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Figure 1. We introduce SITE, a comprehensive benchmark for evaluating large vision-language models’ spatial intelligence (SI). Three SI
classification systems drawn from cognitive science, corresponding to the three panels, drive the design of SITE.

Abstract

Spatial intelligence (SI) represents a cognitive ability en-
compassing the visualization, manipulation, and reasoning
about spatial relationships, underpinning disciplines from
neuroscience to robotics. We introduce SITE, a bench-
mark dataset towards SI Thorough Evaluation in a stan-
dardized format of multi-choice visual question-answering,
designed to assess large vision-language models’ spatial
intelligence across diverse visual modalities (single-image,
multi-image, and video) and SI factors (figural to environ-
mental scales, spatial visualization and orientation, intrin-
sic and extrinsic, static and dynamic). Our approach to cu-
rating the benchmark combines a bottom-up survey of ex-
isting datasets and a top-down strategy drawing upon three
classification systems in cognitive science, which prompt us
to design two novel types of tasks about view-taking and
dynamic scenes. Extensive experiments reveal that leading
models fall behind human experts, especially in spatial ori-
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entation, a fundamental SI factor. Moreover, we demon-
strate a positive correlation between a model’s spatial rea-
soning proficiency and its performance on an embodied AI
task.

1. Introduction

This work introduces SITE, a novel benchmark dataset
towards Spatial Intelligence Thorough Evaluation, to as-
sess the visuospatial ability of large vision-language mod-
els (VLMs). We achieve this by borrowing three classifica-
tion systems about spatial intelligence (SI) from the cogni-
tive science literature [8, 34, 47, 54, 56] to analyze vision-
language tasks derived from 30 computer vision datasets.
This process highlights a gap in existing benchmarks, lead-
ing us to design new tasks focusing on spatial orientation
(view-taking) in static and dynamic contexts. We standard-
ize all tasks to ease evaluation using a multiple-choice vi-
sual question answering (VQA) format.

SI represents a cognitive capacity encompassing the vi-
sualization, manipulation, and reasoning about spatial re-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

9058

https://wenqi-wang20.github.io/SITE-Bench.github.io/


lationships [21]. Figure 1 shows some SI tests at differ-
ent scales (left panel), that require spatial visualization in-
dependent of one’s viewpoint and spatial orientation due
to changes of viewpoints (middle), extrinsic, and dynamic
(right). SI is essential for many professions, including ar-
chitecture, engineering, and the arts, and SI is visual —
some works in cognitive science use SI and “visuospatial
abilities” interchangeably [62]. While the computer vision
community has addressed some components of SI through
tasks such as object detection [16, 22, 43, 73, 78], object re-
ferring [33, 51, 76, 79], 2.5D visual relationships [63], and
counting/localization in VQA [4, 29, 52], progress has oc-
curred mainly within individual domains or datasets. How-
ever, the advent of general-purpose large VLMs necessitates
a unified testbed incorporating these diverse tasks and some
uncaptured aspects of SI. This work presents such a bench-
mark and a systematic approach to building it.

The role of SI in AI models is highly tied to its role in
human perception and reasoning. Kant argued that “space
is the form of outer intuition", asserting that our percep-
tion of the physical world is structured by spatial relations
between objects [32]. This concept is equally crucial for
AI models, which have to develop SI to navigate and in-
teract effectively in complex environments, especially with
regard to tasks including but not limited to object manipu-
lation [7, 13, 35, 65] and navigation [3, 24, 28, 61]. In this
work, we specifically evaluate large VLMs. These models
have demonstrated impressive capabilities in visual reason-
ing and question answering, thus positioning them as key
components for perception and reasoning in embodied AI
agents and robotics [35, 84]. However, their ability to per-
form fine-grained spatial reasoning remains relatively lim-
ited and only partially assessed. We expect this work will
facilitate a comprehensive and holistic evaluation of VLMs
across as broad a spectrum of SI as possible.

The proposed SITE benchmark poses a stark contrast
to several similar efforts about SI. Table 1 summarizes the
key differences. The visual part in SITE combines natu-
ral images, synthetic images, multiple views, and videos,
while the existing ones contain only natural images [49, 66]
or videos [75]. More importantly, these benchmarks mea-
sure limited aspects of spatial intelligence. For instance,
CVBench [66] lacks viewpoint transformation. 3DSR-
Bench [49] is limited to single-image questions, overlook-
ing spatial reasoning in dynamic contexts. While VSI-
Bench [75] uses videos to evaluate VLMs’ capability to per-
form spatial reasoning across time, it is constrained to only
indoor scenes. Finally, while counting and localization fre-
quently appear in VQA benchmarks [4, 29, 46], tasks that
require reasoning across multiple viewpoints remain largely
unaddressed. These gaps manifest significant challenges in
comprehensively evaluating VLMs’ spatial intelligence.

