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Abstract

The success of multi-modal foundational models is partly
attributed to their diverse, billions-scale training data.
By nature, web data contains human faces and descrip-
tions of individuals. Thus, these models pose potentially
widespread privacy issues. Recently, identity membership
inference attacks (IMIAs) against the CLIP model showed
that membership of an individual’s name and image within
training data can be reliably inferred.

This work formalizes the problem of identity extraction,
wherein an attacker can reliably extract the names of indi-
viduals given their images only. We provide the following
contributions (i) we adapt a previous IMIA to the problem
of selecting the correct name among a large set and show
that the method scales to millions of names (ii) we design an
attack that outperforms the adapted baseline (iii) we show
that an attacker can extract names via optimization only. To
demonstrate the interest of our framework, we show how
identity extraction can be used to audit model privacy. In-
deed, a family of prominent models that advertise blurring
faces before training to protect privacy is still highly vul-
nerable to attack.

1. Introduction
Multi-modal models have become a crucial component in
many advanced systems due to their versatility, perfor-
mance, and availability as open-sourced models. Like-
wise, even bigger models such as GPT-4o or Claude Son-
net are accessible with prices of around a few cents per im-
age/prompt query. These models are trained on a massive
amount of data scraped from the Internet. This raises pri-
vacy concerns. Indeed, publicly available does not imply
non-private [36]. Individuals often post data online that is
implicitly not intended for any usage.

Major AI service providers are aware of this privacy con-
cern. Indeed, most of them prohibit the ability to retrieve
someone’s name from a photo. For instance, Google’s re-
verse image search now usually returns “image results for

people are limited” when queried with a human face picture.
Major providers like Anthropic or OpenAI expressly pro-
hibit people identification and assert their vision-language
models will refuse to do so. One can read in the Anthropic
Usage Policy [2]: “Do Not Compromise Someone’s Privacy
or Identity ... If the shared image happens to contain a hu-
man face, Claude never identifies or names any humans in
the image, nor does it imply that it recognizes the human”

Likewise, many recent academic works advertise pri-
vacy as a top priority when releasing multi-modal datasets
or models, such as explicitly blurring faces [16], removing
personally identifiable information [41], or employing dif-
ferentially private pre-training [31]. However, less work has
been done to audit the model privacy post hoc to verify pri-
vacy claims. D. Hintersdorf et al. propose a novel attack
for CLIP-based vision-language models to assess their pri-
vacy risk by answering the question “Does CLIP know my
face?” [17]. They introduce Identity Membership Infer-
ence (IMI), which is the problem of determining whether a
face/name pair was used for training. However, this attack
depends on the possession of the ground truth name for each
person’s facial image. This work aims at broadening the ef-
ficiency of the privacy audit by asking the more challenging
questions:

How many faces does CLIP know?
Who are these people?

To answer these questions, we introduce Identity Ex-
traction (IE), which is the problem of extracting the ground
truth name given only facial images. In other words, our at-
tack doesn’t just reveal membership information; it yields a
person’s previously unknown identity. We summarize our
outline and our contributions below.

Contributions
• Section 3 formalizes the problem of Identity Extraction

that is solved in two ways in Sect. 4: Our Extraction by
Selection Attack (IESA) extracts correct names from a
large set of candidate names, whereas our Extraction by
Generation (IEGA) directly generates the candidate set.
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• Section 5 details a more challenging evaluation set
than [17], with more than 10x identities and significantly
more diversity in the queries. As a minor contribution, we
also propose a more query-efficient IMIA attack to cope
with this hard setting.

• Section 6 shows that IESA can extract roughly a third
of the identities in our query set with extremely high
precision. When IESA is used in tandem with IEGA,
names can be extracted directly from CLIP, or VLMs like
GPT4o, without access to a candidate name set.

• Finally, in Section 6.3, we show the power of IE as an au-
diting tool. Datacomp made privacy a top priority during
its design through facial blurring. The family of models
trained on Datacomp are still vulnerable to our attack. We
conclude that the blurring was probably too weak.

