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Abstract

Video-to-audio (V2A) generation aims to synthesize tem-
porally aligned, realistic sounds for silent videos, a criti-
cal capability for immersive multimedia applications. Cur-
rent V2A methods, predominantly based on diffusion or
flow models, rely on suboptimal noise-to-audio paradigms
that entangle cross-modal mappings with stochastic pri-
ors, resulting in inefficient training and convoluted trans-
port paths. We propose VAFlow, a novel flow-based frame-
work that directly models the video-to-audio transforma-
tion, eliminating reliance on noise priors. To address
modality discrepancies, we employ an alignment varia-
tional autoencoder that compresses heterogeneous video
features into audio-aligned latent spaces while presery-
ing spatiotemporal semantics. By retaining cross-attention
mechanisms between video features and flow blocks, our
architecture enables classifier-free guidance within video
source-driven generation. Without external data or com-
plex training tricks, VAFlow achieves state-of-the-art per-
formance on VGGSound benchmark, surpassing even text-
augmented models in audio fidelity, diversity, and distribu-
tion alignment. This work establishes a new paradigm for
V2A generation with a direct and effective video-to-audio
transformation via flow matching.

1. Introduction

Video-to-audio (V2A) generation plays a vital role in mul-
timedia content generation, including Foley for films and
Al-generated silent videos. In recent years, this task has
attracted increasing attention within the generative commu-
nity. Early V2A approaches [15, 24, 26, 29, 34] adopted
language modeling strategies by discretizing audio into to-
kens, and used parallel mask-prediction models (BERT-
like) or token-by-token autoregressive models (GPT-like)
borrowed from NLP community as shown in Figure I.
However, these methods, reliant on discrete tokens, incur
inherent information losses by the discretization process.
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Figure 1. Four different V2A paradigms, along with state-of-the-
art performance under each. The first row shows discrete token-
based approaches (mask-prediction and autoregressive based gen-
eration), which are limited by information loss during tokeniza-
tion. The second row presents methods generating continuous
data. Previous diffusion and flow methods (bottom-left) model
the noise-to-audio mapping conditioning on video. We find this
approach suboptimal and demonstrate that directly modeling the
video-to-audio transformation (bottom-right) yields better results.

Recent advancements in Diffusion and Flow Matching
(FM) models in image [4, 10, 33] and video [3, 31] gener-
ation have spurred similar approaches for V2A [9, 25, 41,
43, 45]. Generally, these methods model V2A as a condi-
tional generation task, transforming Gaussian noise condi-
tioned on video into audio, as shown in Figure | (bottom-
left). The generation process typically involves two steps:
(1) sampling a random noise from Gaussian prior and (2)
using this noise and video condition as input to iteratively
denoise the noise into audio. This approach avoids discrete
audio tokens, directly fitting the continuous distribution of
audio data, and currently holds state-of-the-art results.

However, existing diffusion/FM-based V2A methods fo-
cus solely on the second step, i.e., denoising Gaussian noise
into audio, assuming the first step is trivial. Even state-
of-the-art methods [40, 43] begin with Gaussian noise, but
we find that this approach is not optimal. Unlike text-to-
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image or text-to-video tasks, where textual conditions are
abstract and highly defined by human, the video conditions
in V2A are more complex and require both spatial and tem-
poral understanding. The generation goal also demands a
high degree of alignment between the generated audio and
the video conditions, not just semantically, but also tem-
porally. There are two inherent difficulties: (1) different
conditions on the same noise require the model to generate
different audio outputs, demanding advanced condition pro-
cessing [8, 41, 46], and (2) noise variations under the same
condition lead to unstable generation results, prompting re-
search into methods for noise control [44], such as finding
a “golden noise” for consistent results [47].

In contrast, we propose a new perspective by shifting fo-
cus to the first step of the generation process. We question:
If there are better priors than Gaussian noise? Given that
many diffusion and FM models dedicate significant effort to
integrating video conditions into the denoising process for
better generation performance, we further question: If V2A
can work better when directly transforming the video distri-
bution to audio rather than from noise? Fortunately, both
answers are affirmative.

