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Figure 1. We propose visual action prompts as unified representations for complex, high-degree-of-freedom actions (e.g., simulating scene
dynamics driven by human hands or robotic grippers). Visual action prompts are “renderings” of subjects’ action-induced 3D strucutres,
among which we use skeleton as the primary representaion for its acquisition efficiency. This paradigm enables training action-driven video
generation models across heterogeneous datasets while facilitating cross-domain knowledge transfer.

Abstract

We present visual action prompts, a unified action represen-
tation for action-to-video generation of complex high-DoF
interactions while maintaining transferable visual dynam-
ics across domains. Action-driven video generation faces
a precision-generality tradeoff: existing methods using text,
primitive actions, or coarse masks offer generality but lack
precision, while agent-centric action signals provide pre-
cision at the cost of cross-domain transferability. To bal-
ance action precision and dynamic transferability, we pro-
pose to “render” actions into precise visual prompts as
domain-agnostic representations that preserve both geomet-
ric precision and cross-domain adaptability for complex

*Equal contribution. TCorresponding author: Ruizhen Hu.

actions; specifically, we choose visual skeletons for their
generality and accessibility. We propose robust pipelines to
construct skeletons from two interaction-rich data sources
— human-object interactions (HOI) and dexterous robotic
manipulation — enabling cross-domain training of action-
driven generative models. By integrating visual skeletons
into pretrained video generation models via lightweight fine-
tuning, we enable precise action control of complex interac-
tion while preserving the learning of cross-domain dynamics.
Experiments on EgoVid [64], RT-1 [11] and DROID [35]
demonstrate the effectiveness of our proposed approach.

1. Introduction

With improvements in quality and controllability of visual
generative models [7, 46, 50, 72], action-driven generative
models are now widely applied in gaming [12, 14, 21, 61,
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74], decision-making [19, 69], robot learning and simula-
tion [2, 4, 67, 81]. These frameworks utilize action sequences
as conditional inputs to video generation models, producing
video frames that depict the outcomes of those actions. This
paper focuses on action-driven generative models under com-
plex, high-DoF action control, such as simulation of scene
dynamics governed by human hands and robotic grippers
operations.

The primary challenge lies in the absence of a unified yet
precise action representation to effectively model high-DoF
and heterogeneous actions across diverse fields and applica-
tions, impeding the training of a unified model facilitating
knowledge transfer across domains. Different action repre-
sentations have been proposed in diverse domains, such as
text [69], high-level primitive skills [12, 14, 23, 61], and low-
level states of specific agent configurations [2, 67, 81]. How-
ever, action representations face a precision-generality trade-
off. Text, though universally applicable, can only present the
high-level intention of an action. Pre-defined skills like char-
acter movement and gaming actions (e.g., shooting [4, 14])
are similar to text, both of which present high-level action
primitives, while general, fail to represent complex, low-level
character motions and intricate interactions with the envi-
ronment that are critical in applications like motion sensing
gaming. The low-level state of specific agent configuration
(e.g., arobot arm’s end-effector 6D pose and gripper open-
ness) is an almost lossless action representation. It is adopted
in domains requiring the utmost precision like robotic simu-
lation and planning [2, 67, 81]. However, it tightly couples
the action signal to specific embodiments, lacking generality.

To achieve a balanced precision-generality tradeoff, we
propose using precise visual action prompts as unified con-
trol signals for interactive generative models driven by com-
plex actions, while retaining generality across domains. Vi-
sual action prompts are produced by “rendering” the 3D
structure of actions-induced agent states into image space,
which can be in different forms, such as coarse masks, col-
ored renderings or depth maps, and 2D skeletons. They can
effectively represent actions of high-DoF subjects — such as
human hands, robot grippers, and dexterous hands — with
high precision.

Some forms of visual action prompts come with notable
drawbacks. Mesh-rendering-based approaches require re-
construction of complete meshes, which are challenging to
scale up with in-the-wild data. Coarse subject masks [3, 57]
are easier to recover but suffer from occlusions; their lim-
ited precision is also problematic in fine-grained tasks like
robot simulation. To balance the ease of recovery and ac-
tion precision, we adopt skeletons as the unified control
signal, which have long been a universal tool in anima-
tion [8, 31, 38, 45, 48]. They can be robustly recovered
from in-the-wild data [1, 18, 29, 53, 56, 59], facilitating
large-scale training across domains.