2. Related work

The CLIP Model The CLIP network [19, 29, 35] is a
model that scores image/text pairs on their relevance to one
another. CLIP is amongst the first foundational models,
trained on a large corpus of public web data. CLIP’s general
knowledge has been integral to creating other web-datasets
[4, 15, 32], or as a direct component of other multi-modal
systems [26, 30, 37]. Foundational models currently face
legal and ethical issues around the use of public web data
beyond merely privacy concerns [12, 14, 36]. Regardless of
guidelines, data providers lack sound training data proofs,
in particular those which minimize the chance of making a
false accusation (i.e., a false positive [42]).

Membership Inference Membership Inference (MI) is
the problem of discerning which individual datum were
used to train a model post-hoc [7, 33]. Recent studies have
attempted MI versus foundational vision models [13, 22].
Normally, MI is studied “in the lab,” where a researcher
controls the training set. For foundational models, retrain-
ing is not worthwhile and if the training set is known, a set
of non-member samples must be constructed. Recent works
propose collecting new data with later timestamps, or using
similar datasets collected at the same time [13, 22]. [11]
remarks this hinders the trustworthiness of the attack due to
distribution shift and [42] remarks MI may not be feasible
when the training set is not known, as an attacker cannot
guarantee a false accusation will not be made [42]. This
works deviates from the standard MI setup, in which we
shift from sample level to identity level inference.

Extraction Attacks Extraction attacks are a special case
of (MI), where an attacker fully reconstructs a training sam-
ple [6, 8, 28, 38]. In [6], large excerpts of training text are
extracted verbatim from a language model and Nasr et al.
succeed to do so even on aligned models like ChatGPT [28].
In [6] pixel-for-pixel copies of training data can be extracted

from image generators. The prompts which trigger extrac-
tion are short and non-de-script, which suggests successful
extraction implies a low false positive rate [42].

Identity Membership Inference Identity membership
inference (IMI) seeks to infer membership of identities,
rather than individual datum. Identity data typically com-
poses a set of samples that share identifying information
specific to an individual, e.g. faces, names, pseudonyms, or
other personal information. If the first attacks studied un-
conditional models trained on image or audio data [9, 39],
recent work studies conditional models such as CLIP or
its audio counterpart [10, 17, 25]. Notably, IMI against
CLIP uses the assumption that facial images share little a-
priori information with names and in particular, a model not
trained on an identity should associate names and faces ran-
domly (up to “cultural similarity [17]). This does allow the
attacker to have some level of confidence that they will not
make a false accusation, even without access to ground truth
membership information [17, 42].

3. Problem Formulation
Notations Let us denote by z a given identity, element of
a set Z . This identity has the name nz ∈ N . We denote
images by X and text (caption) by C. The set Xz denotes
all images that depict the identity z and Cz as captions in-
cluding the name nz . We denote by Xz an image randomly
picked in Xz and by xz a particular image of this set. Su-
perscript A denotes the sets in the hand of the attacker (e.g.
ZA) and superscript T the sets used to train the model under
scrutiny (e.g. ZT ).

Attack Assumptions The algorithms in this paper are
called attacks, and the person running these algorithms the
attacker. The model under attack is denoted as M . We
assume a black-box scenario for all settings, i.e., the at-
tacker can only query model M . Specifically, if the attacker
queries M , he receives the scalar similarity “CLIP” score.

Identity Membership An Identity Membership Infer-
ence Attack (IMIA) aims to determine whether a person’s
data was used to train a model M . It is a hypothesis test
formulated about identity z. The null hypothesis H0 is that
no data related to z was used to train M . The alternative
hypothesis H1 is that the training used some data about in-
dividual z, like pairs of image/caption (Xz, Cz). These are
denoted by capital letters to outline that we do not know
which images and captions exactly are part of the training
set. An IMIA is thus a generalization of the standard Mem-
bership Inference Attack (MIA). A MIA is a test about the
presence of a specific piece of data (xz, cz) in the training
set. An IMIA involves other samples {(Xz,i, Cz,i)}i as-
sociated to that individual z. The adversary has his own
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set ZA, which may share identities with the set ZT of the
identities whose data were used during the training.

