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Abstract

Multi-modal perception is essential for unmanned aerial ve-
hicle (UAV) operations, as it enables a comprehensive un-
derstanding of the UAVs’ surrounding environment. How-
ever, most existing multi-modal UAV datasets are primar-
ily biased toward localization and 3D reconstruction tasks,
or only support map-level semantic segmentation due to
the lack of frame-wise annotations for both camera im-
ages and LiDAR point clouds. This limitation prevents
them from being used for high-level scene understand-
ing tasks. To address this gap and advance multi-modal
UAV perception, we introduce UAVScenes, a large-scale
dataset designed to benchmark various tasks across both
2D and 3D modalities. Our benchmark dataset is built
upon the well-calibrated multi-modal UAV dataset MARS-
LVIG, originally developed only for simultaneous local-
ization and mapping (SLAM). We enhance this dataset by
providing manually labeled semantic annotations for both
frame-wise images and LiDAR point clouds, along with ac-
curate 6-degree-of-freedom (6-DoF) poses. These additions
enable a wide range of UAV perception tasks, including
segmentation, depth estimation, 6-DoF localization, place
recognition, and novel view synthesis (NVS). Our dataset
is available at https://github.com/sijieaaa/
UAVScenes

1. Introduction
With the expansion of the low-altitude aerial economy
[44, 54, 70, 83], UAVs have become indispensable for aerial
taxi services [15, 17, 18], low-altitude logistics [8], agri-

*The first six authors contribute equally: Sijie Wang, Siqi Li, Yawei
Zhang, Shangshu Yu, Shenghai Yuan, and Rui She.
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Figure 1. Visualization of frame-wise image and LiDAR point
cloud annotations of the proposed UAVScenes dataset.

culture [69], inspection [16, 66, 67, 105], and emergency
response [44]. Unlike ground vehicles, UAVs can operate
above ground constraints, addressing limitations in current
urban systems.

Yet, as UAVs tackle increasingly sophisticated tasks in
diverse urban settings, they require training on high-quality
datasets for reliable perception. Despite the potential of a
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growing low-altitude economy, most existing datasets focus
on single-modality camera data [11, 30, 39, 65, 75, 80, 104].
Although cameras provide rich texture information, they
cannot capture the vital 3D spatial data required for more
comprehensive and robust scene understanding.

Recent perception advances enable UAVs to carry
lightweight 3D sensors, such as depth cameras, which work
well for close-range tasks but remain limited in broader
applications [2, 91, 106]. In contrast, 3D LiDAR offers
long-range depth information and, when combined with
cameras, provides multi-modal perception that substan-
tially enhances UAV capabilities. While recent datasets
[27, 56, 74, 87, 102, 103, 122] integrate cameras and Li-
DAR for richer 3D data, most focus on SLAM or 3D recon-
struction and lack annotations for broader UAV tasks. Other
multi-modal datasets [49, 61] only label 3D maps, limiting
support for frame-wise tasks like image and LiDAR point
cloud semantic segmentation.

In summary, despite advancements in UAV datasets, ex-
isting multi-modal UAV datasets either focus on SLAM [73,
112] and 3D reconstruction [25, 26] or only label 3D
maps [49, 61]. None provides full semantic annotations for
frame-wise geo-referenced images and LiDAR data. This
gap limits their utility for real-time aerial scene understand-
ing [110], navigation [31], and precision operations [8, 57].

To address this gap in UAV perception research,
we present a large-scale annotated multi-modal bench-
mark dataset, UAVScenes. Built upon the MARS-LVIG
dataset [56], originally designed for SLAM, UAVScenes in-
cludes semantic annotations for frame-wise camera images
and LiDAR point clouds (see Fig. 1), along with accurate
6-degree-of-freedom (6-DoF) poses and reconstructed 3D
maps. It supports a wide range of multi-modal UAV per-
ception tasks, including semantic segmentation, depth esti-
mation, localization, and novel view synthesis (NVS). Our
main contributions are as follows:
• We present UAVScenes, a comprehensive multi-modal

dataset for UAV perception that provides robust semantic
scene understanding for both images and LiDAR point
clouds, along with accurate 6-DoF poses and recon-
structed 3D maps.

• Our dataset features over 120k frames with semantic an-
notations for images and LiDAR point clouds, surpassing
the scale of most existing UAV research datasets.

• We conduct extensive benchmarking and evaluation of
state-of-the-art (SOTA) methods on our dataset, establish-
ing it as a wide-ranging UAV perception benchmark that
supports at least six distinct tasks.

2. Related Work
In this section, we summarize existing autonomous driving
and UAV datasets, discussing their sensor modalities, task
coverage, and environmental constraints. We then highlight

their limitations in multi-modality and semantic labeling.
By comparison, UAVScenes is designed to address these
gaps by offering robust multi-modal coverage and frame-
wise semantic annotations.