We introduce VAFlow, a novel framework for V2A gen-
eration, which directly denoises from the video space to the
audio space. To implement this video-to-audio paradigm,
we adopt the FM framework, as it theoretically supports
any source distribution. There are three technical chal-
lenges for this implementation: (1) aligning source and tar-
get distributions: video and audio feature spaces typically
have different time and spatial resolutions, yet FM requires
the source and target distributions to be aligned (the same
shape). (2) uncertainty of the feature type: identifying the
optimal video representations/feature types as the source
distribution. (3) conditioning mechanism: exploring addi-
tional video information integration ways beyond encoding
it in the source distribution. In VAFlow, we first employ
an alignment VAE to adjust video features to match the au-
dio latent space. It then explores three different video fea-
ture types (semantic CLIP [32], spatiotemporal CAVP [25],
reconstruction-focused VidTok [38]) to systematically in-
vestigate source video information. Experiments show that
using video features both as a source distribution and as
conditioning information yields the best results for VAFlow.

Moreover, the recent success of large language models
(LLMs) [13, 28] has highlighted the effectiveness of scal-
ing laws, and various generative works consequently ex-
plore similar scaling properties in each domain [30, 42].
However, existing V2A models have not demonstrated clear
scaling trends, where increasing model size does not consis-
tently achieve improvement [8, 43]. In contrast, our exper-
iments show that VAFlow exhibits clear scaling property,
with model size increases leading to consistent improve-
ments in generation quality, further confirming its potential.

Without elaborate training tricks or external data (e.g.,
text-audio pairs), VAFlow achieves state-of-the-art results
on standard benchmarks (VGGSound), outperforming even
text-augmented models in generation fidelity, diversity, and
cross-modality alignment with input video. Playable au-
dios generated with VAFlow can be accessed at the demo
page: https://vaflow.github.io/demo.

2. Related Work
2.1. Flow Matching and Diffusion Models

Diffusion models [17, 27, 35] reconstruct data distributions
by iteratively denoising Gaussian-sampled latents, goven-
mented by various designed schedulers achieving state-of-
the-art performance in multimodal generation tasks. Un-
like diffusions, flow-based models [1, 20, 22, 23] estab-
lish deterministic mappings between source (e.g., Gaussian)
and target distributions through invertible neural transfor-
mations, with recent flow matching optimizing vector fields
through optimal transport theory, enabling direct learning
of straight transport paths between source and target distri-
butions, thereby reducing training instability and inference
steps. While both paradigms typically rely on Gaussian pri-
ors as their source distribution, existing video-to-audio sys-
tems on both paradigms model noise-to-audio generation
conditioned on video features. In contrast, our approach
directly aligns video latent spaces with target audio distri-
butions via linear transformations under a flow matching
framework, bypassing iterative noise modeling, preserving
efficiency, and ensuring precise frame-to-frame alignment.

2.2. Video-to-Audio Generation

Framework. Recent advances in generative models have
driven significant progress in video-to-audio (V2A) synthe-
sis. Current V2A methods fall into three main paradigms:
(1) Autoregressive (AR) models [15, 26, 34] discretize
audio into token (codec) sequences and utilize video fea-
tures as prefixes to model unified video-audio sequences.
While straightforward, their token-by-token generation pro-
cess results in quadratic inference time scaling, limiting ef-
ficiency for long audio sequences. (2) Mask-based gen-
eration paradigms [24, 29, 37] also employ discrete tokens
but decode audio in parallel by predicting masked tokens.
Video features serve as the condition for mask-to-audio pre-
diction. However, both AR and mask-based methods suf-
fer from an inherent upper bound of fidelity due to lossy
compression from audio discretization. (3) Flow/diffusion-
based methods [7-9, 25, 40, 41, 43, 45, 46] leverage contin-
uous representations and currently achieve state-of-the-art
V2A performance [8, 40, 43]. These techniques iteratively
transform noise into target audio distributions while condi-
tioning on video features to steer the denoising trajectory.

Video Conditional Modeling. Unlike typical conditioned
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generation tasks like text-to-image [33], V2A involves fully
aligned sequential correspondences between video and au-
dio. Existing methods address this through various strate-
gies: some AR-based methods investigate various attention
mechanisms and masking schemes for temporally sequen-
tial alignment [26]; some mask-based approaches integrate
hybrid ways to fuse video features into the mask-prediction
process to synchronize audio generation [29]; and some
flow/diffusion-based methods augment their pipelines with
auxiliary modules (e.g., loudness or audio layout predic-
tors [41, 46]) to enforce temporal consistency. In contrast,
our approach builds on flow-based techniques by discard-
ing the conventional noise-to-audio paradigm and complex
video-conditioning designs. Instead, we propose a more in-
tuitive method that directly transforms the video temporal
space to the audio temporal space via a flow transport.

