of our method with SOTA PTQ and QAT
baselines. In (b), GT denotes ground truth, the bubble size in-
dicates the amount of training data required, and performance is
averaged across four datasets.

range of compression techniques has been studied, includ-
ing distillation [23, 39, 51], pruning [42, 43, 47], quanti-
zation [35, 36], and efficient module design [29, 46]. In
this paper, we focus on image SR quantization, which not
only reduces memory consumption but also significantly
improves inference speed.

The goal of model quantization is to shrink the network’s
parameters and activations (feature maps) from high preci-
sion to a compact representation while maintaining its orig-
inal performance. Current quantization approaches are typ-
ically grouped into quantization-aware training (QAT) [16,
28, 32] and post-training quantization (PTQ) [7, 25, 31, 44],
distinguished by whether they require retraining network
weights. QAT requires labeled data pairs and model retrain-
ing to adapt to the quantization process, whereas PTQ ap-
plies quantization without weight updates, making it a more
source-efficient alternative to QAT.

In image SR, quantization has been predominantly ex-
plored through QAT [13, 21, 28, 52], with only a few PTQ
methods [10, 36] proposed. This is primarily because PTQ,
particularly in activation quantization, suffers from greater
performance degradation compared to QAT. To mitigate
this issue, Tu et al. [36] introduce the first PTQ method
for SR, employing a density-based double cropping tech-
nique to constrain the activation distribution within a man-
ageable range. However, directly clipping activations out-
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side the selected range may lead to significant performance
degradation. Subsequently, Hong et al. [10] propose a
dynamic quantization technique that adjusts bit allocation
based on input variations. This is motivated by the obser-
vation that assigning different bit widths to various input
images and network layers improves quantization perfor-
mance. While effective, ensuring hardware compatibility
for dynamic quantization remains a challenge.

In this paper, we first analyze the activation distributions
of SR models and observe that activation outliers are preva-
lent across various networks (see Figure 3). To investigate
their impact, we compare the visual quality of images with
and without outliers. Our empirical findings reveal that
outliers are strongly correlated with image color informa-
tion, and directly removing them leads to noticeable color
shifts and significant performance degradation (see Figure
2). This underscores the importance of preserving outliers
in quantization to maintain color fidelity and enhance over-
all quantization performance. However, retaining outliers
using existing methods consumes a substantial portion of
the bit width allocated for normal activations, severely com-
promising quantization effectiveness. To address this, we
propose a dual-region quantization strategy that partitions
activations into an outlier region and a dense region. We
then apply uniform quantization to each region indepen-
dently, ensuring a more balanced bit-width allocation be-
tween these two regions. Furthermore, we observe that dif-
ferent network layers exhibit varying sensitivity to quantiza-
tion, as evidenced by the extent of performance degradation
when each layer is quantized individually. Based on this in-
sight, we propose a sensitivity-aware loss that encourages
the model to focus more on highly sensitive layers, further
enhancing overall quantization performance.

Figure 1 presents a comparison of our approach against
state-of-the-art (SOTA) PTQ and QAT methods on repre-
sentative SR networks. Figure 1a shows that our method
consistently outperforms PTQ baselines across various
datasets. From Figure 1b, our method achieves performance
comparable to QAT methods, despite not requiring retrain-
ing or ground truth, while providing significantly higher ef-
ficiency. To summarize, our core contributions are:

• Our empirical analysis reveals that activation outliers are
strongly correlated with color information, and removing
them leads to significant color shifts in generated images.

• We identify an allocation trade-off between outliers and
normal activations: clipping outliers causes severe per-
formance degradation, while retaining them consumes the
bit width allocated for normal ones. To address this, we
quantize outliers and normal activations separately, ensur-
ing a more balanced and effective bit-width allocation.

• We uncover that different layers exhibit varying sensitiv-
ities to quantization and propose a sensitivity-aware loss
function to focus more on highly sensitive layers.

• Comprehensive evaluations show that the proposed ap-
proach exceeds existing SOTA PTQ baselines and
achieves performance comparable to QAT methods, while
delivering a 75 × speedup.