To demonstrate the effectiveness of visual action prompts,
we propose scalable strategies to recover complete skeletons
of human hands and robot grippers on datasets including
EgoVid [64], RT-1 [11] and DROID [35]. Then, we fine-
tune a base video generation model [72] to adapt it to an
action-controllable model supporting intricate interaction.
We further show that visual action prompts serve as a more
precise and easier to learn control signal of action for video
models, compared to text and agent-centric states. Moreover,
we show that visual action prompts enable training a unified
model on multi-domain data including HOI and robot manip-
ulation, which facilitates cross-domain knowledge transfer
of interaction-driven dynamics.

In summary, we make the following contributions:

* We propose using precise visual action prompts, specif-
ically skeletons, as the unified action representation for
action-driven generative models in scenarios involving
complex, high-DoF actions.

* We introduce scalable strategies to recover skeleton-based
visual action prompts on interaction-rich datasets includ-
ing HOI and robot manipulation.

* We demonstrate visual action prompts’ advantages includ-
ing ease of learning, precision and generality, which enable
joint training on heterogeneous data and facilitate knowl-
edge transfer.

2. Related Work

Action-to-video generation. Recent works have been pursu-
ing action control of video models to enable interaction-rich
applications like gaming and agent training [4, 12, 14, 17, 61,
74], robotic simulation/learning [2, 67, 81], and general de-
cision making [70]. Typical game actions involve predefined
primitives where state transitions follow explicit rules or
rules combined with physics simulation. Video-driven game
research explores various action representations: Genie [12]
learns a discrete set of latent actions from unlabeled videos
to drive generation; GameNGen [61] and DIAMOND [4]
directly map primitive actions (e.g., directional moves, shoot-
ing) to video frames. Recent efforts further scale these ap-
proaches [14, 16, 21, 74], yet remain constrained by primi-
tive action representations that limit complex environmen-
tal interactions. Video generation for world model and RL
agents training [4, 12, 17, 67] are also still limited to learning
predefined primitive actions, incapable of simulating high-
DoF embodiments interacting with complex environments.
In simulation, UniSim [69] represents high-level action in-
tentions with texts, which is general but lacks precision.
Text as action is more plausible for general decision making
like generating how-to guides [55] and high-level policies
for robotics [9, 10, 19, 37]. In the other end, IRASim [81]
and Cosmos [2] employ agent-centric actions like 7-DoF
end-effector states, which is almost lossless for positional
control but not general. Recently, CosHand [57] and Inter-

12714



Representation

Datasets Creation
Skeleton Trajectory

Model Architecture

ControlNet

Visual Action Prompts

-~ " T~ 3 Frozen Modules
. /;3 Traj. ) Trainable Modules
T&_’ Encoder
Motion Robot =)
HO video (3rd-view) (Coams —
Yorummn Trajectory N
S
S > « VAE
Robot episode (|st-view) 4| Encoder
E—— N ( N\
N RSbov | —
Joints Image Text
Estimation -
. ) OR ! !
Robot episode (3rd-view) — [T 1D 1D 1D T
Trajectory A - N
» Playback P 3 E i . i Lﬂ 'g— b .g’ 'm
) <, "\ . ~ ="y ="y =
9 . - g S =
3 o
(' ’7{)‘ = P‘( [y ( 1'

& 5 & S
= L 8 > af -
L NN NN NNy}

Figure 2. Action-to-video generation with visual action prompts. We project action-induced 3D structural dynamics of diverse agents into
2D visual action prompts, primarily 2D skeletons, establishing a unified control signal for action-conditioned video generation. We design
data creation pipelines for HOI and robot videos to robustly recover their 2D skeletons. The constructed visual action prompts are injected
into a pretrained video generation model for fine-tuning and generating plausible interaction-driven visual dynamics.

Dyn [3] explore generating future state images or videos
using coarse hand masks as indications of actions. How-
ever, mask-based representations are fragile to occlusions,
and segmented masks are often imprecise, which hinders
applications requiring highly accurate actions.