2.1. UAV Datasets
UAV perception datasets have become increasingly impor-
tant due to the unique challenges posed by aerial perspec-
tives. Over the years, various UAV datasets [30, 33, 39, 56,
61, 74, 86, 99, 103, 107] have been proposed, each con-
tributing to different aspects of UAV perception.
Synthetic Datasets: Synthetic UAV datasets are primarily
generated using simulation tools or platforms like Google
Earth and CARLA [29]. Typical datasets like Mid-Air
[33], TartanAir [97], University-1652 [118], and SynDrone
[81] are used for various tasks. Mid-Air and TartanAir of-
fer large-scale synthetic images and LiDAR-type data in
unstructured environments. University-1652 features syn-
thetic aerial images with satellites and ground views, pro-
viding the view when flying around the target. SynDrone
offers semantic annotations for both synthetic LiDAR and
camera. These datasets provide sufficient synthetic drone-
view data for localization or scene understanding tasks.
Camera-Only Datasets: Beyond synthetic datasets, early
real-world UAV datasets predominantly consist of visual
camera-only modality due to the high cost of sensors and
the relative immaturity of fusion technologies. These
datasets provide visual imagery typically used for camera-
based tasks. For example, some datasets [1, 14, 30, 32, 39,
65, 75, 80, 107, 120] include semantic or object annotations,
supporting tasks such as semantic segmentation and object
detection. Additionally, other datasets [22, 99, 104, 121]
provide location data for each image, which can be used to
benchmark localization and place recognition models.

However, these datasets lack the 3D LiDAR modality,
limiting their application in 3D scene understanding and
high-precision multi-modal fusion tasks.
Multi-Modal Datasets: With the advancement of sen-
sor technology, an increasing number of multi-modal UAV
datasets [27, 49, 56, 61, 74, 86, 87, 102, 103, 122] have
emerged in recent years.

The H3D dataset [49] provides annotations on 3D maps
reconstructed by LiDAR and camera data. However, it does
not contain frame-wise annotations, which limits its appli-
cability for frame-wise perception evaluation.

The Drone Vehicle dataset [86] enhances drone surveil-
lance with labeled imagery for object detection and track-
ing. It also features infrared capabilities for visibility in
low-light conditions. However, the absence of LiDAR re-
stricts its use in 3D scene understanding and high-precision
localization. NTU VIRAL [74] is a dataset designed for
UAV SLAM and includes camera and LiDAR data. It
enables research in tasks like place recognition, 3D map-
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Dataset Modality LiDAR Type 6-DoF
Pose

#Real Camera Frames
with Frame-wise Anno. (type)

#Real LiDAR Frames
with Frame-wise Anno.

Multiple
Traversals

3D
Map

Mid-Air [33] Simulation no real LiDAR ✓ no real camera no real LiDAR ✓ ✓(with anno.)
TartanAir [97] Simulation no real LiDAR ✓ no real camera no real LiDAR ✓ ✓(with anno.)
University-1652 [118] Google Earth no real LiDAR - no real camera no real LiDAR - -
SynDrone [81] Simulation no real LiDAR - no real camera no real LiDAR - -

UAVDT [30] C - - 80k (bbox) - - -
VisDrone [120] C - - 40k (bbox) - - -
CARPK [39] C - - 1k (bbox) - - -
Semantic Drone [1] C - - 0.6k (mask) - - -
Aeroscapes [75] C - - 3k (mask) - - -
UAVid [65] C - - 0.3k (mask) - - -
FloodNet [80] C - - 9k (mask) - - -
CrossLoc [107] C - ✓ 7k (mask) - ✓ ✓(with anno.)
ALTO [22] C - - - - - -
STPLS3D [19] C - - - - - ✓(with anno.)
VDD [14] C - - 0.4k (mask) - - -
SUES-200 [121] C - - - - ✓ -
UAV-VisLoc [104] C - - - - ✓ -
HazyDet [32] C - - 12k (bbox) - - -
UAVD4L [99] C - ✓ - - - ✓

Hessigheim 3D [49] C+L RIEGL VUX-1LR - - - - ✓(with anno.)
Drone Vehicle [86] C+IR - - 57k (bbox) - - -
NTU VIRAL [74] C+L 2×3D-Ouster-16 ✓ - - ✓ ✓
UrbanScene3D [61] C+L Trimble-X7 ✓ - - ✓ ✓(with anno.)
GrAco [122] C+L Velodyne-16 - - - ✓ -
GauU-Scene V2 [103] C+L DJI-L1* ✓ - - ✓ ✓
FIReStereo [27] C+L Velodyne-16 - - - - -
MUN-FRL [87] C+L Velodyne-16 ✓ - - ✓ -
MARS-LVIG [56] C+L DJI-L1* + Livox-Avia - - - ✓ ✓

UAVScenes (ours) C+L Livox-Avia ✓ 120k (mask) 120k ✓ ✓(with anno.)