2. Related Works

2.1. Efficient Image Super-Resolution
Efficient SR models fall into several categories, includ-
ing architectural design, neural architecture search (NAS),
knowledge distillation (KD), pruning, and quantization. For
efficient architectural design, Ahn et al. [2] introduce cas-
cading residual connections and efficient residual blocks to
construct a compact SR network. Sun et al. [33] propose
an efficient feature modulation that combines CNN-like ef-
ficiency with transformer adaptability. Regarding NAS-
based methods, Huang et al. [14] present a differentiable
NAS strategy to identify efficient SR networks, integrating
both unit-level and network-level search spaces to optimize
SR quality. For KD-based approaches, Zhang et al. [50] in-
troduce a novel data-free knowledge distillation framework
for SR, which is adaptable to various teacher-student con-
figurations. In pruning-based solutions, Wang et al. [38]
develop a SR network with sparse masks that simultane-
ously exploit spatial and channel dimensions to jointly iden-
tify and remove unnecessary computation at a fine-grained
level. In this paper, we focus on quantization-based meth-
ods for image SR, as they effectively reduce memory con-
sumption while significantly improving inference speed.

2.2. Quantization for Image Super-Resolution
Quantization methods, including QAT [12, 13, 18, 21, 30,
37, 41, 52] and PTQ [10, 36], have both been explored
for image SR. The first QAT-based SR work [21] intro-
duces a trainable truncation parameter to adaptively con-
strain the quantization range, motivated by the observation
that SR models without batch normalization typically ex-
hibit a large dynamic range. Wang et al. [37] propose a
quantizer with learnable margins, enabling adaptability to
variation in weights and activations from one layer to an-
other. To further address dynamic range issues, Hong et
al. [13] develop a channel distribution-aware quantization
scheme. Additionally, some approaches [12, 34] employ
dynamic quantization strategies with adaptive bit-width al-
location for different inputs and layers. However, ensuring
hardware compatibility for dynamic quantization remains
an open challenge. In contrast, PTQ for image SR has re-
ceived significantly less attention. The first PTQ-based SR
method [36] introduces a density-based dual clipping and
pixel-aware calibration to optimize the quantization param-
eters. Subsequently, Hong et al. [10] introduce a dynamic
quantization method with adaptive bit mapping. While ef-
fective to some extent, these methods largely overlook the
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impact of outliers, resulting in suboptimal quantization per-
formance. In this work, we emphasize the importance of
outliers in quantization, revealing that outliers are strongly
correlated with image color information.

3. Methodology
3.1. Preliminaries
Quantization reduces parameter precision, thereby shrink-
ing memory footprints and accelerating inference. The pro-
cess of quantizing a floating-point tensor x into a b-bit un-
signed integer can be formally described as follows:

xint =

⌊
clamp(x, l, u)− l

u− l
× (2b − 1)

⌉
, (1)

where l and u are the lower and upper bounds of x re-
spectively, clamp(x, l, u) = min(max(x, l), u) restricts x
within the bounds l and u, and the function ⌊·⌉ outputs the
nearest integer of the input. The quantized floating-point
value xq can be reconstructed from xint within the integer
space to approximate the original value x via:

xq = xint ·
u− l

2b − 1
+ l. (2)

When x exhibits a (approximately) symmetric distribution
around zero, the bounds u and l can be set to symmetric
limits, such as u and −u. This adjustment simplifies the
quantization process by ensuring symmetry around zero.

Due to the highly asymmetric distribution of activations
in SR networks [12, 13, 34, 52] and the relatively low sensi-
tivity of weights to quantization [36], an asymmetric quan-
tizer is typically applied to activations, whereas a symmet-
ric uniform quantizer is utilized for weights. Compared to
weight quantization, previous studies [13, 36] have shown
that activation quantization is the primary cause of perfor-
mance degradation in SR models. Therefore, this paper also
focuses on activation quantization of SR models.