Motion control and character animation. Controllability
of video generation models is critical for downstream appli-
cations. Extensive research focuses on achieving control over
the synthesized content in different levels, especially for the
target agent. Region-based methods [54, 62] provide high-
level guidance for local motion. Sparse/dense trajectory-
based methods [24, 66, 73, 79] govern local object move-
ments or camera motion. Character animation techniques
further enable precise control through skeletons [31, 43, 78],
mesh renderings [80, 82], or reference videos [32, 63], all re-
quiring explicit dynamic specifications for the control targets.
In contrast, we aim to generate interaction-induced dynam-
ics of the whole environment by providing the model with
action signals only, without relying on its inherent dynamics.
Dynamic-rich datasets. Effectively orchestrating diverse
datasets with rich interaction and interaction-driven dynam-
ics lays the groundwork for action-driven video generation.
Video datasets about human-object-interaction (HOI) are nat-
ural sources for learning interaction-driven dynamics. Early
works like SSV2 and Kinetics [25, 34] collects datasets of
humans performing basic actions with everyday objects. De-
spite their substantial scale, their relatively low video quality
falls short of the standards required by modern video gener-
ation models. Recent advancements have introduced large-
scale egocentric human activity datasets [15, 26, 27, 41] to
advance behavioral understanding and learning. A notable
example, Ego4D, offers 3,670 hours of daily activity videos
across diverse scenarios. However, its lengthy sequences
are suboptimal for generation tasks. EgoVid-5M [64] ad-

dresses this by curating trimmed, filtered, and captioned
clips from Ego4D, making them more plausible for gen-
erative models. Beyond video data, specialized datasets
for HOI motion research provide 3D hand-object annota-
tions [6, 20, 22, 40, 75]. While valuable for high-precision
3D-controlled fine-tuning, their limited diversity restricts
utility in foundational interaction-driven dynamics learning.
Complementing HOI resources, embodied Al and robotics
research has yielded high-quality interaction data as well.
Open X-Embodiment [47] aggregates multi-task datasets of
complex robotic interactions across embodiments. We select
RT-1 [11] and DROID [35] from this collection for their
scale and relatively precise camera calibration.

3. Method

Given an image observation as the initial frame and a se-
quence of actions from human hands or robot grippers, our
goal is to generate videos that accurately depict the inter-
action outcomes under precise action control. To achieve
this, we introduce a general and precise visual action prompt
for video generation models. Fig. 2 illustrates our frame-
work, which includes visual action representation, dataset
construction, and visual dynamic modeling.

To maximize data scale and interaction relevance, we
focus on two primary agents: human hands and robotic
grippers. Their actions — despite kinematic differences —
are uniformly encoded as skeletons, as our visual prompts
(Sec. 3.1). To train our model, we process and annotate two
types of datasets (Sec. 3.2): (1) human hand skeletons ex-
tracted via motion capture from HOI videos; and (2) robotic
gripper skeletons are synthesized through joint-state ren-
dering from robotic episodes. Leveraging these large-scale
(skeleton, video) pairs, we fine-tune video generation models
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to enable visual action prompt control (Sec. 3.3).

3.1. Visual action prompts

Our goal is to develop a generalizable video generation
model capable of synthesizing plausible scene dynamics and
interaction outcomes s1.; € S, given the initial observation
so and driven by user-specified complex action sequences
ag.t—1 € A. The problem can be formulated as learning the
conditional probability distribution P governing the state
representation:
s1:t ~ P(s1:[S0,20:4-1)- (D

While the formulation is brief, there are certain challenges
in practice: (1) accommodating diverse configurations of
intricate action spaces while ensuring compatibility across
tasks, and (2) retaining the transferability of visual dynamics
under precise action control, thus enabling the model to learn
from scalable datasets composed of diverse domains.

To resolve those challenges, our core insight is to map
the action sequence ag.;—1 to visual action prompts vi.; as
follows:

vii = R(ags_1) € RTHXWXC 2)

where T' represents the action trajectory length, H and W
represent the image height and width, C' is the number of
channels, determined by the specific visual representation,
and R indicates rendering operation according to known
camera parameters. We consider mesh-based renderings
(e.g., colored images, depth maps) and 2D skeletons as pre-
cise visual action prompts. Given the challenges associated
with recovering fine-grained meshes from in-the-wild data,
we opt to employ 2D skeletons as our primary representation.