Identity Extraction In the Identity Extraction (IE) prob-
lem, the attacker has a set of images XA which is the union
of sets XA

z . Each image X ∈ XA
z is associated to a unique

entity z but the attacker does not know her name. One
possibility, so-called Extraction by Selection, is to run an
IMIA on each set XA

z with name set NA with the hope
that nz ∈ NA. Another possibility, so-called Extraction by
Generation, is to make a name generator successfully guess
the correct name nz . The key difference with an IMIA is
that a successful IE attack finally identifies z by its previ-
ously unknown name.

4. Attack Details
This section first reviews the IMIA1 versus a CLIP model
presented in [17]. Then, it explains our new IE attacks.

4.1. Identity Membership against CLIP
Given identity z, the attacker first gathers in the set XA

z

pictures depicting this person. He also has K templates
{Ck}Kk=1 to derive captions from a name. This results in
the caption Cz = Ck(nz) in the style of ‘A photo of John
Doe’, ‘John doe in a suit’, . . . The attacker submits a correct
face / text pair (Xz,C

k(nz)) together with distractor non-
matching pairs (Xz,C

k(nz′)), with nz′ ∈ NA. The key
assumption is that the correct pair will return a high score if
z ∈ ZT and a low score otherwise. The attack then identi-
fies the person depicted in Xz by taking the maximum CLIP
score (1). This prediction is per image and caption template.
It is strengthened by a majority vote over multiple images
from XA

z , yielding an identification ẑ (k) per caption tem-
plate (2). The probability of a successful identification is
estimated as the frequency at which the correct identity is
chosen over multiple caption templates (3).
∀Xz ∈ XA

z , ∀k, 1 ≤ k ≤ K:

n̂z(Xz, k) = arg max
n∈NA∪{nz}

M
(
Xz,C

k(n)
)
, (1)

n̂z(k) = MajorityVoteX∈XA
z
(n̂z(X, k)) , (2)

fz = Average1≤k≤K (1[n̂z(k) = nz]) . (3)

Identity z is finally deemed as a training identity if fz > τ ,
where τ is the threshold chosen for the attack. The num-
ber of caption templates K and the number of distractors
are fixed beforehand, however, the number of images per
identity |XA

z | may vary.
Under hypothesis H0, entity z is not part of the training,

so that the guessed name n̂z(k) (2) is random and, on ex-
pectation, fz = 1/|NA|. This statistical model holds if NA

1Referred to as IdIA in [17].

gathers identities “that are culturally similar to” z to avoid
biases in the distribution of n̂z(k) under H0 [17].

4.2. Identity Extraction against VLMs
In an Identity Extraction attack, the attacker has a set of im-
ages and names, but doesn’t know their association, if any.
We consider two settings: in Extraction by Selection, the
attacker has a candidate name set containing some overlap
with the ground truth (e.g. gathered from common names).
Then, we describe Extraction by Generation, wherein the at-
tacker first generates a candidate name set using the visual
information in XA

z , and then does Extraction by Selection.

4.2.1. Identity Extraction by Selection Attack- IESA
As the attacker no longer knows the true name nz , he can-
not exploit this information to compute (1) and (3). We
thus resort to a frequentist attack: the attacker computes the
frequency (3) for any suspect and identifies the person de-
picted in XA

z as the most frequent one, if confident enough:

ẑ =

{
ẑ⋆ := argmaxz′∈ZA fz′ if fẑ⋆ > τ,

∅ otherwise.
(4)

We consider this as our baseline attack. In our initial ex-
periments, successful IESA attacks typically have one dom-
inant frequency corresponding to the ground truth name,
and a long tail of small frequencies for the other names.
Incorrect identifications are due to high values for several
competing names, typically those sharing first or last names.
To adjust for this, we propose an adaptive variant taking into
account the second largest frequency. The attack is confi-
dent only if the gap between the max and the second max is
large enough:

ẑ =

{
ẑ⋆ if fẑ⋆

maxz′∈ZA\{z⋆} fz′
> τ,

∅ otherwise.
(5)

The success of this attack shows that a CLIP model can play
the role of a Face Recognition System not only for verifica-
tion but also for identification in a closed-set scenario.