To address the gaps, we approach the curation of SITE

from two complementary paths: Bottom-Up and Top-Down.
In the bottom-up path, we survey 30 representative datasets
and systematically extract vision-language tasks after care-
ful filtering. The filtering comprises two phases. We first
prompt large language models (LLMs) using the language
part of the tasks to reduce costs, and we then filter the
surviving tasks by jointly screening their vision-language
modalities. Finally, we identify six core categories from the
tasks. This bottom-up approach gives rise to 6,943 tasks,
including 3,135 image-based QA pairs and 3,808 video-
based QA pairs. The top-down approach draws upon three
classification systems of SI from the cognitive science lit-
erature, capturing SI’s primary factors from different per-
spectives: scales (figural, vista, and environmental), view-
taking (spatial visualization and orientation), intrinsic vs.
extrinsic structures, and static vs. dynamic scenes. Inves-
tigation shows that the tasks resulting from the bottom-up
path underrepresent the view-taking and dynamic factors,
so we design two novel types of tasks using the Ego-Exo4D
dataset [23], which is rich in camera views of dynamic
events. SITE unions the bottom-up and top-down tasks and
standardizes them for the ease of evaluations, with a total of
8,068 tasks, covering 30 existing benchmark datasets and 1
newly annotated dataset.

Through this systematic approach, we provide a compact
and comprehensive benchmark to analyze VLM’s spatial in-
telligence. We make the following key contributions.
1) Comprehensive Spatial Intelligence Benchmark: We

systematically analyze existing datasets and bench-
marks, extracting and pooling relevant tasks towards a
comprehensive SI evaluation dataset that covers a broad
range of visuospatial reasoning tasks.

2) Cognitive Science Inspired Taxonomy and New Tasks:
We refer to not one but three SI classification systems
grounded in cognitive science when building our dataset.
The ample references reveal a need for view-taking and
dynamic tasks, following which we design two novel
types of tasks to close the gap.

3) Evaluation of Leading VLMs. We use SITE, the re-
sulting benchmark dataset, to extensively assess state-of-
the-art VLMs. Results show that existing VLMs espe-
cially struggle with spatial orientation tasks, falling sig-
nificantly behind human performance.

4) Evident Correlation Between SI and Embodied AI. Fi-
nally, we empirically demonstrate that VLMs with high
visuospatial ability also perform well on robot manipu-
lation, with a correlation coefficient of 0.902.

2. Related Work

SI in cognitive science. SI has historically been studied
as the interaction of multiple sensory modalities, includ-
ing vision, touch, and hearing [14]. Out of these modali-
ties, vision has been recognized as the dominant modality
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SITE (ours) VSI-Bench [75] 3DSRBench [49] CVBench [66] SpatialEval [71]

Input natural/synthetic image, video video image image image
Scale figural, vista, environmental environmental vista vista figural, vista
Spatial Visualization ✓ ✗ ✗ ✗ ✗

Spatial Orientation ✓ ✓ ✓ ✗ ✓

Dynamic ✓ ✓ ✗ ✗ ✗

Intrinsic ✓ ✗ ✗ ✗ ✓

Table 1. SITE vs. similar efforts on benchmarking spatial intelligence. Besides being more diverse and comprehensive than existing
datasets, SITE also introduces a structured classification system to better analyze spatial reasoning capabilities.

facilitating sensory integration [62], making visual-spatial
ability the primary focus of mainstream spatial intelligence
assessments. Psychologists and cognitive scientists have
attempted to define and decompose spatial ability through
factor-analytic studies [8, 25, 47, 54, 56, 68] based on nu-
merous paper-and-pencil tests [15]. Several core factors
have consistently emerged in these studies, including Spa-
tial Visualization, Spatial Relations, and Spatial Orienta-
tion [47, 54, 56]. Later, Carroll et al. [8] introduced an
additional factor: Visual Memory. Uttal et al. [68] and
Hegarty and Waller [25] proposed new classification mod-
els for spatial intelligence. Due to variations in experimen-
tal paradigms and analytical methodologies, the definition
of spatial ability remains highly inconsistent—a widely ac-
knowledged consensus in cognitive science and psychol-
ogy [69]. In Section 3, we will further elaborate on these
concepts.