3.2. Scalable dataset creation

To enable the learning of transferable visual dynamics under
precise action conditioning, we construct large-scale (skele-
ton, video) pairs from two distinct sources: skeletons are
estimated from in-the-wild HOI videos via our proposed
pipeline (Fig. 3a), while for robot manipulation episodes,
they are rendered directly from state logs, followed by an
optional correction step to ensure tight alignment with the
visual observations (Fig. 3b).

In-the-wild HOI videos. We leverage in-the-wild HOI-
centric videos for their rich hand-object interactions and
scene dynamics, which is ideal for learning visual dynamic
models. However, severe occlusions in these videos make
direct 2D pose estimation unreliable [36, 42, 71]. To robustly
extract 3D hand mesh trajectories, we introduce a four-stage
pipeline that addresses common failures like missed detec-
tions and temporal jitter (see Algorithm | and Fig. 3a): (1)
Initialization: We first detect all potential hands per-frame us-
ing 3d hand mesh recovery method Wilor [51]. (2) Temporal
Stabilization: We then form consistent tracklets and correct
handedness errors using SAMURALI [68]. (3) Refinement:
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Figure 3. Pipelines of recovering 2D skeletons for visual action
prompts from human-object interaction (HOI) and robotic datasets.

Missing meshes within these tracklets are re-estimated. (4)
Smoothing: Finally, we apply a OneEuro filter [13] to the
MANO trajectories to eliminate jitter.

Robot manipulation episodes. We also utilize robotic ma-
nipulation datasets (DROID [35], RT-1 [11]), which offer
focused interactions and scene dynamics while simplifying
3D skeleton extraction via robot state logs. However, cam-
era calibration errors and temporal drift are common issues.
To ensure precise 2D skeleton alignment with video obser-
vations, we implement a vision-based correction pipeline
(Fig. 3b): (1) Episode Filtering: We use MatchAnything [28]
to match rendered robot meshes against real observations,
discarding episodes with significant matching coordinates
discrepancy. (2) Homography Rectification: For the remain-
ing episodes with camera drfit, we apply per-frame homog-
raphy warping to adjust the initial skeleton renderings in 2D,
also guided by image matching, ensuring precise alignment
with real-world observations.
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Algorithm 1 Tracking and Association

B0
T« 0
A~ {}

> Initialize the bounding box set
> Initialize the tracklet set
> Initialize the association dictionary

: for all frame F’ in video do
B < B U Detect(F)

end for

: Buntracked — SOI't(B)

: while Buntraclced 7é (Z)dO

B+ Buntracked-pop(o)

if maxrc7IoU(B,T) < 01,v then
Thew < Track(B) > Based on SAMURALI
T .append(Thew)

14: end if

15: end while

16: for all (B,T) € B x T do

17: if IOU(B, T) > 9]0(] then

> Based on Wilor

> By descending confidence

R A A R o

— e e
W N = O

18: A[T].append(B)
19: end if
20: end for

21: T < HandnessFilter(7, .A)
22: T + Merge(T, A)
23: T < NumberOfHandsFilter(7, A)

3.3. Visual dynamics model with precise control

We build our model based on CogVideoX [72], which is
a text-to-video generation model pretrained on large-scale
(text, video) pairs and further fine-tuned with (text, initial
frame, video) triplets to a (text, image)-to-video model. Its
architecture includes: a pretrained text encoder, a video VAE,
and a DiT [49] model with FullAttention for spatio-temporal
video tokens and text token processing. Due to the high data
demands of training visual dynamics models from scratch,
we leverage CogVideoX as a pretrained base model.

To integrate visual action prompts, as shown in Fig. 2, we
first encode the control signals. Specifically, for controls in
the form of skeleton or mesh, we render them as sequences
of RGB images vy.; € RT*HXWXC yhere C' = 3. These
sequences are then fed into an 3D convolutional trajectory
encoder to latent states s;../, € RTX§ x5 16 For depth
control, we directly feed vy.; with C' = 1 into the encoder
with the same architecture.