3. Method:
3.1. Preliminary: Flow Matching

Let zp ~ p(zg) and 1 ~ p(z1) denote samples from
source and target distributions, respectively, with ¢ repre-
senting an optional conditioning signal. Flow Matching
(FM) [20, 23] establishes an inter-distribution transport pro-
cess governed by the ordinary differential equation (ODE):

dx(t) = v(ws, t, c)dt, (1

where ¢ € [0, 1] denotes the continuous time step, and vg
represents a neural network-parameterized velocity field.
The condition c is incorporated for conditional flow imple-
mentations. Optimal transport flows enforce velocity align-
ment with the direction (z1 — x¢) of the linear path pointing
from x to x; through regression:

L(0) = Etzo.a1,cll (@1 = 20) = vo(a, 1,0, (@)

where x; = (1 —t)xo + tzy constitutes the linear interpola-
tion between x¢ and x1. The learned velocity field enables
target generation by solving the ODE in Equation 1.

Previous video-to-audio flow approaches [8, 43] (and
related diffusion methods [25, 41]) use a Gaussian prior
p(zo) = N(0,1) for the source distribution, with audio
as p(x1) and video as conditioning input ¢. During train-
ing, random noise g is paired with ground-truth audio z,
prompting vy to model the paths from noise to audio under
visual conditions.

This work challenges the Gaussian prior by proposing a
direct video-to-audio transport. Theoretically, FM permits
arbitrary source distributions, motivating our formulation:

dx(t) = vg (x4, t)dt, 3)

where z; = (1 — t)x, + tx, linearly interpolates between
paired video and audio samples z,, 2, ~ p(v, a).

3.2. VAFlow Architecture

Model Overview. As illustrated in Figure 2, the input video
features x,, are extracted via a visual encoder, while the tar-
get audio waveform can be obtained from latent representa-
tions x,, through WaveVAE. VAFlow attempts to establish
FM between the video feature space z, and audio latent
space x,, enabling direct audio generation from video fea-
tures via ODE solving instead of Gaussian noise initializa-
tion. However, since FM requires consistent dimensional
shapes between source and target distributions (see Equa-
tion 3), the inherent spatiotemporal resolution mismatch
between z,, and z, necessitates shape alignment. To ad-
dress this, we employ a 1D VAE (namely alignment VAE)
that compresses interpolated x,, into aligned features z/*F
matching z,’s dimensions.

A diffusion transformer (DiT) subsequently works as a
velocity field estimator to capture the transport dynamics
between z/*F and z,. This enables continuous trajectory
sampling from ¥ to z, through ODE integration. The
sampled latent %, is finally decoded by WaveVAE to pro-
duce the output audio. The following contents detail: the
visual/audio representations (x,, :E{}E, Z,), and the velocity

field estimator in VAFlow.

Video and Audio Representations. For an input video-
audio pair (v, a), the audio waveform a is compressed by a
pretrained 1D WaveVAE’s [11] encoder into x, € RTaxDa
This latent x,, serves as the target for flow generation and is
later decoded to reconstruct the waveform.

For video representation, a pretrained visual encoder en-
codes v into z, € RT»*Pv (e.g., CLIP [32], CAVP [25],
or VidTok [38] as encoder). Given the discrepancies (e.g.,
xq € R215X64 yergus ¢, € R109%768 for a 10-second clip),
we propose an alignment VAE ¢4 to further compress and
align video latents with audio latents’ space while preserv-
ing essential visual information. Specifically, we utilize a
1D convolutional encoder-decoder as €, to interpolate and
project z,, into a variational space z2F € RT«*Pa match-
ing the shape of x,. The encoder of ¢4 predicts the param-
eters fiyae, Opan = B, (z,) for a Gaussian distribution,
from which z¥ ~ N(p,a8,0,a8) is sampled. The de-
coder reconstructs z, as &, = D, (z4¥). This process
ensures dimensional alignment with audio latents while re-
taining critical spatiotemporal features of the original video
representation.