4.2.2. Identity Extraction by Generation Attack - IEGA
This setting explores whether it is possible to generate a set
of names with the visual information in XA

z , guided by the
CLIP score. We consider two methods for generating a can-
didate set of names: query a pre-trained captioning model
(VLM) or via optimizing a large language model (LLM) on
the CLIP score. For the VLM approach, the attacker queries
the VLM with XA

z and extracts any names from the returned
captions. Name generation in this way assumes the VLM it-
self has knowledge of the person; in the case when the VLM
does not recognize the person, the method is susceptible to
hallucination. Thus, the attacker must perform IESA on the
generated name set to reject hallucinated names. The same
verification holds for the second approach described next.
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Optimize LLM with REINFORCE We search a lan-
guage model Pθ⋆(z) that can produce captions suitable for
all the images depicting individual z:

θ∗(z) = argmax
θ∈Θ

EC∼Pθ

 ∑
X∈XA

z

M(X,C)

 (6)

Solving Eq. (6) presents several challenges. First, image
captioning VLMs typically inject CLIP features directly
into a language model [23, 24, 26]. We retain a black-
box setting throughout and thus do not consider access to
CLIP features. Furthermore, we do not have access to the
CLIP score gradients, nor the ground truth captions. Finally,
we consider an attacker with modest resources who utilizes
only the set of images within XA

z to extract the name nz ,
rather than a large multi-modal dataset typically used for
training. For this, we propose using the REINFORCE algo-
rithm [40], which has recently been revisited in the context
of language model fine-tuning [3]. We fine-tune a language
model to maximize the expectation of the CLIP score for a
single image by estimating its gradient with REINFORCE.
We initialize θ with an open source model like Mistral-
7B [20]. At each training iteration, the language model
generates a batch of captions whose CLIP scores with the
images in XA

z are computed and summed as in (6). The
REINFORCE algorithm estimates the gradient that updates
the model parameters θ. We also propose pushing generated
captions away from other identities by also adding a nega-
tive CLIP score for a small set of images of other identities
{Xz′}z′ . We found this to work significantly better in prac-
tice for identity extraction. A full outline of the algorithm
can be found in the supplementary.

5. Evaluation protocol and datasets

This section explains the constitution of the ground truth
and the auxiliary set (of identities, face images, and names)
from the following public datasets.

5.1. Datasets

LAION-2B (L2B) and DataComp (DC) L2B was
amongst the first public billion-scale text and image
datasets, containing roughly two billion text/image pairs. It
has been used to train a variety of generative models, CLIP
models and VLMs [15, 24, 34]. More recently, DataComp
is a dataset of image and text pairs with sizes varying from
1B to over 10B [15]. DataComp carefully filtered subsets of
larger pools of image/text samples which yielded more per-
formant CLIP models, even with no improvements on the
architecture side. Relevant to this work, both the curation
and training of the DataComp models were done with face
blurring to protect privacy.

The Attacker Set - VGGFace2 For both attacks, the at-
tacker needs a set of faces and names. The work [17] uses
the FaceScrub dataset [1] containing roughly 500 identities.
Not only is this an extremely small number of identities
compared to L2B, but also FaceScrub people are largely
white, American celebrities. However, biases in terms of
race and gender have a strong effect on the behavior of
multi-modal models [27]. We thus seek a more diverse at-
tacker set for a comprehensive privacy analysis.

We analyzed the race and sex distributions of several
datasets containing ground truth names using FairFace [21].
We chose VGGFace2, which is a dataset with roughly eight
thousand people, including hundreds of diverse samples
across age and pose [5]. We found that VGGFace2 had
roughly a quarter of non-white individuals, yielding sev-
eral thousand non-white individuals, with a roughly equal
sex distribution. On the other hand, we found that the Face-
scrub dataset used in [17] contains only 46 non-white indi-
viduals. We use VGGFace2 (VGGF2) as our attacker set in
all experiments. We detail more analysis of the individuals
present in VGGF2 as well as some post-processing of the
data set we did in the supplementary.