Table 1. Comparison of UAV datasets. Our dataset is the only one offering frame-wise annotations for both LiDAR and camera data on
real scenes. We only count frame-wise annotations of real data, excluding synthetic or rendered data. “C” represents visible cameras, “L”
represents LiDARs, and “IR” represents infrared cameras. “-” indicates that the dataset does not support this feature. “*” means that the
DJI-L1 sensor produces encrypted point clouds, so per-frame LiDAR cannot be accessed. “bbox” denotes bounding boxes, and “mask”
denotes semantic or instance masks.

ping, and localization. However, it is collected in indoor
and small-scale outdoor environments, limiting its appli-
cation for large-scale scene understanding. The Urban-
Scene3D dataset [61] provides high-resolution imagery and
LiDAR data from an urban setting, offering capabilities for
3D scene segmentation [115] and localization for UAVs.
However, it only offers semantic information on the re-
constructed 3D map without considering frame-wise Li-
DAR point clouds, which prevents benchmarking frame-
wise camera [58] and LiDAR [63] scene parsing [13].
GrAco [122] and FIReStereo [27] do not offer 6-DoF poses
and focus on 3-DoF localization and stereo estimation [93],
respectively. The GauU-Scene datasets [102, 103] col-
lect UAV camera and LiDAR data in various urban en-
vironments and provide geo-aligned 3D maps. However,
GauU-Scene uses DJI-L1 LiDAR, a closed-source sensor
with encrypted point cloud data, hindering frame-wise Li-
DAR perception. MUM-FRL [87] is equipped only with
a short-range LiDAR, resulting in substantial undetected
point cloud data on the ground due to the high flying alti-
tude. The MARS-LVIG [56] dataset stands out by providing
multi-modal data across diverse scenarios, including multi-
ple traversals through towns, valleys, airports, and islands.
Additionally, it features a synchronized camera-LiDAR

suite, ensuring well-aligned images and point clouds.
However, these existing multi-modal UAV datasets lack

frame-wise annotations for both images and LiDAR point
clouds, limiting their utility for benchmarking advanced
multi-modal perception tasks.

The UAVScenes dataset aims to fill this gap by providing
comprehensive semantic annotations for both frame-wise
images and LiDAR data. Additionally, it includes accurate
6-DoF poses and reconstructed point cloud maps, enabling
a wide range of tasks such as segmentation, depth estima-
tion, 6-DoF localization, place recognition, and NVS.

As shown in Tab. 1, UAVScenes is the only dataset that
simultaneously offers 6-DoF poses as well as frame-wise
image and LiDAR point cloud annotations. By providing
both image and LiDAR annotations with precise pose align-
ment, UAVScenes has the potential to significantly advance
research in multi-modal UAV perception.

2.2. Other Annotated Multi-Modal Datasets
Besides UAV research, there are also annotated multi-
modal datasets in other domains. In autonomous driving,
widely used examples include KITTI [36], KITTI-360 [59],
nuScenes [12], Waymo-Open [85], and K-Radar [78].
In robotics, popular multi-modal datasets include Wild-
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Scenes [89], 2D-3D-Semantic [6], RELLIS-3D [42], En-
voDat [76], and Great Outdoors [43]. For indoor settings,
EmbodiedScan [96], ScanNet [24], ScanNet++ [111], and
NYU Depth v2 [84] are widely used. However, these
datasets are not collected from UAV perspectives, limit-
ing their suitability for evaluating and benchmarking vari-
ous UAV tasks. To bridge this gap, UAVScenes is designed
to provide a comprehensive benchmark tailored for UAV-
based research.

3. The UAVScenes Dataset
UAVScenes builds on the MARS-LVIG [56] dataset.
Among existing multi-modal UAV datasets [27, 87, 103,
122], MARS-LVIG stands out for its extensive sequential
data gathered in diverse, large-scale environments—towns,
valleys, airports, and islands—all traversed multiple times.
This makes it ideal for benchmarking a variety of perception
tasks and the most suitable foundation for our new dataset.

Although MARS-LVIG provides rich data, it primarily
targets SLAM, offering only 4-DoF poses and reconstructed
3D point-cloud maps. These constraints limit its applicabil-
ity to tasks requiring semantic annotations and 6-DoF poses.