Velocity Estimator. Built upon the diffusion transformer
(DiT) architecture [11], the velocity estimator processes
two key inputs: time embeddings of ¢ and the interpo-
lated state z; = (1 — t)z2E + tx,, following the Equa-
tion 3. The time embedding is concatenated with the au-
dio sequence to form an input tensor € R(Te+1*Da which
is processed through stacked transformer blocks. The first
T, dimensions of the output sequence constitute the pre-
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Figure 2. VAFlow Architecture. The figure illustrates VAFlow in the inference manner. A visual encoder initially extracts temporal features
z, € RT*Pv from variable-frame-rate video inputs. Then, a 1D alignment VAE (Variational Autoencoder) e, compresses interpolated

@, into audio-aligned latent features 2>F

with matched dimensions (T4F x

DAE =T, x D,). Next, a diffusion transformer (vg) predicts

the velocity field for the transport (z, — xﬁE), and by solving the corresponding ODE (see Equation 3), an estimated Z, is obtained.
Finally, the WaveVAE decoder converts &, into the waveform representing the predicted audio. Note that during diffusion transformer
prediction, xz,, can optionally be incorporated via cross-attention, detail discussion is conducted in the experiment Section 4.5.

dicted velocity vg (x4, t), with 1D Rotary Position Embed-
dings (RoPE [36]) to preserve positional awareness in at-
tention layers. Notably, while the interpolated state x; im-
plicitly encodes visual information through ¥, this signal
diminishes as ¢ — 1. To address this limitation, we retain
cross-attention layers in the transformer blocks that persis-
tently integrate the original video features x,,. Further stud-
ies (Section 4.5) demonstrate that this architectural choice
is critical to enhance visual perception throughout the flow
trajectory and improve audio generation quality.

3.3. VAFlow Training and Inference

We conduct three-stage training: (1) pretrain the alignment
VAE, (2) train the VAFlow estimator with frozen alignment
VAE, and (3) jointly fine-tune both alignment VAE and es-
timator. We detail training and inference as follows:

Alignment VAE Training. Given encoded visual features
x, € RTv>*Dv the alignment VAE encoder predicts distri-
bution parameters (fi,ar, 0,ar), While the decoder recon-
structs &, from a sampled 72 ~ N (ftgae, 0pam). The
model optimizes three objectives to preserve visual seman-
tics while regularizing 22F within R7«*Pa Gaussian space:

* KL Regularization: enforces Gaussian latent priors via:
£KL = DKL (N(MwﬁE,O'w?E) || N(O,I)) . (4)

* Reconstruction Loss: ensures feature-level consistency:

ﬁrec = va - ijv”% (5)

e Contrastive Alignment: strengthens feature preservation:

con _ Zl C€Xp fs(xv) ) fs(xv)/T)

Z T Xwenexp (fo(@0) - fs(2')/7)

(6)

where S = {frame, clip, global} defines temporal granu-
larities and 7 = (.7 serves as a temperature parameter [6].

For scale s, f5(-) extracts features via three ways: frame-
level: single-frame sampling + mean pooling; clip-level:
K = 8-adjacent-frame sampling + pooling; global-level:
full temporal mean pooling at ), dimension of feature x.
Negative samples =’ are drawn from training batch 3.

The composite objective integrates these terms:

»CVAE = )\KLACKL + )\recﬁrec + >\con£c0na @)

with Agp = 8x 1074, \ee = 1.0, and Acop = 1.0.

Velocity Estimator Training Given encoded features x,,
AE , and x,, we train the veloc1ty estlmator vy to predict

the 11near transport direction z, — 2>F through:

L(0) = Epio,1) || (ma — 23 ™) — Ue(xt’t,l“v)Hz’ 3)

where z; = (1 — t)z*F + tz,. For the conditioned ver-
sion, visual features x,, are incorporated via cross-attention
(with a 10% probability of zeroing out x,, during training).
The vanilla version omits this conditioning, simplifying the
input of estimator in Equation 8 to vg(x¢, t).
Joint Turning After separate training of the alignment VAE
and the velocity estimator, a joint optimization stage is per-
formed. In this stage, the VAE encoder and vy are co-trained
(discarding the VAE decoder), while the WaveVAE and vi-
sual feature extractor remain frozen. For a pair (v, a), the
visual extractor and WaveVAE produce x, and z,. The
VAE encoder compresses z,, to obtain ¥ ~ g4 (z2F|z,),
which together with z, and a random ¢ ~ (0, 1) forms ;.
The joint objective integrates KL regularization in Equa-
tion 4 with velocity prediction in Equation 8:

[:(07 ¢Enc) = AkLLkL + E”(Ia — IUAE)

- UQ(xta t,l‘”)H%.

€))

Inference Upon training, VAFlow synthesizes audio a from
an input video v through the following pipeline: The vi-
sual extractor first encodes v into a feature x,, which is
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compressed by the alignment VAE encoder into distribu-
AE

tion parameters (jiar,0.ae). A latent sample ;" ~
N (ux{)u:, aiAE) is drawn as the initial state (xq) for solv-
ing the ODE in Equation | with learned estimator. The pre-
dicted z,, (x1) is then decoded into waveform via the frozen
WaveVAE. During inference, the variational sampling of
2P introduces stochasticity — even with fixed ODE inte-
gration paths, distinct samples yield diverse outputs.