English Wikipedia Names Our protocol requires distrac-
tor names. In [17], they are gathered from common names
in census data in [17]. We propose using the set of all names
from Wikipedia, to form a more extensive and more diverse
set. We collect all Wikipedia pages under the category “Liv-
ing People” and use the title as the name. We do some
processing on these names, including removing names with
specifiers when the name has been disambiguated. Doing so
results in roughly a million names. As this is the distractor
set, we also remove names shared with VGGFace2.

OpenCLIP All models are from the OpenCLIP [19]
repository. We abbreviate the models via their architec-
ture and their training set after an underscore, e.g. ViT-H-
14 L2B for LAION-2B or ViT-H-14 DC for DataComp.

5.2. Constitution of the ground truth
In the experimental protocol of [17], the ground truth set
of members comprises names from FaceScrub that also ap-
pear within the captions of the LAION-400M dataset. We
extend this process by looking for names of VGGFace2 in
the LAION-2B dataset. Names are first normalized to only
contain lowercase characters that can be encoded in ASCII,
which removes accents and converts non-English charac-
ters. Then, we check whether each name is a substring
within normalized captions of LAION-2B. We enforce that
the name is preceded and followed by spaces or punctua-
tion, i.e. the name is not a substring within a word. Finally,
we consider names occurring more than 10 times to be pos-
itive labels for membership inference.
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For Identity Membership Inference (Sect. 4.1), the
names of VGGFace2 constitute the attacker’s set ZA par-
titioned into |ZM | = 7k members (i.e. present in LAION-
2B as explained above) and |ZNM | = 1k non-members.
This partition of ZA is used as the ground truth to measure
the true positive and false positive rates of IMIA (Sect. 4.1).
Note that in [17], only 8 non-members were used for the
experiments involving LAION-400M. The set XA corre-
sponds to the VGGFace2 face images of the individuals in
ZA. In order to measure low false positive rates for the
Identity Extraction problem (Sect. 4.2), we need to include
more non-members. The name set NA for the Extraction
by Selection (Sect. 4.2.1) is the same as above but aug-
mented by all identities from the English Wikipedia Names
(Sect. 5.1).

5.3. Metrics
The IMIA of Sect. 4.1 returns a binary output indicating
whether identity z is deemed as a training identity. This
result is compared to the ground truth member/non-member
sets defined in Sect. 5.2. This is done over all the identities
of VGGFace2 to estimate the true positive (under H1, z ∈
ZM ) and false positive (under H0, z ∈ ZNM ) rates.

For the IESA of Sect. 4.2.1, the output of the attack n̂z

is a name among a set of suspects NA or nobody (n̂z = ∅).
The set NA is the VGGFace2 set of names with the English
Wikipedia Names appended (Sect. 5.2). Under H0 where
z ∈ ZNM , a false positive occurs if n̂z ̸= ∅. Under H1

where z ∈ ZM , a true positive occurs if n̂z = nz .
For the IEGA of Sect.4.2.2, the output of the attack is

a generated name. Under H1, the attack is successful if
the extracted name is nearly identical to the ground truth
one. Two names are declared nearly identical if their Lev-
enshtein edit distance is lower than ℓ modifications. For in-
stance, Irish last names such as “O’Donnell” are sometimes
generated with or without the apostrophe, which are both
considered true positives under this distance. We measure
how many names are extracted, versus the percentage that
are correct up to edit distance ℓ = 1.

For all attacks, we emphasize performance at low error
rates. For membership inference, it is imperative that an
attacker is certain of its accusation of membership, rather
than making as many membership claims as possible [7].
Likewise, for extraction, it is more important to be certain
extracted names are identical to the ground truth, rather than
extracting as many names as possible.