To address these gaps, we extend MARS-LVIG with
comprehensive camera and LiDAR semantic annotations
and reconstruct 6-DoF poses with aligned 3D maps. Ad-
ditionally, we benchmark six tasks and compare leading
SOTA methods.

3.1. Choices for 3D Reconstruction
The MARS-LVIG dataset provides only 4-DoF poses using
RTK, which includes a 3-DoF location and a yaw angle. As
a result, MARS-LVIG is suitable solely for 4-DoF localiza-
tion benchmarking as it lacks the necessary 6-DoF poses
required for evaluating more fine-grained localization and
reconstruction tasks, such as 6-DoF localization and NVS.

Initially, we attempt to use SOTA open-source LiDAR-
visual-inertial (LVI) SLAM methods, including FAST-
LIVO [117] and R3LIVE [60]. However, ground-facing
flight causes LiDAR degeneration [56], leading to unsatis-
factory reconstruction results (e.g., missing too many poses,
producing distorted 3D maps, and failing in reconstruction).

As an alternative, we use structure-from-motion (SfM)
solutions to reconstruct the 6-DoF poses along with the cor-
responding 3D maps. We have tried various SfM solutions,
including COLMAP [82], RealityCapture1, Metashape2,
and DJI Terra3. Among them, Terra, which can accept
global navigation satellite system (GNSS) coordinates as
the pose initializations and is specially designed for UAV
scenes, provides relatively better reconstruction results. As
shown in Figs. 2 and 3, the rendered image aligns well with

1https://www.capturingreality.com/
2https://www.agisoft.com/
3https://enterprise.dji.com/dji-terra

Figure 2. Reconstructed 3D maps and 6-DoF poses using Terra.
Poses are downsampled for better visualization.

the real captured images using the reconstructed 3D maps
and 6-DoF poses.

Rendered ImageReal Image Overlaid

Figure 3. Visualization of the image rendered from the recon-
structed 3D map and the 6-DoF camera pose. The rendered image
closely aligns with the original image when overlaid.

3.2. Frame-Wise Image Semantic Annotations
3.2.1. Static Class Annotations.
The MARS-LVIG dataset consists of multiple sensor data
sequences. We need to ensure that annotations are consis-
tent across consecutive frames. Following the annotation
methodology used in SemanticKITTI [7], we divide the en-
tire MARS-LVIG dataset into 8 distinct splits based on en-
vironmental and illumination conditions. Each split con-
tains 1-3 sequences collected continuously within the same
day, ensuring minimal scene changes except for dynamic
objects. Details can be found in the supplement.

We apply Terra SfM to each split, resulting in 8 recon-
structed 3D maps and their corresponding poses. The re-
construction for each split usually takes 3-10 hours4. For
each 3D map, we conduct manually annotating for 16 static
scene classes. These annotated 3D maps are then rendered
onto the corresponding camera views to produce annotated
2D semantic masks as shown in Fig. 4.

To ensure the quality of the rendered semantic annota-
tions, we manually check for consistency and correct any
unsatisfactory annotations. This process ensures that the
image semantic annotations are both sequentially consistent
and of high quality.

3.2.2. Dynamic Class Annotations.
Since the rendered static scene masks do not account for
dynamic objects, we manually annotate instance-wise la-

4Hardware: i9-13900K + RTX 4090*2.
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bels for 2 dynamic object classes (sedan and truck) in each
image as shown in Fig. 4. As MARS-LVIG is sequen-
tially captured, manual annotating can be partially accel-
erated by auto-labeling tracking (tracking is always unsta-
ble), followed by human verification and fixing. We use
X-AnyLabeling5 to achieve tracking. In total, we have man-
ually annotated over 280k dynamic instances in the dataset
(see the statistics in Tab. 2). The 2D static semantic anno-
tations and 2D dynamic instance annotations are then com-
bined to produce the final 2D annotations for each image.

This annotation process results in 120k annotated im-
ages with 19 classes, including 16 static classes, 2 dynamic
classes, and 1 background class. The overall class distribu-
tion is shown in Fig. 5.

Sedan Truck

Avg. BBox Height (pixel) 72 106
Avg. BBox Width (pixel) 68 106
Avg. BBox Area (pixel) 5001 12411
Avg. Polygon Area (pixel) 3210 6873
Avg. Occupancy Ratio 67% 62%

#Instances 270k 14k

Table 2. Image instance statistics for dynamic object classes.

Semantic Annotations 
on 3D Map

Raw Images

Reconstructed 
3D Map Render onto Images Result Verification

and Fixing

Instance Annotations
on Raw Images

Instance and Semantic
Annotation Fusion

Instance

Figure 4. The 2D image annotating pipeline. Manual annotating is
conducted at 3D map annotations, instance annotations, and fixing
stages.