For conditional velocity estimators, classifier-free guid-
ance (CFG) [14] enhances synthesis quality by interpolating
conditioned and unconditioned velocity predictions:

v§ TG (24, t, ) = (1 + 7)vg(2e, t, 20) — yvg (24, t,0),
(10)

where ~ controls guidance strength and () denotes null
(zero) conditioning.

4. Experiments

4.1. Experimental Setup

Datasets. We employ two datasets: VGGSound [5] and
AudioSet-V2A [25]. For VGGSound, we adhere to the orig-
inal split, which comprises 186k training samples and 15k
testing samples. AudioSet-V2A contains 390k videos that
are exclusively used for training. During training, the align-
ment VAE is trained on a combined set of VGGSound train-
ing and AudioSet-V2A to yield more generalized visual fea-
ture compression. The subsequent velocity estimator train-
ing and joint tuning are conducted solely on the VGGSound
training set. At inference, we evaluate on the VGGSound
test set as in prior work.

Implementation Details. For the estimator’s DiT archi-
tecture, we adapted the DiT implementation from Stable-
Audio-Open-1.0 [11] (SDA1.0) by eliminating duration en-
coding, applying global time encoding solely to time steps,
and restricting the cross-attention layer’s key/value inputs
to video features. For the visual extractor, we use three
variants: CLIP [32] (a widely adopted visual semantic ex-
tractor in V2A tasks), CAVP [25] (which captures both vi-
sual semantic and temporal features), and VidTok [38] (a vi-
sual tokenizer for reconstruction). We train three alignment
VAEs with comparable parameter scales—one for each vi-
sual extractor. In the velocity estimator training stage, the
alignment VAE remains frozen; in the joint training stage,
both the estimator and the alignment VAE are trained. In
all stages, the audio WaveVAE and the visual extractor
are kept frozen. Notably, we do not perform any further
rectified iterations on the estimator; all VAFlow variants
are trained for a single rectified iteration (Rectified-1, RF-
1). During sampling, we employ ODE solvers of various
orders—first-order Euler, second-order Midpoint, and fifth-
order dopri5—with differing sampling steps and classifier-
free guidance scales.

Metrics. We employ both objective and subjective eval-
uations across three dimensions: generation quality, au-
diovisual relevance, and audiovisual synchronization. For
objective evaluation, generation quality is measured using
FD score [21], KL divergence [15], and IS score [21]. In
previous work, each metric may be computed with differ-
ent feature extraction models (e.g., Melception, PasST ).
Audiovisual relevance is quantified by computing the co-
sine similarity between the embeddings of the input video
and the generated audio using the ImageBind model [12].
For synchronization, we use the synchronization accuracy
(Acc.) [25] reflects the alignment between the input video
and generated audio.

Baselines. Our method is comprehensively compared
against all major generative paradigms, including autore-
gressive (AR), masked prediction (Mask), diffusion-based,
and flow-based approaches, as detailed in Table 1. All base-
line models were evaluated using either officially released
code and models or directly downloaded audio outputs by
their authors, with consistent experimental settings main-
tained across all evaluations on the same hardware platform.
Implementation specifics include: (1) Im2Wav generates
audio in 4s clips, truncated to 10s after three clips. (2) Diff-
Foley here employs its double-guidance variant (demon-
strating superior performance); (3) MMAudio-L here is the
largest variant of MMAudio; and (4) Frieren here employs
its final no-reflow configuration (achieving optimal Fréchet
distance). For comprehensive evaluation, we also include
text-augmented V2A models (denoted in gray rows ) that
leverage external textual data beyond benchmark audiovi-
sual corpora during training or inference.

4.2. Diffusion vs. Flow vs. VAFlow Models

We examine framework-specific performance by training
same VAFlow-CLIP-142M models under three paradigms,
maintaining identical configurations: CLIP visual features,
architecture parameters, initialization weights, and other
hyperparameters. The frameworks include: Diffusion:
Standard DDPM [27, 33] with cross-attention video condi-
tioning. Flow: Standard continuous-time flow (Equation 2)
using Gaussian prior. VAFlow: Our framework employing
aligned VAE-compressed video features as source distribu-
tion. All frameworks use their respective optimal inference
settings (DDPM: DPMSolver; Flows: dopri5). Joint tuning
in VAFlow begins at 100K steps.