3.2. Observation & Motivation
Observation 1. In Figure 3, we illustrate the activa-
tion distribution of different samples at the same layer
(body.15.conv1) of the EDSR network. It is evident
that all samples contain outliers in their distributions. Most
activation values are concentrated within a shallow range
(e.g., [−50, 50]), which we refer to as the dense region.
Outliers, on the other hand, are located beyond this re-
gion, forming what we call the outlier region. Notably, the
bounds of the outlier region vary significantly across differ-
ent samples. For instance, the left bound for sample 1 is
−192, whereas for sample 2, it is−273. From this observa-
tion, two key questions arise: Do these outliers influence the
quality of the restored images, and what specific features do
they correspond to in the generated images?

To answer these questions, we clip the outliers (1% of
activations) in the feature map and visualize the resulting
images in Figure 2. The visual comparison clearly shows
that removing outliers leads to noticeable color distortion in
both global and local regions of the images, such as faded
flower colors. This observation indicates that activation
outliers are closely linked to image color information and
should be preserved during the quantization process. Based
on this insight, we propose outlier-aware quantization to
minimize quantization errors in Section 3.3.

Observation 2. We further analyze quantization error
across different layers by independently quantizing activa-
tions in each layer of the EDSR and SRResNet networks. To
evaluate quantization performance, we compute the average
PSNR between the quantized images and the ground truth
(GT) across 100 randomly selected image pairs from the
DIV2K dataset [1]. As shown in Figure 4, different network
layers exhibit varying degrees of sensitivity to quantiza-
tion. While some layers experience significant performance
degradation, others remain robust to quantization. For in-
stance, in SRResNet, the head.0 layer suffers a substan-
tial drop in PSNR, plunging from 32.06 dB to 18.26 dB. In
contrast, certain layers, such as body.4.conv1, maintain
high performance with PSNR values of up to 31.20 dB. Mo-
tivated by this observation, we propose focusing more atten-
tion on highly sensitive layers in quantization rather than
distributing equal attention across all layers. To achieve
this, we introduce a sensitivity-aware loss in Section 3.4.

3.3. Piecewise Linear Quantizer

As demonstrated in Observation 1, preserving activation
outliers is crucial for retaining image information. How-
ever, retaining outliers during quantization will consume
a substantial portion of the bit width allocated for normal
activations, reducing the representation space available for
them. Inspired by [7], to achieve a balanced bit-width al-
location between outliers and normal activations, we pro-
pose a dual-region quantization strategy that partitions ac-
tivations into two distinct, non-overlapping regions and de-
signs piecewise linear quantization to quantize each region
independently. This method preserves the unique character-
istics of both normal activations and outliers.

Specifically, given an asymmetric activation range R =
[la, ua], where la and ua denote the lower and upper ac-
tivation bounds, we introduce a learnable breakpoint bp to
divide the range R into a symmetric dense region R1 =
[−bp, bp], which contains most normal activations, and an
outlier region R2 = R−

2 ∪R
+
2 = [la,−bp)∪(bp, ua], which

captures the extreme values in the activation distribution.
Our piecewise linear quantizer converts a floating-point ten-
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Figure 2. After clipping 1% of activation outliers in the full-precision model, the outputs (bottom) exhibit noticeable color distortions
compared to the original ones (top), affecting both global regions and detail-rich local areas of the images.
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Figure 3. The activation distributions of three different samples
at the same layer (body.15.conv1) in EDSR exhibit variations
in range (Range) and skewness (Skew). These distributions are
divided by a breakpoint bp into a dense region [−bp, bp] and an
outlier region [l a,−bp) ∪ (bp, u a], both of which undergo uni-
form quantization to the corresponding quantization points qp.

sor x into a b-bit integer representation via:

xint ↔



⌊
clamp(x,−bp,bp)

2bp ×
(
2b−1 − 1

)⌉
, x ∈ R1⌊

clamp(x,la,−bp)−la
−bp−la

×
(
2b−2 − 1

)⌉
, x ∈ R−

2⌊
clamp(x,bp,ua)−bp

ua−bp ×
(
2b−2 − 1

)⌉
, x ∈ R+

2

(3)

where values in both regions are quantized at the same bit
level. We determine appropriate values for la, ua, and bp
through a statistical analysis of a calibration set. Specifi-
cally, for the first batch, we initialize la as the minimum
activation value, ua as the maximum activation value, and
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Figure 4. Performance comparison of 4-bit quantization applied
individually to each layer of EDSR and SRResNet. Certain layers
show a notable drop compared to the upper bound (full-precision
performance), indicating higher sensitivity to quantization.

bp as the 99th percentile of the activation values. For weight
quantization, we set the upper bound of weights uw as
the maximum absolute value in each layer. In subsequent
batches, these parameters are updated using an exponential
moving average [8].