Direct supervised fine-tuning of the video generation
model pretrained on massive datasets may lead to overfitting
or the loss of generalized knowledge. Therefore we leverage
ControlNet [76] to inject the visual action prompts. Specif-
ically, we create trainable copies of the first 14 blocks of
the pretrained DiT with zero-initialized linear layers, and
inject visual action prompts s../, in these blocks. Moreover,
following Wonderland [39], we adopt a dual-branch condi-

tioning mechanism by injecting s;.., also in the main DiT,
through merging video and action tokens, and fine-tune the
DiT backbone with LoRA [30].

During training, we amplify loss values around
hand / gripper regions to prioritize learning the interac-
tion and its induced dynamics. To mitigate dominance of
self-motion over interaction dynamics in robot videos with
lengthy tasks, we sample more clips around timestamps
where gripper state changes.

4. Experiment

Our experiments aim to validate two core claims: (1) visual
action prompts outperform alternative control signals, e.g.,
text or agent-centric raw actions / states (Sec. 4.1) in driv-
ing interaction-aware scene dynamics; (2) the generality of
visual action prompts across agent configurations and the ef-
fect of joint training on diverse datasets (Sec. 4.2). Moreover,
ablation studies (Sec. 4.3) demonstrate the effectiveness of
our model design and present results of different visual ac-
tion prompts.

Implementation details. We curate three datasets with dis-
tinct characteristics. EgoVid [64]: A subset of 200k training
clips (from 1M clips) containing around 120 frames, 30
fps videos of diverse daily activities with hand skeletons.
Clips with significant viewpoint changes are filtered via op-
tical flow [58] and point tracking [33]. We manually select
32 clips including direct/indirect dynamics for evaluation.
DROID [35]: A subset of 47k training clips of random third-
person perspectives (from 76k episodes collected across 13
labs), with one lab’s data reserved for evaluation on novel
scenes. Tasks related to cleaning are retained for analyzing
of novel skills. A total of 234 clips are used for quantita-
tive assessment. RT-1 [11]: A subset of 57k training clips
from 6 basic skills, two skills (“close drawer” and “place
object upright”) are held out for evaluation. Notably, unlike
previous works such as IRASim [81], which focuses only
on simulation of in-domain skills and scenes, we emphasize
evaluating the interaction-driven dynamics of novel skills.
We caption all video clips with scene-centric captions via
Qwen2.5-VL [5], only including scene arrangements and
appearances while excluding action/dynamic descriptions.
For training text-as-action models, we regenerate captions
with explicit action annotations. During training, we resize
all video clips to the resolution of 720 x 480 and subsample
video frames to 25 with variable fps in a plausible range.
Metrics. We utilize multiple metrics to evaluate the gener-
ated videos. To evaluate the visual similarity between gener-
ated and ground truth videos, we report PSNR, SSIM [65],
and LPIPS [77]. To evaluate visual quality and temporal con-
sistency, we report the Fréchet Video Distance (FVD) [60].
Finally, to explicitly evaluate dynamic correctness of action
and its impact on scene dynamics, we report the Spatio-
temporal IoU proposed in Physics-I1Q [44].
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Figure 4. Comparison of different action control signals. Text as
action (TI2V [72]) leads to ambiguity. Raw 7-DoF states/actions
(IRASim [81]) leads to inaccurate control. Visual action prompts
(Ours) facilitate dynamic learning under precise control.

4.1. Agent-specific control

We demonstrate the superiority of visual action prompts
over text-based and agent-centric action representations in
control fidelity, scene dynamics plausibility, and learning
efficiency. We conduct comparisons on two robot manipu-
lation datasets RT-1 [11] and DROID [35]. For text-based
control, we implement high-level action guidance by fine-
tuning the (text,image)-to-video model CogVideoX [72]. For
agent-centric control, IRASim [81] directly employs 7-DoF
robot-specific actions (end-effector poses and gripper states)
as action trajectories to drive video generation. For a fair
comparison, we reimplement IRASim’s adalLN-based ac-
tion injection upon CogVideoX and finetune the base model
with 7-DoF state trajectories. We present quantitative com-
parisons between this reimplementation and the pretrained
IRASim model in supplemental material to demonstrate its
effectiveness.