6. Experimental results

6.1. IMIA Results
We evaluate IMIA under three settings. We examine the
original proposal of [17] and the usage of a much larger
set NA of distractors in (1) taken from English Wikipedia

Clip Network S1[17] S2 (ours) S3 (ours)

TPR@FPR=0.25%
ViT-G-14 L2B 16.7 22.9 34.6
ViT-B-32 L2B 13.5 24.5 25.9
Convnext-xxlarge L2B 21.4 23.9 25.1
ViT-H-14 L2B 19.6 36.0 36.4

TPR@FPR=1%
ViT-G-14 L2B 55.4 60.1 60.8
ViT-B-32 L2B 54.5 57.2 52.8
Convnext-xxlarge L2B 54.0 55.8 59.6
ViT-H-14 L2B 44.6 56.1 57.9

Table 1. IMIA results with TPR@FPR=0.25% and TPR@1% for
the three settings outlined. S1 is the reproduction of [17], on the
more challenging VGGFace2 attack set / LAION-2B training set.

Names. To fairly compare the attacks, we use a fixed per-
identity query budget of Qz = 20 000 ∗ |XA

z | in all three
settings, where |XA

z | is the number of images for identity z
in the hand of the attacker.

Setting 1: (Hintersdorf) We first reproduce the exact at-
tack parameters in [17]: K = 20 caption templates and
a set of |NA| = 999 distractors. Each set of images XA

z

gathers all images available in VGGFace2 for identity z (on
average several hundred). We then compute the CLIP score
for every image, ground truth name plus distractor names
and caption template combination. Thus, the total queries
required per identity is Qz = |XA

z | ×K × (|NA|+ 1).

Setting 2: Larger name set (ours) We diverge from [17]
by using more distractor name queries rather than caption
templates. The attacker uses a single generic caption tem-
plate for each name (e.g. K = 1) as “A photo of John Doe”,
and then accordingly increases the number of distractors to
|NA| = 19 999.

Setting 3: Full English Wikipedia Name set (ours) We
extend setting 2 to use every name available in English
Wikipedia Names as the distractor set. Given this set has
roughly a million samples, we reduce the number of images
per identity to |XA

z | = 10.

Comparison Table 1 shows the performance for the set-
tings outlined above on a selection of CLIP models trained
on LAION 2B [32]. Setting 3 outperforms the others for
nearly every network at both .25% and 1% FPR. We believe
setting 1 is more prone to false positives due to the diversity
present in VGGFace2. If an identity is unique in terms of
race with respect to the distractors, Eq.(3) may choose the
correct name purely based on attributes. Once sufficiently
diverse distractors are added, the chance of guessing just via
the race or gender of the individual is reduced. To investi-
gate this further, we tried generating names based on the
race, gender, and nationality of individuals in VGGFace2.
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Clip Network |XA
z | Extraction E@99.5 (baseline) E@99.5 (ours) E@95 (baseline) E@95 (ours)

Evae-14 L2B [35] all 0.68 21.78 45.21 44.27
ViT-B-32 L2B [19] all 14.41 23.24 41.88 41.91
ViT-G-14 L2B [19] all 30.58 32.53 52.04 47.42
ViT-H-14 L2B [19] all 0.35 0.65 33.24 38.55
Convnext-xxlarge L2B [32] all 0.70 15.85 39.30 41.79
ViT-H-14 DC [15] all 5.04 16.45 30.22 29.80
ViT-L-14 DC [15] all 0.03 1.90 21.46 24.92

Evae-14 L2B [35] 10 0.03 0.03 40.63 41.05
ViT-B-32 L2B[19] 10 4.74 3.02 34.17 34.20
ViT-G-14 L2B [19] 10 16.92 18.65 44.13 41.68
ViT-H-14 L2B [19] 10 0.15 0.61 28.35 29.96
Convnext-xxlarge L2B [32] 10 0.09 1.39 31.67 34.07
ViT-H-14 DC [15] 10 6.40 5.05 25.18 25.33
ViT-L-14 DC [15] 10 0.32 0.95 13.53 13.23

Table 2. Performance comparison of different models. E@99 refers to the percentage of names extracted at 99% precision (higher is
better). |XA

z |=all means all images in VGGFace2 associated with the tested identity are used by the attacker, where |XA
z | = 10 only 10 are

used. We compare the baseline attack (4) inspired from [17] with our proposed adaptive attack (5). The attack with superior performance
for each setting is emboldened. See more details in Sec. 6.2.