SI in computer vision. Spatial visual reasoning has long
been an active research topic in computer vision. Ini-
tial efforts have mostly focused on constructing large-scale
image-based datasets [4, 29, 31, 45], that include spatial
visual reasoning tasks, to evaluateVQA approaches. No-
table examples such as VQA [4], GQA [29], VSR [45],
and CLEVR [31] incorporate spatial reasoning tasks, often
evaluating a model’s ability to reason about spatial relation-
ships between objects within an image [4]. However, these
datasets generally focus on relatively simple and straightfor-
ward tasks, such as verifying the correctness of spatial rela-
tionships between objects in an image [4]. This limitation
negatively affects their ability to evaluate more complex as-
pects of spatial intelligence. Meanwhile, advancements in
3D vision and autonomous driving have significantly en-
riched spatial visual task datasets. Pioneering datasets such
as ScanNet [12] and NuScenes [59] provide high-quality
3D annotations, thus facilitating the construction of spatial
reasoning benchmarks [5, 9, 53, 59], which leverage multi-
image and multi-view inputs to increase spatial task com-
plexity. However, these benchmarks are still largely about
static scenes. In contrast, our work on SITE aims to miti-
gate this limitation by providing a systematic evaluation of
spatial intelligence at multiple scales and of both dynamic
and static scenes.

SI for benchmarking VLM models. As mentioned earlier,
many recent VLM benchmarks [18, 19, 42, 46, 80] have
acknowledged the importance of spatial intelligence and
included relevant evaluation questions. However, these
benchmarks are often limited since spatial reasoning is
generally treated as one among many tasks, scattered across
other evaluation tasks of comprehension, reasoning, and
perception, such as OCR and Math Reasoning. Existing
image-based VLM benchmarks including MME [18],
MMBench [46], SpatialEval [71] and CVBench [66]
comprise tasks including but not limited to object counting,
localization, and question answering about spatial rela-
tionships. The Blink [20] dataset is similar in nature to
our SITE where it introduces evaluation tasks that involve
spatial reasoning from multiple viewpoints and perspec-
tives. Given the inherent difficulty in equipping VLMs
with the capability to perform effective spatial reasoning,
Cheng et al. [11] propose a new data curation pipeline
that leverages 3D scene annotations as well as a module
for integrating depth information into VLMs. Similarly,
several video understanding benchmarks for VLMs also
include tasks related to spatial reasoning. Notable examples
of such datasets include MLVU [83], MVBench [42], and
VideoMME [19]. However, similar to the image counter-
parts, these video benchmarks do not systematically isolate
spatial intelligence as a core focus of their evaluations.
Additionally, recent works such as 3DSRBench [49] and
SpatialEval [71], heavily emphasize their evaluations on
different aspects of spatial reasoning but are primarily lim-
ited to single-image evaluations. Similarly, VSI-Bench [75]
incorporates video-based spatial tasks but remains con-
strained to indoor environments. Despite the contributions
of these works, the introduced benchmarks generally do
not explicitly evaluate VLMs’ spatial reasoning abilities in
a structured and comprehensive manner while our SITE
aims to bridge this gap by evaluating spatial intelligence
across multiple aspects and diverse visual context.

3. What Makes Spatial Intelligence (SI)?

We aim to cover various factors of SI comprehensively, and
yet the first challenge we encounter is the lack of a con-
sensus on the categorization of SI [69]. To the best of our
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Figure 2. Data collection pipeline for the bottom-up part of our benchmark. We conduct a large-scale effort to select image and video-
based benchmarks that may contain SI tasks before using the GPT-4o model to filter out irrelevant evaluation samples. Finally, we generate
6 coarse categories and perform stratified sampling to obtain an even distribution over all SI categories.

understanding, at least three major classification systems
about SI exist in cognitive science, and we refer to them
all when building our benchmark.

Figural, vista, and environmental SI. Hegarty et al. study
SI at figural, vista, and environmental scales [27, 57] and
note that “processing spatial information at different scales
of space involves different brain structures and mecha-
nisms,” inspiring us to include visual inputs at all these
scales. Figural space is small relative to the human body and
can be apprehended from a single viewpoint. The follow-
ing cognitive tests are in this space: mentally folding paper,
transforming shapes, and solving mazes. Vista space, such
as single rooms and town squares, is larger than the body
and remains apprehensible from a single viewpoint. Envi-
ronmental space contains an individual, referring to cities,
neighborhoods, etc., which one must navigate to apprehend.
Figure 1(left) presents examples at the three scales.