3.3. Frame-Wise LiDAR Point Cloud Annotations
The LiDAR is a crucial sensor for multi-modal perception.
It casts laser beams to capture the spatial information6 of
the environment.

In the MARS-LVIG dataset, there are two distinct Li-
DAR sensors: the DJI-L1 and the Livox-Avia. Due to
manufacturer-imposed encryption on the DJI-L1’s output
data, access to its raw point clouds is restricted, limiting
its utility for open research. Therefore, our dataset annota-
tions are focused exclusively on data captured by the open-
source Livox-Avia LiDAR, which enables unrestricted ac-

5https://github.com/CVHub520/X-AnyLabeling
6Some LiDARs also provide other information, e.g., intensity.
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Figure 5. The annotation class distribution visualization. The
background class is ignored. Above: image pixel annotations. Be-
low: LiDAR point cloud annotations.

Rendered LiDAR 
Point Cloud Annotations

Result Verification 
and FixingLiDAR Point Cloud and 

Corresponding Image Annotations

Figure 6. The LiDAR point cloud annotating pipeline. Manual
annotating is conducted at fixing stages.

cess to high-quality point cloud data, facilitating broader
applicability and reproducibility in academic and industrial
research.

The MARS-LVIG dataset is acquired using a hardware-
synchronized camera-LiDAR suite, which incorporates a
calibrated camera and LiDAR sensors. By leveraging this
calibration, we project image annotations onto the corre-
sponding LiDAR point clouds. Following the procedure
described in Sec. 3.2, we conduct thorough consistency
checks, manually correcting any unsatisfactory annotations
within the LiDAR point clouds to ensure high fidelity be-
tween each camera-LiDAR frame pair. This workflow is
illustrated in Fig. 6. The class distribution for LiDAR point
cloud annotations is shown in Fig. 5.

4. Benchmark Experiments
In this section, we establish benchmarks on various percep-
tion tasks using the proposed UAVScenes dataset. The ex-
isting benchmark tasks include frame-wise image and Li-
DAR semantic segmentation, place recognition, depth esti-
mation, 6-DoF localization, and NVS.

4.1. Image Semantic Segmentation
Image semantic segmentation is a fundamental task in com-
puter vision and is essential for evaluating the performance
of vision models. It involves predicting the class label for
each pixel in an input image. We consider several backbone
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Image GT ResNet-50 ViT-s

Figure 7. Visualization of Image semantic segmentation results.

Point Cloud GT SPUNet MinkUNet

Figure 8. Visualization of LiDAR semantic segmentation results.

architectures, including ResNet [38], ConvNext [62], Con-
vNextV2 [98], ViT [28], MambaOut [114], and DeiT3 [88].
We use UperNet [101] as the segmentation head, which
is widely used in semantic segmentation evaluations. All
models are based on the TIMM package7.

As shown in Tab. 3, among these backbones, DeiT3 [28]
achieves the best performance. Moreover, the Transformer-
based models generally outperform convolutional neural
networks (CNNs), which demonstrate the effectiveness of
Transformers. We visualize some examples in Fig. 7.

4.2. Frame-wise LiDAR Semantic Segmentation

Frame-wise LiDAR point cloud semantic segmentation is
a crucial task for 3D scene understanding, involving the
prediction of class labels for each point in the LiDAR-
generated point cloud. For this task, we run and evaluate
three baseline models: MinkUNet [21], SPUNet [23], and
PTv2 [100]. All models are based on the Pointcept pack-
age8.

As shown in Tab. 3, the three networks show compara-
ble performance. PTv2 with the least number of param-
eters (11M) can surpass MinkUNet (38M), demonstrating
the network architecture effectiveness. In addition, the pool
class would be a challenging class for LiDAR semantic
segmentation as all three networks show 0 class IoU. This
would be attributed to the low quantity of annotated LiDAR
point clouds as in Fig. 5. We visualize some LiDAR seman-
tic segmentation examples in Fig. 8.

7https://github.com/huggingface/pytorch-image-
models

8https://github.com/Pointcept/Pointcept

4.3. Place Recognition
Place recognition treats localization as a retrieval problem
[5]. In this approach, the place is recognized by matching a
query image to a database of images, with the location of the
top-matched database image being regarded as the query’s
location. In this task, we compare camera-based, LiDAR-
based, and fusion-based place recognition methods. The
image-based models include GeM [79], RRM [53], Con-
vAP [4], MixVPR [3], AnyLoc [46], and SALAD [41].
The LiDAR-based models include MinkLoc3D [50], Min-
kLoc3D V2 [51], and BEVPlace [64]. The fusion-based
models include MinkLoc++ [52], AdaFusion [55], LCPR
[119], and UMF [35].