3.4. Sensitivity-Aware Finetuning
While static statistical analysis on calibration data provides
initial estimates for parameters la, ua, uw, and bp across
different layers, the substantial variation in outlier ranges
across samples within the same layer may affect the accu-
racy of these estimates. To address this, we refine these
quantization parameters by finetuning the model on the cal-
ibration data. Inspired by Observation 2, which highlights
that different layers exhibit varying sensitivities to quanti-
zation, we design a layer-specific loss function and perform
sensitivity-aware finetuning. This strategy directs the model
to focus more on highly sensitive layers during quantization
rather than distributing equal attention across all layers, thus
enhancing the model’s adaptability to the dynamic nature of
activation distributions across different samples.

To quantify the sensitivity of each layer to quantization,
we pass the calibration data Dcal through a full-precision
SR network K and compute the mean variance of the fea-
ture maps. We use this variance as an indicator of quan-
tization sensitivity, where higher variance corresponds to
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greater sensitivity. The layer-wise quantization sensitivity
sk is defined as:

sk =
exp

(
1
N

∑
x∈Dcal

σ(xk)
)∑K

j=1 exp
(

1
N

∑
x∈Dcal

σ(xj)
) , (4)

where σ(xk) represents the standard deviation of the feature
map xk at the k-th layer, N is the total number of batches in
the calibration dataset, and K is the total number of layers in
the SR network. We optimize the quantization parameters
using a training loss Lall, which consists of a reconstruction
loss Lrec and a sensitivity-aware loss Lsen, formulated as:

Lrec =
1

N

N∑
i=1

∥∥K(Iilr)−Q(Iilr)∥∥1 , (5)

Lsen =
sk
K

K∑
k=1

∥∥∥∥∥ F k
K

∥F k
K∥2
−

F k
Q

∥F k
Q∥2

∥∥∥∥∥
2

, (6)

Lall = Lsen + λLrec, (7)

where λ is a balancing parameter, Iilr denotes the i-th low-
resolution input image, K and Q represent the pre-trained
full-precision and quantized networks, respectively. F k

K and
F k
Q denote the feature outputs at the k-th layer of K and
Q, respectively. Notably, our approach requires only low-
resolution images for computing Lall, eliminating the need
for ground-truth high-resolution images. This further en-
hances the practicality of our method.

During the fine-tuning phase, we update the quantization
parameters in a staged manner for progressive optimization.
Specifically, in the first epoch, we update uw while keeping
all other parameters fixed. In the next epoch, only la and ua

are updated, keeping the rest unchanged. And in the subse-
quent epoch, we update bp while keeping other parameters
frozen. This cycle is repeated over multiple iterations to
gradually refine the quantization parameters. The overall
quantization process is summarized in Algorithm 1.

4. Experiments
4.1. Experimental Setup
In our experiments, we follow previous methods [10, 36]
and build the calibration set by randomly sampling 100
low-resolution images from the DIV2K [1] training dataset,
without including ground truth images. Following the set-
ting in [10, 36], the test sets include Set5 [3], Set14 [45],
BSD100 [26], and Urban100 [15]. We also consider larger
datasets, including Test2K and Test4K [19], which are gen-
erated by downsampling the images in the DIV8K dataset
[9]. We evaluate our method on representative SR net-
works, including EDSR [24], RDN [49], and SRResNet
[20]. For EDSR network, we chose the model configu-
ration that consists of 16 residual blocks with 64-channel

Algorithm 1: Quantization Algorithm
Input: Full-precision SR network K with K layers,

calibration dataset Dcal = {Iilr}Ni=1, where
N is the number of calibration batches