Spatial visualization & orientation. Hegarty and Waller
compiled a summary of SI factors identified from primary
cognitive studies [26], including spatial visualization (VZ),
spatial orientation (SO), kinesthetic imagery [56], relational
reasoning [47], visual memory [8], and others. Of these, VZ
and SO are considered fundamental (see Figure 1(middle)
for examples). Spatial visualization refers to the ability to
mentally manipulate, rotate, or invert objects independently
of one’s own perspective, while spatial orientation involves
imagining object appearances from differing observer view-
points. It is important to note that these factors are derived
from cognitive tests conducted prior to 2000, which primar-
ily assess SI at figural and vista scales. It is also worth not-
ing the extensive suite of cognitive tests about SI designed
by Eliot and Smith [15].

2x2 classification. Uttal et al. categorize SI using a 2x2
classification system that relies on two distinctions, intrinsic
vs. extrinsic and static vs. dynamic. Figure 1(right) demon-
strates this system. Intrinsic information refers to an ob-
ject’s defining features, parts, and the relationships among

the parts. Extrinsic information, conversely, concerns the
spatial relationships between objects within a group or their
relation to a broader framework. Static tasks are about fixed
spatial information (e.g., counting chairs in a dining room),
while dynamic tasks involve movement and transformation
(e.g., mental rotation of a 3D shape).

In what follows, we employ all three categorization
systems to drive our overarching design complementarily;
meanwhile, we rely on them to balance and examine the
coverage of the resulting benchmark from different aspects.
Utilizing three rather than one categorization marks a sig-
nificant difference between our work and most existing
benchmarking efforts [18, 40, 42, 46, 49, 59, 75].

4. Data
We adopt a two-stage approach to constructing SITE. To
begin, in Section 4.1, we compile a list of evaluation tasks
from a suite of benchmarks that are focused on evaluat-
ing existing AI models’ SI. Through a series of analysis
and filtering steps, we construct a unified multiple-choice
QA benchmark in a bid to standardize evaluations of SI in
VLMs. Next, using the empirical analysis performed earlier
as well as the classification framework introduced in Sec-
tion 3, we identify two underrepresented aspects of SI that
are largely unaddressed by existing spatial reasoning bench-
marks. To address these gaps, we propose new evaluation
tasks to enable a more comprehensive and holistic evalua-
tion of VLMs’ spatial reasoning capabilities in Section 4.2.
Finally, we describe the curation of our final SITE dataset
in Section 4.3.

4.1. Data Collection
Given the large number of isolated and fragmented evalua-
tion benchmarks that focus on different aspects of SI, col-
lecting a large-scale and comprehensive evaluation bench-
mark presents a significant challenge. With this challenge
in mind, we propose a systematic data collection pipeline
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designed to filter and sample tasks relevant to SI in a struc-
tured manner, as Figure 2.

Data collection and filtering. To begin, we manually se-
lect a set of representative VQA datasets that potentially
cover some aspects of SI (Figure 2). The initial collection of
datasets comprises 22 image datasets and 8 video datasets,
where examples of the former include VSR [45] as well as
CV-Bench [66], and the latter include VSI-Bench [75] and
VideoMME [19], respectively. We provide a detailed de-
scription of our selected benchmarks in the supplemental
material. We note that we focus exclusively on the valida-
tion and test splits for each dataset. While the aforemen-
tioned datasets are generally large, they often only contain
a subset of evaluation samples that are related to SI. Thus,
it is necessary for us to filter out evaluation samples that
are not relevant to the goal of evaluating spatial reasoning
in VLMs. To filter out irrelevant evaluation samples, we
adopt different strategies based on the existing annotations
in each dataset. For datasets that contain category labels
for the evaluation samples, we only retain evaluation sam-
ples that fall under categories relevant to spatial reasoning
while discarding the rest. For datasets without predefined
labels, we use a pretrained Large Language Model (LLM)
to perform filtering of their constituent evaluation samples
as described below.

LLM filtering. To further refine the quality and relevancy
of the collected evaluation samples, we employ a filtering
process by leveraging GPT-4o [2], a powerful LLM, to
classify the evaluation samples (Figure 2). A major issue
we faced in curating a comprehensive spatial reasoning
benchmark is that different datasets use different labels
for their evaluation samples, even though they might be
evaluating similar aspects of SI. We tackle this issue by
prompting the LLM to generate 6 coarse categories of tasks
pertaining to SI. Specifically, we amass a set of original
question labels from existing datasets and create a prompt
for the LLM along with one to two sample datapoints
as context for generating the task categories. The six
coarse-level spatial intelligence categories are as follows:
Counting and Existence (Count.), Spatial Relationship
Reasoning (Rel.), Object Localization and Positioning
(Loc.), 3D Information Understanding (3D Inf.), Multi-
View Reasoning (MultiV.), and Movement Prediction and
Navigation (Mov.). We proceed by classifying the valid
spatial intelligence evaluation samples across all datasets
into the abovementioned six categories.