In Tab. 4, we compare the recall performance of different
models. Generally, fusion-based place recognition models
outperform their single-modal counterparts, demonstrating
the effectiveness of multi-modal fusion. For camera-based
place recognition models, the inclusion of strong foundation
backbones like DINO V2 [77] brings significant improve-
ments. Additionally, the projection model BEVPlace per-
forms worse than the voxel model MinkLoc3D, indicating
that BEV LiDAR projection may not be a suitable format
for place recognition under UAV perspectives.

4.4. Novel View Synthesis
NVS generates new perspectives of a scene from limited im-
age viewpoints, paving the way for realistic and efficient 3D
scene generation that captures intricate lighting, textures,
and geometric details. NVS is largely driven by neural radi-
ance fields (NeRFs) [68], which model 3D scenes as contin-
uous functions with differentiable rendering, and 3D Gaus-
sians (GS) [48], which represent scenes as learnable 3D
Gaussians for rasterized rendering. To evaluate NVS, we in-
troduce NeRFs-based and 3D GS-based baselines: Instant-
NGP [71], 3DGS [48], GaussianPro [20], DCGaussian [94],
and Pixel-GS [116].

The quantitative results and qualitative visualizations on
UAVScenes are presented in Tab. 5 and Fig. 9, respectively.
All 3D GS-based methods use the raw point cloud pro-
vided by the dataset as the initialization. The NeRF method
Instant-NGP performs poorly on large-scale aerial images.
The 3D GS methods, 3DGS and Pixel-GS, achieve bet-
ter rendering performance than others. However, in cer-
tain areas, such as adjacent buildings and repetitive forest
scenes, the performance of NVS still requires improvement,
as highlighted by red boxes.

4.5. 6-DoF Visual Localization
6-DoF visual localization is a fundamental task in com-
puter vision, essential for applications like robotics and
augmented reality. Its goal is to estimate the 6-DoF pose
of a query image within a pre-existing environment map.
Currently, absolute pose regression (APR) and scene co-
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#Params Arch. Model mIoU↑

Per Class IoU↑

Roof Dirt
Road

Paved
Road River Pool Bridge Conta. Airstrip Traffic

Barrier
Green
Field

Wild
Field

Solar
Panel Umbre. Transp.

Roof
Car
Park

Paved
Walk Sedan Truck

Image Semantic Segmentation

21M CNN ResNet-34 [38] 59.9 74.3 53.9 77.4 91.6 25.4 21.4 69.9 88.1 53.8 89.8 87.4 74.7 2.1 64.2 52.0 89.1 22.3 41.5
25M CNN ResNet-50 [38] 61.3 76.0 52.6 77.8 88.4 19.3 30.9 69.3 91.9 49.4 90.4 88.6 77.9 8.5 65.8 51.9 94.5 20.1 49.8
44M CNN ResNet-101 [38] 60.7 77.0 53.9 78.1 75.9 29.2 33.8 70.3 92.6 54.0 91.0 80.9 80.4 8.3 66.2 50.3 91.1 16.5 43.3
28M CNN ConvNext-t [62] 55.3 72.4 46.4 71.1 84.4 18.1 20.7 64.2 82.8 46.2 91.2 84.4 79.1 1.1 61.4 39.9 81.1 10.5 39.8
28M CNN ConvNextV2-t [98] 53.1 70.8 44.6 67.4 88.0 21.0 18.0 55.9 80.1 43.6 90.7 86.6 72.3 5.8 56.9 27.6 80.0 7.8 38.5
48M CNN MambaOut-s [114] 51.8 65.2 46.6 69.9 56.5 25.4 19.0 58.1 78.0 36.5 82.3 82.7 76.2 2.6 57.8 44.1 79.9 12.0 39.2
26M CNN MambaOut-t [114] 50.0 59.0 43.1 63.5 65.6 19.1 20.0 55.9 74.0 34.4 80.0 81.0 76.1 1.3 57.8 40.5 80.0 12.0 37.1
5M Transf. ViT-t [28] 62.8 74.3 58.8 76.7 90.9 41.2 52.8 51.3 80.4 39.4 93.6 90.3 88.9 19.3 76.4 62.3 86.4 26.5 20.3

22M Transf. ViT-s [28] 63.9 75.0 61.2 77.4 88.7 49.0 54.9 56.5 86.5 51.4 94.3 90.0 89.5 11.2 80.5 52.4 89.7 20.2 21.9
22M Transf. DeiT3-s [88] 67.6 76.0 67.0 81.1 91.0 58.1 57.8 62.7 88.0 41.6 91.1 91.7 90.0 24.1 82.9 63.2 93.0 28.1 30.0
38M Transf. DeiT3-m [88] 68.3 77.6 66.2 79.3 92.2 52.3 56.6 58.9 88.6 53.2 93.6 92.4 90.1 30.9 83.5 60.4 93.7 27.3 32.5