Output: Quantized network Q
1 Calibration Phase:
2 for i = 1, . . . , N do
3 for k = 1, . . . ,K do
4 if i = 1 then
5 uk

w ← max |W k|,
6 lka,1, u

k
a,1 ← min(F k(i)),max(F k(i)),

7 bpk1 ← Perc99(F k(i));
8 else
9 lka,i ← β · lka,i−1 + (1− β) ·min(F k(i)),

10 uk
a,i ← β ·uk

a,i−1+(1−β) ·max(F k(i)),

11 bpki ← β ·bpki−1+(1−β)·Perc99(F k(i));

12 end
13 end
14 Obtain {sik}Kk=1 using Eq. (4);
15 end
16 Fine-tuning Phase: ;
17 for epoch = 1, . . . , #epochs do
18 if epoch mod 3 = 1 then
19 Update {uk

w}Kk=1 with Eq. (7);
20 else if epoch mod 3 = 2 then
21 Update {lka, uk

a}Kk=1 with Eq. (7);
22 else
23 Update {bpk}Kk=1 with Eq. (7);
24 end
25 end

dimensions. For evaluation, we calculate Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM) [40] between the quantized image and the cor-
responding high-resolution image on the Y channel.

In the calibration phase, we conduct calibration for one
epoch using a batch size of N = 16. In the first batch,
we employ min-max [17] to establish initial quantization
ranges for weights and activations. The breakpoint is set
by taking the 99th percentile values of the activations for
each layer. In subsequent batches, the exponential moving
average (EMA) hyperparameter β is set to a fixed value of
0.9. In the fine-tuning phase, we utilize Adam optimizer [5]
to optimize the clipping ranges of weights, activations, and
breakpoints over 10 epochs with a batch size of 2. We set
the hyperparameter λ = 5. The initial learning rate is set to
0.001 and decays by a factor of 0.9.

For comparison with PTQ methods, we follow [36]
and quantize all layers in the models for the Set5, Set14,
BSD100, and Urban100 datasets, with the first and last lay-