Despite this categorization, many evaluation samples
lack task-type labels or have noisy annotations. To refine
the classification, we conduct a filtering stage using GPT-
4o. We design a prompt template by incorporating key tex-
tual dataset information from each evaluation sample (e.g.,
questions, answers, options, and descriptions) along with
carefully selected example data. The LLM is then queried

Statistic Number

Total questions 8,068
- 4-choice questions 5,019 (62.2%)
- 2-choice questions 1,573 (19.5%)
- 3/5/6-choice questions 1,476 (18.3%)

- Questions with annotations 6,943 (86.1%)
- Questions newly annotated 1,125 (13.9%)

Source datasets 31
- Existing image datasets 22
- Existing video datasets 8
- Our newly annotated datasets 1

Number of images 13,172
Number of videos 3,808

Table 2. SITE benchmark statistics.

to determine: (1) Whether the task pertains to spatial intel-
ligence; (2) If so, which coarse category it falls under. We
provide an example of the prompt template in the supple-
mental material.

Statistics and Reform QA types. After undergoing
LLM-based filtering, the resulting dataset is reduced to
223,083 task examples, comprising 206,887 image-based
and 16,196 video-based QA pairs relevant to spatial intelli-
gence. We conduct a statistical analysis of the data across
the coarse-level spatial categories and observe a significant
data imbalance. Specifically, Relationship Reasoning (Rel.)
and Counting and Existence (Count.) problems dominate
the evaluation. In contrast, tasks such as Multi-View Rea-
soning (MultiV.) are underrepresented to a large degree.
Additionally, due to the diverse data sources, the QA for-
mats can vary considerably across different datasets. To en-
sure consistency and ease of evaluation, we standardize all
tasks to a multiple-choice QA format, where we reformulate
open-ended QA tasks accordingly.

4.2. Novel Proposed Tasks
To apply the cognitive science-based classification frame-
work introduced in Section 3, we also conduct a fine-
grained manual annotation of the filtered SI tasks. Follow-
ing the classification workflow illustrated in Figure 2, we
obtained the distribution of the collected dataset under dif-
ferent classification systems, as provided in the appendix.
Our analysis reveals that there is a significant lack of tasks
involving perspective transformations, which indicates that
most existing SI evaluation tasks are constrained to reason-
ing from a fixed camera viewpoint. However, perspective
transformation is especially essential for spatial reasoning
in real-world scenarios such as navigation and route plan-
ning, where humans are naturally able to interpret spatial
relationships from multiple viewpoints. To bridge this gap,
we introduce two novel tasks specifically designed to eval-
uate extrinsic-static and extrinsic-dynamic spatial reason-
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View Association Frames Reordering

Model ego2exo exo2ego ego2exo exo2ego

Baseline & Upperbound on small subuset
Random 0.0 0.0 0.0 0.0
Human performance 100 100 98 96
InternVL-2.5-8B 11.11 -5.56 -6.67 -6.67
GPT-4o 28.89 37.77 20.00 11.11

Open-source
LLAVA-OneVision-0.5B 0.46 3.38 3.61 3.85
LLAVA-OneVision-7B 21.80 10.10 2.01 -4.41
Phi-3.5-Vision-4B 5.09 2.11 4.42 -0.28
InternVL-2.5-4B 1.85 -2.11 8.43 -4.79
InternVL-2.5-8B -5.56 5.91 5.22 -0.66
QWen2.5-VL-3B -0.93 0.84 3.61 -2.54
QWen2.5-VL-7B 5.09 -3.80 7.63 4.23

Proprietary
Gemini-1.5-pro 15.30 -1.27 6.83 -4.04
GPT-4o 35.70 20.70 -2.01 -5.16

Table 3. Evaluation on our proposed View Association and
Frames Reordering tasks. Dark red: Best among all models,
light red: Best among open-source models.

ing under perspective-transformed conditions.