Frame-wise LiDAR Semantic Segmentation

38M - MinkUNet [21] 32.7 74.5 43.4 57.6 61.3 0.0 10.3 14.4 47.3 32.3 86.2 81.8 2.3 1.4 31.1 9.9 18.3 13.4 3.1
39M - SPUNet [23] 34.4 73.9 38.1 56.3 37.0 0.0 15.1 38.5 65.4 38.8 85.7 78.1 0.0 0.0 23.0 8.4 47.2 13.0 0.0
11M - PTv2 [100] 33.2 71.7 38.4 32.7 38.2 0.0 8.6 47.9 34.2 50.1 75.1 55.0 3.0 53.8 41.3 2.0 0.1 27.1 18.4

Table 3. Semantic segmentation results with mIoU (%) and class IoU (%). Above: Camera-Based. Below: LiDAR-Based.

Model Modality Recall@1↑ Recall@5↑ Recall@10↑

GeM [79] C 42.1 55.8 62.0
RRM [53] C 41.7 53.4 61.1
ConvAP [4] C 41.1 54.8 63.0
MixVPR [3] C 34.0 53.0 61.6

AnyLoc [46] (DINO V2-s [77]) C 58.5 74.4 79.1
SALAD [41] (DINO V2-s [77]) C 67.1 76.4 79.8

MinkLoc3D [50] L 41.9 60.0 66.7
MinkLoc3D V2 [51] L 42.8 61.5 67.3
BEVPlace [64] L 32.6 54.6 64.2

MinkLoc++ [52] C+L 47.1 63.5 69.0
AdaFusion [55] C+L 46.3 63.4 70.2
LCPR [119] C+L 42.3 62.3 68.8
UMF [35] C+L 40.1 53.9 61.0

Table 4. Place recognition performance with Recall@K (K =
1, 5, 10) (%). AnyLoc and SALAD use the visual foundation
backbone DINO V2[77], while other models use ResNet-18 as the
2D backbone.

GT                         Instant-NGP                      3DGS

AMtown

HKisland

Figure 9. Qualitative evaluation of NVS. The areas outlined in red
highlight regions with significant rendering discrepancies.

ordinate regression (SCR) have made significant strides in
localization. APR estimates the 6-DoF pose of an input
image through direct regression, enabling an end-to-end,
highly efficient localization process. SCR localizes by re-
gressing the 3D coordinates of 2D image pixels rather than

directly estimating the camera pose, enabling training via
re-projection error. The camera pose is then determined
through 2D-3D correspondences. This paper conducts ex-
periments using modern APR baselines, including PoseNet
[47], AtLoc [90], and RobustLoc [95], as well as SCR base-
lines such as ACE [10], GLACE [92], and FocusTune [72].

The localization errors (position and rotation) and quali-
tative visualizations on UAVScenes are presented in Tab. 6
and Fig. 10, respectively. All APR-based methods demon-
strate strong performance, with RobustLoc achieving the
best results, significantly outperforming others. SCR-based
methods use a frozen pre-trained encoder for faster training,
but its ground-urban-scene pretraining limits performance
on UAV-view images, leading to higher localization errors.

HKairport GLACE

RobustLocAtLoc
Figure 10. Visualization of 6-DoF localization. The ground truth
and prediction are black and red lines, respectively. The star de-
notes the first frame. Metrics are in meters.
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Model AMtown AMvalley HKairport HKisland
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Instant-NGP [71] 20.09 0.451 0.674 23.20 0.497 0.622 19.39 0.442 0.604 16.81 0.508 0.556
3DGS [48] 22.95 0.547 0.551 25.12 0.576 0.514 20.92 0.523 0.481 17.85 0.553 0.494
GaussianPro [20] 22.83 0.546 0.549 25.09 0.576 0.511 20.86 0.521 0.478 17.82 0.552 0.491
DCGaussian [94] 22.92 0.537 0.556 25.10 0.573 0.516 20.81 0.510 0.495 17.77 0.546 0.503
Pixel-GS [116] 22.95 0.547 0.551 25.11 0.576 0.514 20.93 0.523 0.481 17.84 0.553 0.494

Table 5. Quantitative evaluation of NVS. The evaluated metrics include PSNR, SSIM, and LPIPS.