Fréchet Distance (FD) results in Figure 3 reveals: 1)
Flow paradigms converge faster with lower FD than dif-
fusion, demonstrating inherent optimization benefits. 2)
VAFlow attains lower final FD than standard flow despite
delayed early-stage convergence (<100K steps). This per-

Iwe adopt PasST [19] model over PANN [18] for its improved ro-
bustness following the practice introduced in AudioLDM [21] evaluation
repository: https://github.com/haoheliu/audioldm_eval.
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Figure 3. Comparison of different training frameworks. We ex-
amine the same model under different training paradigms by con-
trolling training data, steps, and other hyperparameters. Results
demonstrate that VAFlow converges to superior optima, validating
the effectiveness of its direct video-to-audio transformation design
and highlighting this paradigm advantages in V2A generation .

formance attributes to VAFlow’s explicit modeling of de-
terministic video-audio transport paths, avoiding the am-
biguous noise-to-audio mappings in Gaussian-prior ap-
proaches. VAFlow learns optimal transport trajectories be-
tween video-audio distribution, bypassing error-prone inter-
mediate transformations in Gaussian-noise-to-audio paths.

4.3. VAFlow Scaling Analysis

We investigate VAFlow’s scaling capabilities by develop-
ing four model variants (142M, 264M, 527M, 1.05B pa-
rameters) through width/depth scaling of DiT blocks while
maintaining fixed training protocols (data, steps, etc.). Eval-
uation metrics (FD, IS) versus parameter counts are visual-
ized in Figure 4 (bubble sizes denote model scales).

There are two key findings here: 1) Parameter Effi-
ciency: VAFlow consistently outperforms flow-based base-
lines (Frieren, MMAudio) at comparable sizes (e.g., 142M
vs. 159M, 1.05B vs. 1.03B) across both metrics. 2) Scal-
ing Capability: Previous flow-based studies have struggled
to show consistent scalability [8, 43], where larger models
fail to achieve better metrics consistently. To the best of our
knowledge, VAFlow is the first flow-based V2A framework
to demonstrate stable scaling properties. As the parameter
size increases, the models achieve better FD and IS scores.
Interestingly, larger models tend to improve IS scores more
significantly than FD scores, suggesting that as the VAFlow
model scales, the quality of generated audio gradually sat-
urates, and the model becomes more capable of deriving
diverse audio from different video-sampled latents.

4.4. Benchmark Results

Quantitative evaluations are presented in Table 1, where
VAFlow demonstrates state-of-the-art performance across
key audio generation metrics: FDyqs., FDmer, ISpas.,
KL,4s., and KL,,¢;.. For audio-visual synchronization,

Flow Models

240 Frieren 159M

MMAudio 1.03B

200 VAFlow 142M

@ VAFlow 264M

3 VAFlow 527M

E 160 VAFlow 1.05B
120
80

48 56 64 72
IS (mel.)

Figure 4. Performance of flow-based baselines and VAFlow vari-
ants in scale. VAFlow models (142M, 1.05B) consistently out-
perform comparable-scale baselines (Frieren-159M, MMAudio-
1.03B), with stable scaling property indicated by progressive IS
gains (diversity) and saturating FD improvements (quality).

VAFlow achieves 96.3% accuracy (Acc.), comparable to
Frieren (97.0%). In semantic relevance, it attains an IB-VA
score of 28.6, second only to TiVA’s 30.3. Notably, VAFlow
maintains a simple and straightforward model design with-
out relying on complex video conditioning modules [8, 41,
46], carefully designed noise schedules [9], or additional
guidance modules [25, 45]. Its performance across various
metrics, achieved with a standard Flow Matching training
approach and basic ODE solvers, underscores the simplic-
ity and effectiveness of the direct video-to-audio mapping
design. When compared to text-enhanced baselines (gray
rows), VAFlow maintains advantages in FD,qs., FDper.,
IS,4s., and synchronization Acc., though text-augmented
models exhibit superior audio semantic metrics (KL dis-
tances and IB-VA). This aligns with expectations since text
conditioning explicitly constrains semantic space. We note
that Seeing&Hearing’s elevated IB-VA score (36.7) stems
from classifier guidance using the same ImageBind model,
which however compromises generation quality and syn-
chronization performance.

We further conduct human evaluation with sampled 50
videos from the test set to compare our method with the
flow-based baseline, Frieren. The generated results from
both models were randomized, and 10 experts were invited
to score the models based on three criteria: sound qual-
ity (Quality), audio-visual semantic consistency (Semantic)
and audio-visual synchronization (Sync.). The scoring was
done by selecting a winner or declaring a tie for each com-
parison. The results, summarized in Table 2, show that our
model outperforms the baseline in all three dimensions.