Data Preparation. To assess models’ perspective trans-
formation abilities in real-world scenarios, we leverage
videos and annotations from the Ego-Exo4D [23] dataset.
Ego-Exo4D provides 5,035 takes across eight real-world
scenarios, where each take includes at least one ego-
centric view and multiple exocentric views captured syn-
chronously. This multi-view setting provides a strong foun-
dation for our task design, enabling a robust evaluation of
spatial intelligence across diverse viewpoints.

Ego-exo View Association. As Figure 3 shows, this
extrinsic-static task requires VLMs to associate egocentric
and exocentric views of the same visual scene. Given an im-
age with an exocentric viewpoint, a model must select the
best-matching egocentric image from a set of candidates.
Conversely, if an egocentric image is given, the model has to
select the best-matching exocentric image. To construct this
task, we utilize fine-grained key step annotations provided
in the original dataset and sample multiple frames around
each key step. Then, we rely on qualified human annotators
to select challenging distractor frames.

Shuffled Frames Reordering. In this extrinsic-dynamic
task, a model has to infer the correct temporal order from
multiple viewpoints. Specifically, given a video clip, we
extract the start and end frames from the egocentric video
as reference points. Within this segment, we also sample 4
frames that capture key motion events from the exocentric
views before shuffling them randomly. Finally, the model
must predict the correct sequence by reasoning about mo-
tion dynamics across space and time. This task is also eval-
uated in reverse, by requiring models to predict the correct
temporal order of egocentric frames based on the provided

exocentric views. To ensure interpretability and feasibility
of our proposed frame-reordering task, we also incorporate
another round of human annotations to remove ambiguous
and extremely difficult cases.

4.3. SITE
To ensure a balanced representation of various SI factors,
we perform stratified sampling on the collected data from
Section 4.1 to achieve an even distribution across different
spatial categories while maintaining diversity. Including the
two newly proposed tasks, our final benchmark consists of
8,068 QA pairs, including 4,260 image-based QA pairs and
3,808 video-based QA pairs, covering 30 existing bench-
mark datasets and the Ego-Exo4D dataset. Table 2 shows
some statistics.

5. Experiments

5.1. Benchmark Evaluation

Evaluation Models. We evaluate 9 state-of-the-art VLMs
that accept both image and video inputs, covering a diverse
range of model architectures and parameter scales. From
open-sourced models, we select LLAVA-OneVision [41],
InternVL-2.5 [10], Qwen2.5-VL [6], and Phi-3.5V [1]. For
proprietary models, we evaluate GPT-4o [2] and Gemini
1.5 [64]. To ensure standardized and reproducible evalu-
ation, we utilize the lmms-eval [40] framework for bench-
marking all models.

Evaluation Metrics. To ensure consistent and reliable eval-
uation of VLM-generated responses, we employ an LLM
as part of an automated evaluation pipeline. In this study,
we use GPT-4o for assessing model outputs. Since our
benchmark follows a multiple-choice QA format with op-
tions of different lengths, the chance probability of guessing
the correct options varies across questions. To mitigate this
bias, we adopt a Chance-Adjusted Accuracy (CAA) metric,
which adjusts accuracy scores by accounting for the prob-
ability of random guesses, providing a more accurate mea-
sure of the model’s true reasoning ability beyond chance:

CAA =

(
N∑
i=1

Xi −
N∑
i=1

1

ni

)
/

(
N −

N∑
i=1

1

ni

)
(1)

where N , ni, and Xi are the total number of questions,
number of answer choices for the i-th multiple-choice ques-
tion, and an indicator variable, respectively. If the model
correctly answers the i-th question, we set Xi = 1. Other-
wise, we set Xi = 0. CAA = 1 when all predictions are
correct (Xi = 1 for all i), indicating perfect performance;
CAA = 0 when the preditions perform no better than ran-
dom guessing (

∑
Xi =

∑N
i=1

1
ni

); CAA < 0 reflects per-
formace worse than random guess. This adjustment ensures
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Figure 3. Ego-Exo view association tasks. The goal of this task is to pick the correct exocentric view given the egocentric view of
a visual scene or vice versa.