Model AMtown AMvalley HKairport HKisland Average

ACE [10] 180.8 / 1.5 145.8 / 0.6 83.0 / 0.6 121.9 / 0.8 132.9 / 0.9
FocusTune [72] 188.9 / 1.0 156.0 / 0.6 72.1 / 0.6 113.7 / 0.9 132.7 / 0.8
GLACE [92] 90.9 / 0.6 90.1 / 0.4 58.3 / 0.5 102.8 / 0.7 85.5 / 0.6
PoseNet [47] 43.1 / 0.2 22.7 / 0.2 14.9 / 0.2 22.5 / 0.1 25.8 / 0.2
AtLoc [90] 12.7 / 0.2 9.0 / 0.1 6.0 / 0.1 6.7 / 0.1 8.6 / 0.1
RobustLoc [95] 5.9 / 0.1 9.8 / 0.1 4.9 / 0.1 3.6 / 0.1 6.1 / 0.1

Table 6. Quantitative evaluation of visual localization on the
UAVScenes dataset. We report median position error (m) and me-
dian rotation error (degree).

4.6. Depth Estimation
Depth estimation involves predicting pixel-wise depth val-
ues from input images, bridging the gap between 2D im-
agery and 3D spatial understanding. This task is particularly
valuable for evaluating camera-only perception systems that
require real-time or lightweight operation (e.g., lightweight
cameras-only UAVs). Since the MARS-LVIG dataset does
not provide such evaluation (though its calibrated camera-
LiDAR suite can support), we add this task to create a more
comprehensive benchmark. In this section, we evaluate
zero-shot depth estimation models to assess their general-
ization capabilities in UAV aerial views. We consider both
single-step models and diffusion-based multi-step models.
The single-step models include ZoeDepth [9], Depth Any-
thing [9], Depth Anything V2 [109], Metric3D [113], and
Metric3D V2 [40]. The diffusion models include GeoWiz-
ard [34] and Marigold [45]. The ground truth depth for each
image is derived from the corresponding LiDAR frame.

As shown in Tab. 7, Metric3D V2 demonstrates the best
performance in terms of absolute relative error and square
relative error. However, Depth Anything V2 outperforms it
in the δ1 metric. For diffusion-based models, which only
support affine-invariant depth maps, the performance is rel-
atively worse compared to their single-step counterparts.
We visualize the depth predictions of the single-step mod-
els in Fig. 11. Most zero-shot monocular depth estima-
tion schemes lack generalization ability and accuracy in the
UAV perspective, underscoring the need for advancements
in this area.

5. Limitation and Conclusion
Although UAVScenes has captured large-scale environ-
ments, expanding its diversity remains crucial. Future ef-
forts could include complex urban or downtown areas with
varied streets, vehicles, high-rise buildings, and pedestrians.

Depth Anything (ViT-l)
Frame AbsRel=0.177

GTInput Image

Metric3D V2 (ViT-l)
Frame AbsRel=0.731

GTInput Image

Depth Anything (ViT-l)
Frame AbsRel=0.084

ZoeDepth-NK
Frame AbsRel=0.891

Figure 11. Visualization of the zero-shot depth estimation results.
The depth ground truth is from the corresponding LiDAR point
cloud. The color bar indicates depth values.

Model AbsRel↓ SqRel↓ δ1↑

ZoeDepth-K [9] 0.976 81.752 0
ZoeDepth-N [9] 0.975 81.508 0
ZoeDepth-NK [9] 0.894 69.939 0
Depth Anything (ViT-b) [108] 0.707 46.102 0.010
Depth Anything (ViT-l) [108] 0.472 36.029 0.453
Depth Anything V2 (ViT-b) [108] 0.939 76.630 1.670
Depth Anything V2 (ViT-l) [108] 1.517 261.925 0.089
Metric3D (ConvNeXt-t) [113] 0.790 58.411 0.009
Metric3D (ConvNeXt-l) [113] 0.682 53.504 0.160
Metric3D V2 (ViT-s) [40] 0.830 68.084 0.028
Metric3D V2 (ViT-l) [40] 0.540 31.960 0.074
Marigold [45] 0.994 84.409 0
GeoWizard [34] 0.995 84.485 0

Table 7. Zero-shot depth estimation performance on the
UAVScenes dataset. ”l” denotes large. Above are single-step mod-
els, and below Marigold and GeoWizard are diffusion-based mod-
els that can only produce affine-invariant depth maps. Evaluation
metrics follow MonoDepth2 [37].

UAVScenes is a versatile multi-modal UAV dataset that
provides rich semantic annotations for both 2D images and
3D LiDAR point clouds. With precisely aligned 6-DoF
poses and associated 3D maps, it accommodates diverse re-
search needs. By introducing a standardized benchmark for
UAV perception tasks, UAVScenes offers consistent eval-
uation and comparison across multiple modalities. It thus
serves as a fundamental resource for advancing UAV per-
ception and mapping, driving progress in autonomous nav-
igation, scene comprehension, and cross-modal learning
within the UAV field.
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