16179



Method FT W / A Set5 Set14 BSD100 Urban100

FAB PSNR SSIM FAB PSNR SSIM FAB PSNR SSIM FAB PSNR SSIM
EDSR [24] − 32 / 32 32.0 32.10 0.894 32.0 28.58 0.781 32.0 27.56 0.736 32.0 26.04 0.785
EDSR-MSE [4] × 6 / 6 6.0 31.84 0.887 6.0 28.37 0.775 6.0 27.45 0.731 6.0 25.73 0.775
EDSR-MinMax [17] × 6 / 6 6.0 31.56 0.866 6.0 28.26 0.760 6.0 27.29 0.714 6.0 25.76 0.760
EDSR-Percentile [22] × 6 / 6 6.0 24.30 0.793 6.0 24.31 0.728 6.0 24.68 0.700 6.0 21.93 0.696
EDSR-PTQ4SR [36] ✓ 6 / 6 6.0 31.80 0.884 6.0 28.34 0.768 6.0 27.37 0.722 6.0 25.79 0.769
EDSR-AdaBM [10] ✓ 6 / 6 5.7 31.92 0.887 5.6 28.47 0.777 5.4 27.47 0.731 5.7 25.89 0.778
EDSR-Ours ✓ 6 / 6 6.0 32.03 0.891 6.0 28.55 0.780 6.0 27.54 0.735 6.0 25.99 0.782
EDSR-MSE [4] × 4 / 4 4.0 27.74 0.827 4.0 26.03 0.734 4.0 25.95 0.702 4.0 23.63 0.712
EDSR-MinMax [17] × 4 / 4 4.0 26.83 0.624 4.0 25.04 0.546 4.0 24.57 0.503 4.0 23.12 0.536
EDSR-Percentile [22] × 4 / 4 4.0 24.03 0.776 4.0 23.95 0.712 4.0 24.42 0.687 4.0 21.62 0.677
EDSR-PTQ4SR [36] ✓ 4 / 4 4.0 30.51 0.836 4.0 27.62 0.735 4.0 26.88 0.693 4.0 24.92 0.721
EDSR-AdaBM [10] ✓ 4 / 4 3.8 31.02 0.860 3.7 27.87 0.751 3.5 26.91 0.700 3.7 25.11 0.736
EDSR-Ours ✓ 4 / 4 4.0 31.54 0.879 4.0 28.26 0.769 4.0 27.36 0.726 4.0 25.61 0.765
RDN [49] × 32 / 32 32.0 32.24 0.895 32.0 28.67 0.784 32.0 27.63 0.739 32.0 26.29 0.793
RDN-MSE [4] × 6 / 6 6.0 31.02 0.879 6.0 27.77 0.767 6.0 27.01 0.724 6.0 25.01 0.757
RDN-MinMax [17] × 6 / 6 6.0 30.59 0.863 6.0 27.54 0.752 6.0 26.65 0.703 6.0 24.79 0.733
RDN-Percentile [22] × 6 / 6 6.0 18.87 0.778 6.0 18.33 0.667 6.0 19.88 0.651 6.0 16.81 0.632
RDN-PTQ4SR [36] ✓ 6 / 6 6.0 30.73 0.877 6.0 27.60 0.765 6.0 26.85 0.720 6.0 25.08 0.756
RDN-AdaBM [10] ✓ 6 / 6 5.7 31.56 0.881 5.6 28.14 0.769 5.5 27.20 0.722 5.7 25.31 0.755
RDN-Ours ✓ 6 / 6 6.0 32.20 0.894 6.0 28.62 0.782 6.0 27.61 0.738 6.0 26.24 0.790
RDN-MSE [4] × 4 / 4 4.0 25.55 0.831 4.0 24.33 0.725 4.0 24.49 0.689 4.0 21.75 0.692
RDN-MinMax [17] × 4 / 4 4.0 25.91 0.632 4.0 24.22 0.549 4.0 24.29 0.530 4.0 22.24 0.523
RDN-Percentile [22] × 4 / 4 4.0 18.83 0.771 4.0 18.28 0.662 4.0 19.83 0.646 4.0 16.77 0.625
RDN-PTQ4SR [36] ✓ 4 / 4 4.0 28.32 0.813 4.0 26.11 0.709 4.0 25.82 0.671 4.0 23.31 0.668
RDN-AdaBM [10] ✓ 4 / 4 3.8 28.71 0.808 3.7 26.30 0.707 3.6 26.10 0.672 3.8 23.38 0.663
RDN-Ours ✓ 4 / 4 4.0 31.80 0.885 4.0 28.39 0.775 4.0 27.47 0.732 4.0 25.93 0.778

Table 1. Performance comparison of PTQ methods on W4A4 (4-bit weight and 4-bit activation) and W6A6 using EDSR and RDN as SR
models, both with a scale factor of 4. We add an additional FAB (Feature Average Bit-width) column specifically for the AdaBM method,
as it is an adaptive PTQ method. Red marks the highest quantization performance, while green denotes the runner-up.

Method W / A
Test2K Test4K

PSNR SSIM PSNR SSIM
EDSR [24] 32 / 32 27.71 0.782 28.80 0.814
EDSR-PTQ4SR [36] 8 / 6 27.54 0.768 28.91 0.814
EDSR-AdaBM [10] 8 / 6 27.65 0.779 28.71 0.809
EDSR-Ours 8 / 6 27.59 0.773 28.95 0.819
EDSR-PTQ4SR [36] 4 / 4 26.94 0.723 28.13 0.767
EDSR-AdaBM [10] 4 / 4 27.40 0.758 28.39 0.784
EDSR-Ours 4 / 4 27.49 0.767 28.83 0.814
SRResNet [20] 32 / 32 27.64 0.781 28.72 0.813
SRResNet-PTQ4SR [36] 8 / 6 27.46 0.767 28.78 0.816
SRResNet-AdaBM [10] 8 / 6 27.55 0.777 28.62 0.809
SRResNet-Ours 8 / 6 27.55 0.771 28.84 0.818
SRResNet-PTQ4SR [36] 4 / 4 27.06 0.749 28.32 0.797
SRResNet-AdaBM [10] 4 / 4 27.31 0.766 28.25 0.782
SRResNet-Ours 4 / 4 27.35 0.768 28.80 0.812