Model Overall Count Loc 3D Inf MultiV Rel Mov

Random 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tiny Subset
Human 67.5 66.0 83.3 54.7 87.5 73.0 52.5
InternVL-2.5-8B 34.3 48.5 46.8 9.32 8.51 45.6 23.7
GPT-4o 35.6 42.4 51.2 11.0 17.8 42.7 19.5

Open-source
LLAVA-OV-0.5B 18.4 28.0 32.3 5.67 3.77 30.6 4.70
LLAVA-OV-7B 30.2 51.8 38.5 22.4 9.40 55.3 9.18
Phi-3.5-Vision 21.8 33.2 34.0 11.7 3.33 32.8 11.7
InternVL-2.5-4B 29.4 47.9 32.9 11.4 3.94 47.2 22.9
InternVL-2.5-8B 32.8 47.1 37.0 23.2 9.05 47.6 28.7
Qwen2.5-VL-3B 29.5 45.6 37.5 13.2 7.14 45.6 18.8
Qwen2.5-VL-7B 31.4 52.6 44.1 9.42 1.08 51.5 18.9

Proprietary
Gemini-1.5-Pro 32.5 48.0 45.8 25.3 5.33 48.8 18.4
GPT-4o 37.8 44.6 56.0 26.9 22.0 54.6 18.4

Table 4. Performance comparison on the full SITE bench-
mark. Dark red: Best, light red: Best among open-source models.

that model performance is evaluated as the improvement be-
yond random chance, providing a fairer comparison across
questions with different numbers of answer options.
Baseline and Upper Bound. We use random chance as the
baseline performance, where the expected score is 0, fol-
lowing the CAA metric in equation 1. For the upper bound,
we evaluate on six task categories, randomly sampling 50
QA pairs per task (see the Tiny Subset group in Table 4).
We then conduct human performance evaluation by select-
ing 7 human participants to complete the benchmark. CAA
scores from all participants are computed and averaged to
derive the final upper bound performance.

5.2. Results on SITE

View Association. We begin by reporting the results of
our evaluation on our proposed tasks of view association
and frames reordering in Table 3. To benchmark the
difficulty of these two tasks, we conduct a human study
and the results demonstrate that humans are actually very
adept at understanding and reasoning about 3D visual
scenes from both egocentric and exocentric viewpoints.
We randomly sampled 30 questions from each of the
two views and found that human participants achieved

perfect accuracy (100%). However, even state-of-the-art
proprietary and open-sourced models such as GPT-4o and
InternVL-2.5-8B achieve very low performances compared
to the human level. This trend is also corroborated by the
accuracy obtained by the abovementioned models on the
full split of the view association task where GPT-4o and
Gemini-1.5-pro achieve an average of 28.20% and 7.03%,
respectively. Interestingly, while VLMs such as LLaVA-
OneVision and Qwen2.5-VL have been demonstrated to
perform well on conventional image and video question
answering benchmarks like MME and VideoMME, their
perception capabilities do not translate well to reasoning
about spatial relationships and information beyond just
perception. For instance, we observe that highly capable
VLMs such as LLAVA-OneVision-7B and QWen2.5-VL-
7B achieve very low average CAA of 15.95% and 0.65%
on this view association task. We hypothesize that the
lack of training data involving viewpoint transformations
in large vision-language datasets—where most reasoning
tasks rely directly on the camera’s perspective—is the
primary cause. The severe data imbalance observed during
our dataset collection further supports this hypothesis.

Frames Reordering. Furthermore, we also observe a
similar performance trend on our proposed task of temporal
frames reordering (Table 3 right). Once again, the results
show that humans are able to understand the temporal
occurrence of events from different viewpoints, where they
achieve close to perfect accuracy of 98% and 96% in the
ego2exo and exo2ego directions, respectively. Interestingly,
the GPT-4o model experiences a sharp drop in performance
on this task, as compared to the task of view association.
This might suggest that the GPT-4o model is not able
to understand the mapping between different viewpoints
of temporal events. Additionally, it is notable that the
large-scale and proprietary models are severely underper-
forming open-sourced VLMs such as InternVL-2.5-8B
and QWen2.5-VL-7B. In fact, the Qwen2.5-VL-7B model
achieves the best average performance of 5.93%. One pos-
sible reason underlying this result is that the Qwen2.5-VL

9064



model is trained on video grounding data, which helps the
model to learn a more effective understanding of time and
consequently, the temporal order of events in videos.

Evaluation on the full SITE. We report our evaluation of
state-of-the-art open-sourced and proprietary models in Ta-
ble 4. For more detailed analysis, we break down the results
of the evaluation across the six coarse categories of spatial
intelligence tasks, as discussed in Section 3. To begin, the
performance achieved by various open-sourced and propri-
etary models is consistent with our observations in Table 3.
There is a large performance gap between the accuracy
obtained by humans and state-of-the-art VLMs, which sug-
gests that simply scaling up the amount of supervised fine-
tuning (SFT) and instruction following multimodal data
for pretraining may be inadequate in helping these VLMs
to acquire effective spatial intelligence. It is also notable
that humans only achieve an overall CAA score of 67.5%,
which hints at the difficulty of our proposed SITE. Interest-
ingly, humans perform significantly worse on counting(e.g.,
counting in a long video), 3D understanding(e.g., inferring
the camera’s transformation matrix), and movement pre-
diction(e.g., navigating in a long video) as compared to the
other three categories. This result might be due to humans’
attention bottlenecks in tracking multiple objects [17],
explaining why counting moving objects and tracking
spatial transformations across time is very challenging.