As shown in Fig. 4, visual action prompts achieve better
action fidelity through direct and precise action rendering,
while text descriptions suffer from action ambiguity and
less plausible generation. Although IRASim achieves effec-
tive control on RT-1 with fixed viewpoints, it fails to provide
precise control on DROID with random third-person perspec-
tives. Quantitative comparisons in Tab. | further confirm the

Dataset Action Repr. PSNR* SSIMt LPIPS| FVD| ST-IoU7

RErrn Text(CoeVideoX [72) 1887 0761 0241 6423  0.267

Raw State (IRA-Sim [S1]) 2396  0.854 0127 3022 0507

Skeleton (Ours) 2598 0859 0110 2886  0.604

Skeleton (Ours unified) 2490 0847 0121 2581 0576

., Text (CogVideoX) 1810 0790 0200 2483 0239

DROID 3] o State (IRA-Sim) 2013 0825 0146 1512 0365

Skeleton (Ours) 2126 0834 0132 1418 0450

Skeleton (Ours unified) 21.58 0.836 0.126 124.4 0.478
) Text (CogVideoX) 1344 0440 0503 16386 -
EgoVid [04] ) cleon (Ours) 1471 0482 0430 12436 -
Skeleton (Ours unified) 1493 0486 0421 11423 -

Table 1. Quantitative comparison on different datasets. Visual
action prompts (Ours) consistently outperform text-specified ac-
tions and raw agent-centric states. Joint training on all three datasets
with a unified model leads to improved or comparable results across
datasets.

Known Lab & Skill Novel Lab Novel Skill
Mask IoU 1/ Boundary IoU 1/ J&F 1

Action Repr.

Single dataset
Text (CogVideoX)
Raw State (IRASim)

34.1/31.9/33.0
49.1/48.9/49.0

22.8/30.9/269 20.5/25.2/22.9
25.8/40.9/33.4 34.9/40.6/37.8

Skeleton (Ours) 53.5/53.6/53.6 43.8/61.2/52.5 47.4/55.0/51.2
Joint training
Skeleton (Ours) 58.9/60.4/60.0 46.5/63.3/54.9 49.9/57.9/53.9

Table 2. Quantitative comparison on different subset of the
DROID [35] dataset. The manipulated object is annotated with
point prompts in the first frame and tracked with SAM 2 [52]. We
report metrics between the masks extracted from the generated and
ground truth videos.

comprehensive superiority of visual action prompts across
all metrics.

Due to the small proportion of interactive foreground
in robot manipulation data, photometric metrics fail to ef-
fectively highlight differences between methods in gener-
ating interaction-driven dynamics, we conduct additional
dynamic-centric evaluations on DROID. We manually anno-
tate point prompts for interacted objects in the first frame,
ensuring SAM 2 [52] successfully tracks them in the ground
truth videos. Using the same prompts, we apply SAM-2 on
generated videos and compute the J&F metric between
generated tracking masks and ground truth masks to assess
the model’s quality in generating dynamics for interacted
objects. As shown in Tab. 2, visual action prompts achieve
significant improvements across different DROID subsets.

4.2. Agent-agnostic control

Thanks to visual action prompts’ balance over action pre-
cision and generality, we can integrate data from diverse
domains of different agents to train a unified action-driven
generative model. In this experiment, we demonstrate the
effectiveness of visual action prompts for agent-agnostic
control, where a single model drives the self motion and
generates dynamics for agents with distinct configurations.
Specifically, we train a unified model on robotic datasets
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Figure 5. Effect of joint training with visual action prompts. Compared to single-dataset training, joint training leads to better object
consistency on DROID [35] and enables held-out skill execution (e.g., “close the drawer”) on RT-1 [11].

(RT-1[11], DROID [35]) and human egocentric video data
(EgoVid [64], based on Ego4D [26]). Conventional precise
action representations struggle with multi-domain joint train-
ing: DROID and RT-1 feature incompatible robot config-
urations, and it is hard to map agent-centric signals like
end-effector poses to DROID’s random third-person camera
viewpoints. EgoVid presents even greater challenges with
dynamic egocentric views and complex human hand actions,
which cannot be handled by previous action representations.