Table 2. Performance comparison with PTQ methods using EDSR
and SRResNet with a scale factor of 4 on larger datasets.

ers quantized at 8-bit precision. For the Test2K and Test4K
datasets, we follow [10] and exclude the first and last layers
from quatization. For comparison with QAT baselines, we
follow [12, 21, 34] and also ignore the first and last layers
in the quantization process.

4.2. Comparison with Post-Training Quantization
We compare the proposed method with existing PTQ ap-
proaches, including MSE [4], Percentile [22], MinMax

[17], PTQ4SR [36], and AdaBM [10], across the EDSR
[24], RDN [49] and SRResNet [20] networks. The quanti-
tative results for a scale factor of 4 are presented in Table 1,
while results for SRResNet are included in the supplemen-
tary appendix. As shown, our method consistently deliv-
ers the top results on every dataset. Notably, our approach
demonstrates a greater advantage over existing approaches
on detail-rich datasets and under challenging quantization
settings. For instance, when quantizing the RDN model un-
der the W4A4 setting on the Urban100 dataset, our method
achieves a substantial PSNR improvement of 2.55 dB over
the suboptimal method. Additionally, we observe that
across all settings, the MinMax method significantly outper-
forms the Percentile method, highlighting the importance of
preserving outliers in SR tasks. Table 2 presents the com-
parison results on the larger Test2K and Test4K datasets.
As shown, our method consistently outperforms existing
PTQ approaches, particularly in challenging settings such
as W4A4, further demonstrating its robustness and effec-
tiveness in low-bit quantization scenarios.

4.3. Comparison with Quantization-aware Training
To further demonstrate our method’s effectiveness, we
benchmark it against existing QAT baselines, including
PAMS [21], DAQ [13], DDTB [52] and ODM [11], on
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Figure 5. Visual comparison between different PTQ methods using RDN network under W4A4 setting. While baseline approaches suffer
from different artifacts, our method effectively preserves the fine details across various scenarios.

the EDSR [24] networks. In practice, QAT methods typ-
ically require several hours for quantization due to the
need for retraining model parameters. In contrast, our pro-
posed method completes the quantization process in less
than 2 minutes, significantly improving efficiency. Table 3
presents the comparison with a scale factor of 4. As shown,
compared to QAT methods, our approach achieves at least

a 75× speedup while achieving comparable performance
without requiring ground truth supervision.

4.4. Qualitative Analysis
To provide a more intuitive assessment of performance, we
present the SR results for each method in Figure 5. As
illustrated, images produced by MinMax contain numer-
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Method QAT GT W / A Process Time Set5 Set14 BSD100 Urban100

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR - ✓ 32/32 - 32.10 0.894 28.58 0.781 27.56 0.736 26.04 0.785

EDSR-PAMS ✓ ✓ 4/4 75× 31.59 0.885 28.20 0.773 27.32 0.728 25.32 0.762
EDSR-DAQ ✓ ✓ 4/4 185× 31.85 0.887 28.38 0.776 27.42 0.732 25.73 0.772
EDSR-DDTB ✓ ✓ 4/4 125× 31.85 0.889 28.39 0.777 27.44 0.732 25.69 0.774
EDSR-ODM ✓ ✓ 4/4 120× 32.00 0.891 28.47 0.779 27.51 0.735 25.80 0.778
EDSR-Ours × × 4/4 1× 31.79 0.885 28.40 0.778 27.45 0.731 25.75 0.773

Table 3. Comparison with QAT methods using EDSR network. Process time was measured on an NVIDIA GeForce RTX 2080Ti GPU.