However, the best-performing VLM GPT-4o still
underperforms the human performance by ∼32%. The
Qwen2.5-VL-7B and InternVL-2.5-8B models lead in
overall accuracy with 31.4% and 32.8%, respectively.
Despite containing much fewer model parameters, these
open-sourced models perform competitively with GPT-
4o and Gemini-1.5-Pro. Interestingly, we observe that
Qwen2.5-VL-7B performs the best among all open-sourced
VLMs on localization. This might be due to the pretraining
recipe of Qwen2.5-VL-7B which also includes image and
video grounding tasks [6]. We also see that multi-view
reasoning is especially challenging for VLMs in general,
where the performance obtained by GPT-4o is lower than
that of human performance by over 70% on the tiny subset.
On the full split, all of the state-of-the-art VLMs obtain
CAA of less than 10%. One possible reason for the low
performance is that these VLMs are generally not trained
with different viewpoints for the same image or video.

From these empirical results, we also observe the bene-
fits of using larger models. As evidenced by the consistent
performance gains obtained by LLaVA-OneVision-7B and
Qwen2.5-VL-7B over their smaller counterparts, VLMs
with a higher number of parameters generally are able to
perform spatial reasoning of visual scenes and environ-
ments much more effectively. However, it is notable that 3D
understanding scores are consistently low across all VLMs,
with most models scoring below 15%, indicating a persis-

tent challenge in understanding depth(e.g., reasoning the
depth relationships between objects) and three-dimensional
spatial transformations(e.g., folding a 2D grid into a cube).

5.3. Spatial Intelligence on Downstream Tasks

Model L2 Dist ↓ SR (%) ↑ CAA ↑
LLaVA-OneVision-0.5B 0.268 ± 0.241 0.0 18.4
LLaVA-OneVision-7B 0.142 ± 0.172 0.0 30.2
Qwen2.5-VL-3B 0.139 ± 0.153 0.0 29.5
Qwen2.5-VL-7B 0.030 ± 0.040 38.0 31.4

Table 5. Correlation between SI and robotics manipulation on
Libero Spatial. The Pearson correlation coefficient between the
negated mean L2 distance and CAA score is 0.902.

To understand why spatial intelligence is important,
we conduct a toy experiment where we evaluate multiple
VLMs of varying sizes on other real-world embodied tasks
using the LIBERO-Spatial [44] dataset. Our goal is to ana-
lyze the relationship between performance on spatial intelli-
gence benchmarks and a model’s capability to perform well
in real-world tasks. Thus, we fine-tune and evaluate both
variants of the LLaVA-OneVision and Qwen2.5-VL model
variants under the few-shot setting. Specifically, we only
use 40-160 trajectories from each task in the spatial suite
to train each model, but we do not notice much difference.
We use a constant learning rate of 2e-5 and fine-tune each
model for 30 epochs. In Table 5, we report the mean L2
distance between the final positions of the target object and
robot arm effector across all episodes as well as the overall
success rate. The negated mean L2 distance and CAA
scores on our SITE benchmark across all VLMs have a
positive Pearson Correlation Coefficient of 0.902. Notably,
we also observe that the Qwen2.5-VL-7B model achieves a
success rate of 38% while the others fail completely. These
results suggest that pretraining data recipes and scale are
both important for improving spatial intelligence in VLMs.
We provide a more detailed correlation analysis in the ap-
pendix, comparing the impact of different benchmarks on
embodied tasks. Importantly, these results indicate that AI
agents have to possess a high degree of spatial intelligence
to reason and interact effectively in the physical world.

6. Conclusion

In this work, we introduce SITE, a comprehensive bench-
mark focused on evaluating VLMs’ ability to perform
visuospatial reasoning. We pull tasks from 30 existing
datasets and then design two novel types of tasks for
view-taking and dynamic scenarios. Evaluation on SITE
demonstrates a huge gap between humans and state-of-
the-art VLMs. Moreover, we empirically demonstrate the
positive correlation between the performance of VLMs on
SITE and a robot manipulation task.
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