4.5. Ablative Analysis

Visual Features. Three visual feature types were exper-
imented with: semantic features (CLIP embeddings ex-
tracted per frame at 10 fps), temporally-enhanced semantic
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. . Quality Sync.  Semantic
Paradlgm Method Vis. Feat. FDpas. \L 1::Dmel. \L ISmel. T KLpa& \L KLmeL \I/ ‘ Acc. T ‘ IB-VA T
AR SpecVQGAN [15] RGB,Opti. 342.4 18.15 20.5 3.10 6.84 55.9 14.1

Im2Wav [34] CLIP 252.2 13.03 35.8 2.26 541 78.9 19.6
[24]

Mask

VAB [37] eva-CLIP 193.1 12.21 34.4 2.31 5.09 82.4 259
(7]
[45]
Diff-Foley [25] CAVP 512.1 11.45 50.4 2.91 6.18 88.0 20.7
Diffusion | LoVA [9] CLIP 149.1 6.90 58.7 2.10 5.12 87.0 26.3
FoleyCrafter [46] CLIP 134.2 7.40 56.6 2.29 5.65 83.5 27.8
TiVA [41] CLIP 111.9 431 67.0 2.02 5.21 87.5 30.3
V2A-Mapper [40] CLIP 94.9 4.21 64.9 2.46 6.06 78.6 22.2
(8]

Frieren [43] CAVP 259.9 6.70 52.4 2.92 5.64 97.0 23.0
Flow VAFlow (ours) CLIP 87.7 3.86 73.6 191 4.81 88.1 28.6
VAFlow (ours) CAVP 91.8 4.73 64.8 2.41 5.96 96.3 25.1
VAFlow (ours) VidTok 128.5 6.17 48.1 3.64 8.94 49.9 12.9

Table 1. Quantitative video-to-audio results on the VGGSound test set. “Vis. Feat.” indicates the employed visual features, with a “+” de-
noting the inclusion of auxiliary visual information (e.g., visual captions via LLama-2 [39] or Qwen-VL [2] in VATT and Seeing&Hearing,
or SyncFormer [16] features in MMAudio). All results are obtained from official code or released audio outputs. The MultiFoley results

here is an 8k subset filtered by ImageBind from the authors. Rows in gray denote methods that incorporate extra text data (e.g., video

captions); for fairness, these results are provided for reference only and are not directly compared with standard video-to-audio models.

The best score is bolded, and the second-best is underlined. Our three VAFlow variants , differing in visual features, achieve definitive
gains in audio quality (FD, IS, KL) while delivering near state-of-the-art performance for synchronization (Acc.) and correlation (IB-VA).

Comparison Win rate(%)
P Quality Sync. Semantic
Ours vs. Frieren | 66.00::15) 60.44(:5 60.89

Table 2. Human evaluation results, with comparison between our
model and the flow-based baseline Frieren across three criteria:
sound quality, audio-visual synchronization, and audio-visual se-
mantic consistency. Ours outperforms the baseline in all criteria.

features (CAVP features via video-audio contrastive learn-
ing at 4 {ps), reconstruction features (VidTok tokenized la-
tents at 15 fps). Utilizing the same model size and train-
ing process for these features, we developed three variants:
VAFlow-CLIP, VAFlow-CAVP, and VAFlow-VidTok, with
results presented in the last three rows of Table 1. The re-
sults indicate that the widely-used CLIP features overall
perform the best, yielding superior audio quality and se-
mantic relevance. The temporally enhanced CAVP features,
on the other hand, demonstrate the best video-audio syn-
chronization but slightly lag in other metrics compared to
VAFlow-CLIP. Models based on reconstruction features ex-
hibit the poorest performance across all evaluated aspects.
These outcomes suggest two key insights: 1) The type of
video features directly influences VAFlow’s performance,

with different feature types leading to models with dis-
tinct performance preferences (either better semantic per-
formance or synchronization); 2) Modality alignment mat-
ters more than information preservation. Although recon-
struction features retain the most comprehensive video in-
formation among the three, their lack of modality alignment
hampers the V2A model’s ability to learn effective cross-
modal generative capabilities.

Flow Matching Source Distributions. We evaluate
VAFlow under two source distributions: video latent pri-
ors from alignment VAE and standard Gaussian noise. For
video prior, we further test variants with/without joint train-
ing of the alignment VAE encoder (Method 3.3). All mod-
els share same training budgets (300K steps for non-joint
training variants; 170K+130K for joint training).