PLQ SAFT VFT Set5 Set14 BSD100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

× × × 26.83 / 0.624 25.04 / 0.546 24.57 / 0.503 23.12 / 0.536
✓ × × 30.50 / 0.865 27.71 / 0.755 27.03 / 0.715 25.12 / 0.751
× – ✓ 29.45 / 0.770 26.95 / 0.677 26.27 / 0.632 24.40 / 0.654
× ✓ – 29.87 / 0.809 27.24 / 0.709 26.55 / 0.666 24.57 / 0.689
✓ ✓ – 31.54 / 0.879 28.26 / 0.769 27.36 / 0.726 25.61 / 0.765

Table 4. Ablation study on EDSR network under W4A4 set-
ting. PLQ, SAFT, VFT denotes Piecewise Linear Quantizer,
Sensitivity-Aware Finetuning, Vanilla Finetuning, respectively.

ous noise artifacts, as preserving outliers in MinMax re-
stricts the expressiveness of normal activations and distorts
the image distribution with noise. In contrast, the images
generated by Percentile exhibit significant color distortion,
highlighting the importance of outliers in maintaining color
fidelity. While PTQ4SR and AdaBM mitigate noise and
color shift issues to some extent, they still introduce blur-
ring in detail-rich areas, particularly in dense regions of im-
ages img004 and img072, leading to a noticeable decline in
visual fidelity. By examining intricate textures and flat re-
gions side by side, we find that our method effectively pre-
serves fine details while avoiding noise and color distortion,
demonstrating superior SR quality.

4.5. Ablation Study
To assess the efficacy of our proposed piecewise linear
quantizer (PLQ) and sensitivity-aware finetuning (SAFT)
strategies, we conduct an ablation study using MinMax as
the baseline model and assess the impact of these two com-
ponents. The results are presented in Table 4. As shown,
combining both PLQ and SAFT (5th row) achieves the best
performance. Compared to the baseline (1st row), applying
PLQ alone (2nd row) leads to a significant PSNR improve-
ment, with gains of 3.67 dB, 2.67 dB, 2.46 dB, and 2.00 dB
on Set5, Set14, BSD100, and Urban100, respectively. Ad-
ditionally, we observe that vanilla finetuning (VFT, 3rd row)
performs worse than SAFT (4th row), which highlights the
effectiveness of our proposed sensitivity-aware loss in im-
proving quantization performance.

4.6. Resource Analysis
To validate the efficiency of our method, we compare its
processing time, latency (a single forward-pass inference

Process Time Latency Storage size

EDSR-PTQ4SR 126 sec 133 ms 229.517K
EDSR-AdaBM 72 sec 143 ms 229.517K
EDSR-Ours 73 sec 135 ms 229.517K

Table 5. Efficiency comparison with PTQ methods using a scale
factor of 4. Processing time and latency (fake quantization) are
measured on an NVIDIA 2080Ti GPU.

time), and storage with exiting PTQ baselines. As shown in
Table 5, our method reduces processing time compared to
PTQ4SR, while remaining comparable to AdaBM. In terms
of latency, our approach performs similarly to PTQ4SR and
is faster than AdaBM. Additionally, all methods maintain
the same storage size. These results demonstrate that our
performance improvements are achieved without increasing
resource demands.

5. Conclusion
This paper introduces an outlier-aware post-training quan-
tization method for image super-resolution tasks. Accord-
ing to our empirical analysis on activation distribution, we
observe that outliers in activations are both ubiquitous and
impactful. We then conduct comparison experiments to in-
vestigate the impact of outliers and uncover that the out-
liers are strongly correlated with image color information.
Specifically, simply removing outliers in activations will
cause noticeable color distortion and considerable perfor-
mance degradation. However, retaining them will reduce
bit occupancy reserved for normal activations. To strike a
balance between preserving outliers and maintaining quan-
tization effectiveness on normal activations, we divide the
activation distribution into two non-overlapping regions and
apply uniform quantization to each region independently.
Additionally, motivated by our finding that different net-
work layers exhibit varying sensitivities to quantization, we
design a sensitivity-aware loss function to make the model
focus more on highly sensitive layers. We then conduct
extensive experiments to demonstrate the effectiveness of
our method, comparing it against both PTQ and QAT ap-
proaches across various datasets and model architectures.
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