As shown in Tab. 1, joint training with visual action
prompts achieves comparable or superior performance in
generation quality and dynamic accuracy compared to single-
domain training. Dynamic-centric evaluations on DROID
in Tab. 2 further confirm its superiority. Fig. 5 highlights
its specific advantages: joint training improves object con-
sistency in DROID manipulations and enables novel skill
generalization (e.g., closing drawers) on RT-1’s unseen skill
subset, which single-domain models fail to achieve. We at-
tribute these benefits to visual action prompts simplifying
the learning objective — models bypass learning mapping
from abstract action representations to agent motion and fo-
cus directly on learning interaction-driven dynamics induced
by actions. We present more results of the unified model
in Fig. 6. We further illustrate in Fig. 7 that our model can
generate diverse interaction outcomes aligned with different
action trajectories under identical initial images, indicating
its potential for downstream applications like simulation,
planning, and robotic policy evaluation.

4.3. Ablation studies

Different forms of visual action prompts. In Fig. 8
and Tab. 3, we compare different visual action prompt forms:

RT-1

DROID

EgoVid

Ge\nerated Video Frames

Input Image

Figure 6. Action-to-video generation of a unified model. Visual
action prompts enable joint training on diverse datasets and facili-
tate interaction-driven dynamic generation. The overlaid skeletons
are only for visualization, demonstrating accurate action control.

mesh rendering, depth maps, and our primary skeleton-based
approach. As shown in Tab. 3, visual prompts with more de-
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Figure 7. Diverse generation results under different action tra-
jectories. Our model can simulate diverse actions and their visual
outcomes from the same initial frame.

Mesh Skeleton Depth Mesh Skeleton

Depth

Generated Video Frames

Input Image

Figure 8. Comparison of different forms of visual action
prompts. All three forms of visual action prompts can precisely
represent delicate actions and drive plausible interactions. We pre-
fer the skeleton-based prompt for its acquisition efficiency.

tails (mesh/depth) improve generation quality and dynamic
accuracy compared to skeletons. Fig. 8 demonstrates that

Control Method PSNRT SSIM?t LPIPS| FVD] STIoUf?

Skeleton 21.26 0.834 0.132 141.8 0.450
Mesh 23.51 0.859 0.106 120.4 0.586
Depth 23.41 0.858 0.106 119.7 0.581

Table 3. Ablation study on different visual action prompts. Rep-
resentations with more details (mesh, depth) perform marginally
better. Skeleton is preferred for its acquisition efficiency.

Model Variant ~ PSNR1 SSIM{ LPIPS| FVD] STIoU+

w/o ControlNet 20.19 0.819 0.151 165.2 0.396
w/o Main Branch ~ 21.09 0.830 0.138 146.9 0.442
Ours (full) 21.26 0.834 0.132 141.8 0.450

Table 4. Ablation study on model architecture.

all three forms effectively drive plausible interaction-aware
dynamics. Given skeleton’s lower acquisition cost for in-the-
wild data and compatibility with additional sparse 3D infor-
mation, we advocate its use as a unified action representation
for large-scale training. For precision-critical applications,
skeleton-driven models can be fine-tuned with higher-fidelity
action prompts to fully leverage mixed-quality data.

Model architecture. We evaluate different modules’ contri-
butions by training models on the DROID [35] dataset. As
shown in Tab. 4, ControlNet [76] plays a more critical role in
both generation quality and dynamic accuracy. Injecting vi-
sual action prompts to the main DiT and utilize LoRA-based
fine-tuning of the DiT backbone [30, 72] is also effective,
which yields marginal gains.

5. Conclusion

In this paper, we propose visual action prompts as universal
action representations for action-to-video generation which
effectively represent complex high-DoF actions and retain
the cross-domain dynamic transfer capability of video gener-
ation models at the same time. We design robust pipelines
for building visual action prompts from heterogeneous data
sources for training, and utilize lightweight fine-tuning to in-
ject visual action prompts into a pretrained video generation
model. Our method demonstrates improvements in both in-
teraction fidelity and domain adaptability, with experimental
results validating the model’s effectiveness.

Limitations and future works. Our method still faces two
main limitations. First, current visual action prompts rep-
resent actions in 2D, offering limited 3D cues. Integrating
additional sparse 3D information could introduce better 3D
awareness. Moreover, the base model is pre-trained on text-
to-video tasks where motion is explicitly specified through
texts, which hasn’t been effectively utilized. Future works
could adapt the attention between video-text tokens to video-
action tokens, injecting action control more effectively.
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