Results in Table 3 demonstrate that video latent priors
trained solely under alignment VAE objective in Equation 7
fail to surpass Gaussian noise baselines. Only when coupled
with joint training—adapting the prior to flow-matching
tasks—do video latent priors outperform Gaussian prior.
This highlights the necessity of co-optimizing prior dis-
tributions for flow-based generation rather than relying on
standalone pretraining on reconstruction task.
Conditioning Mechanisms and Guidance. Prior work
highlights the critical role of condition and guidance mech-
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V-Prior Tuned ‘ FDpys. 4 ISme. T Acc. T IB-VA?

X - 102.6 67.6 87.9 27.9
v X 111.8 574 82.3 254
v v 87.7 73.6 88.1 28.6

Table 3. Ablation study on flow-matching source distributions. V-
Prior’ denotes sampling starts from video latent priors (vs. Gaus-
sian priors). ‘Tuned’ indicates joint optimization of the alignment
VAE encoder. Results show that jointly tuned video priors outper-
form Gaussian priors as source distributions for V2A flow models.

Cond. CA CFG | FDpy. | ISma T Acc.? IB-VA T

X X - 1359 414 31.7 8.5
X 4 X 160.5 36.5 18.9 5.4
4 v X 133.8 423 78.0 21.0
v v v 87.7 73.6 88.1 28.6

Table 4. Ablation study on conditioning mechanisms and guid-
ance. ‘Cond.” denotes explicit video conditioning during infer-
ence; ‘CA’ indicates the presence of cross-attention layers of dif-
ferent variants; ‘CFG’ refers to classifier-free guidance. Results
demonstrate that optimal performance requires both explicit con-
ditioning and CFG when solving VAFlow ODE.

anisms (e.g., classifier-free guidance, CFG) in enhancing
model performance. We address two questions:

(1) Can VAFlow generate high-quality audio using only
video priors, omitting explicit video conditioning during
sampling? We experimented with two variants without ex-
plicit condition: No cross-attention (CA): Remove CA lay-
ers in DiT blocks and retrain the model (Table 4, Row 1).
Zero-input CA: Retain CA layers but zero out video inputs
during inference (Table 4, Row 2). ‘No CA’ variant exhibit
comparable audio quality metrics (FD, IS) to the video-
condition-visible variant (Table 4, Row 3: explicit video
conditioning without CFG), yet suffer significant degra-
dation in semantic relevance (IB-VA) and synchronization
(Acc.). This indicates that while video priors partially pre-
serve visual information, explicit video conditioning during
sampling is essential for temporal and semantic alignment.
We think that as the latent trajectory approaches the target
audio distribution (¢ — 1), initial visual cues in the prior
degrade, necessitating direct video information.

(2) Does explicit video conditioning during sampling still
require CFG for optimal performance? Adding CFG to the
video-condition-visible variant (Row 4 in Table 4) further
improves all metrics, demonstrating VAFlow’s compatibil-
ity with established guidance techniques. This underscores
the dual necessity of explicit video conditioning and CFG
for optimal V2A synthesis with VAFlow framework.

A case video:
At a seaside with rolling waves, a group of people are swimming and playing.
A woman walks toward the camera, points to the right, and says something.

waves v
Ty

Ly o T

V2A-mapper

Figure 5. Mel-spectrograms of audio generated by VAFlow and
the baseline for a complex seaside scene, including background
waves and varying voices, demonstrating VAFlow’s superior con-
tent understanding and synchronization with the video.

4.6. Case Studies

Figure 5 illustrates the performance of VAFlow and the
baselines on the complex scene video. The video depicts
a seaside scene with various sounds include background
waves and different voices associated with shifting char-
acters (noisy laughter, woman speaking). We present the
ground truth and the mel-spectrograms of the audio gener-
ated by different methods. Our results show that VAFlow
not only accurately understands the video content and gen-
erates all the necessary sounds but also maintains synchro-
nization with the visual timing.

5. Conclusion and Future Work

In this paper, we introduce VAFlow, a novel framework for
V2A task, which directly denoises from the video space
to the audio space via flow matching. demonstrating su-
perior performance compared to previous methods. Future
work will explore VAFlow’s potential in more diverse audio
domains, such as speech and music. Expanding the range
of tasks and datasets will enable VAFlow’s scaling proper-
ties to shine even further, laying a more general-purpose the
foundation model for content generation community.
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