6.2. IESA results

We evaluate our extraction attacks on how many samples
are marked as extracted, versus the percentage of marked
extractions matching the ground truth. Figure 1 shows the
extraction curve for the Convnext-xxlarge L2B model [32].
The left figure compares the results for our adaptive at-
tack (5) versus the baseline attack (4) inspired by [17]. We
consider two settings here, the first is where we use all
images available in VGGFace2 per identity (|XA

z | =all),
which is on average several hundred unique samples per
name, versus the low sample regime using only |XA

z | = 10
images per identity. First, the adaptive attack extracts sig-
nificantly more names in the high precision regime for the
|XA

z | =all setting. It can extract roughly 500 names with no
errors. Second, the low sample regime shows more similar
results between the two attacks. This is not surprising; the
adaptive attack exploits the fact that the histogram of CLIP
selections for extracted names tends to have low entropy
and it is difficult to estimate this histogram with few face
image samples. Figure 1 (right) shows the adaptive attack
in the |XA

z |=all setting under various relaxed ground truths.
For instance, we check whether the ground truth name ex-
ists within the top-5 extracted names (orange curve), or
whether the extracted last name matches the ground truth
(green curve). At 99% precision, around double the last
names are extracted than if both first and last name are con-
sidered.

Table 2 evaluates extraction performance across several
state-of-the-art CLIP networks. It reports the percentage
of extracted identities at 99.5% precision (E@99.5) as well

as 95% precision (E@95). Our attack significantly outper-
forms the baseline at E@99 for the majority of CLIP net-
works and for every model in the |XA

z |=all setting. We do
not see a clear relationship between network size and sus-
ceptibility to extraction. For instance, the ViT-H-14 L2B
and Evae-14 L2B models [19] are the largest and most per-
formant models and yet give worse E@99.5 than the small-
est ViT-B-32 L2B model. However, the ViT-G-14 L2B
model ranks amongst the top performing models on Open-
CLIP and is all around the most susceptible to the attack,
with ≈ 33% extraction (i.e. about three thousand names)
with less than .5% error.

6.3. IEGA results
First we detail how names are generated with either REIN-
FORCE or a VLM, and then analyze the results after per-
forming an IESA.

Training Details for REINFORCE We implement the
attack described in Sec. 4.2.2 by adapting the language
model Mistral-7B [20] with LORA fine-tuning [18] for each
tested identity. We use 50 images for each identity and 10
images from 100 other identities randomly selected for the
distractor identities. We sample the language model with a
relatively high temperature of T = 1.25 to promote diver-
sity in generation, enforce generations of 24 output tokens
and run 50 iterations of training.

VLM Extraction Our second extraction by generation at-
tack queries several VLMs via an API. Some of them, such
as GPT-4o, Gemini-1.5-Pro and Pixtral-12B reject naive at-
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Figure 1. Precision of the attack vs. the number of identities extracted from Convnext-xxlarge L2B. Left: Our selection attack (5) vs.
the baseline attack (4) inspired from [17]. Right: All curves are our adaptive attack, with various relaxed ground truths, including only
extracting last names.

Figure 2. Importance of IESA for IEGA generations. Here we show names generated by Qwen (left) and Gemini 1.5 (right) given a single
image of the target person, followed by an IESA attack using varying amounts of distractor names. Without IESA, an attack has low
precision as it cannot filter hallucinated names.

tempts to name individuals in pictures, so we designed a
jailbreak prompt to mislead the model into identification.
However, the prompts are generic, such as “Describe the
subject of this artwork,” and provide no information about
the individual. We submit only one image per subject and
request the VLM returns a json structured output. See the
supplementary for details and examples.

Results Table 3 shows the extraction by generation re-
sults. As both attacks are expensive, we use a subset of
4 000 identities from VGGFace2. The total extraction rate
is the percentage of identities where the ground truth name
is found in any generation. VLMs are queried to return
roughly 10 names, whereas the REINFORCE based opti-

mization returns around 50. All IEGA attacks are followed
by an IESA attack for which we append 10k additional dis-
tractor names to perform the attack. The is critical for attack
precision, and we explore what happens when only the gen-
erated names are used in Fig. 2, described in the subsequent
section.

Importance of IESA step in IEGA Fig. 2 demonstrates
the importance of IESA for IEGA generations. Here we
show names generated by two different VLMs, followed by
an IESA attack using varying amounts of distractor names.
Using only these names results in very low precision, as the
VLM will still hallucinate names, or generate generic texts.
With few names, the IESA attack is unable to distinguish
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Model Total Extraction Rate E@95

REINFORCE

ViT-L-14 L2B 12.68 7.53
ViT-H-14 L2B 11.48 7.45
Convnext-xxlarge L2B 11.8 7.15
ViT-H-14 DC 9.17 5.24
ViT-B-32 L2B 11.48 7.50

Vision-Language Models (VLMs)

GPT-4o 52.51 22.25
Qwen2-72B 22.83 13.06
Pixtral-12B 8.40 4.93
Gemini-1.5-Pro 33.48 19.34

Table 3. IEGA attack performance. Total extraction rate denotes
the total ground truth names present in any generation and E95
precision with IESA.

real extractions from generated names (red curves). Inter-
estingly, the attack continues to perform better with more
distractor names appended, despite having more names to
select from. The IEGA attack is the most precise with 10k
distractor names (green curve).

Qualitative Analysis During the optimization with RE-
INFORCE, the LLM consistently generates increasingly
relevant captions and names along the iterations. The gener-
ation begins to include relevant professions or settings even
if the guessed names are incorrect. For instance, for “John
Kerry,” captions at early iterations described other Ameri-
can politicians. At later iterations, captions typically stabi-
lize on the relevant profession, e.g. sports, politics, jour-
nalism, etc., and differ only in the names guessed. Some
Examples of training caption trajectories are shown in the
supplementary.

VLM-based extraction is surprisingly efficient. For in-
stance, GPT-4o finds the ground truth for roughly 50% of
queries, despite only being provided a single image. Of
course, VLMs require vastly more compute and training
than our REINFORCE procedure. Still, even the relatively
large open source VLM Pixtral-12B, performed worse than
our REINFORCE. We didn’t try to improve the VLM-based
extraction as we wanted to explore a baseline. Both REIN-
FORCE based and VLM based attacks expose simultane-
ously the vulnerabilities of both the CLIP model and the
language model/VLM used. For REINFORCE, the lan-
guage model’s knowledge of the individual, and other like
individuals, is necessary for refining relevant captions. Ulti-
mately though, we are exploiting the CLIP model’s vulner-
ability: the extraction by selection on the generated names
allows the overall attack to be precise and gives the ability
to sift out the unlikely generations.

Model Raw Crop Bbox Blur

ViT-G-14 L2B 44.78 25.91 0.03
ViT-L-14 DC [15] 36.25 2.11 0.25
ViT-B-16-quickgelu DC [15] 6.14 6.14 0.51

Table 4. Models trained on DataComp were trained with face blur-
ring, and are still vulnerable to name extraction (first column).
Once sufficient blurring is performed, the attacks are mostly nulli-
fied (last column).

Privacy Auditing The ViT-L-14 DC and ViT-B-16 DC
models were trained with face blurring to protect pri-
vacy [15]. The procedure blurs images in a bounding box
over the face [15]. Surprisingly, it is still possible to extract
names with high precision from these models (see Table 2).
To verify whether it is possible to extract names from CLIP
using only non-facial information, we examine several post
processing of VGGFace2:
- Strict facial cropping. The samples used for Tab. 4 are VG-
GFace2 images, which are a loose crop containing a small
area around the head. We use a strict crop of the face only
for the attacker image set.
- Bbox blurring. We keep the original sample and heavily
blur the facial crop region.

Table 4 compares the E@95 performance for the above
processing. It shows two models from [15] trained with
Bbox blurring and one model trained without blurring for
comparison. As expected, the attack is ineffective in the
heavy blur regime. The ViT-L-14 DC model performs well
on the VGGFace2 samples, but performance drops consid-
erably for cropped samples. Given that some blurring was
done during training, the model appears to exploit both fa-
cial and non-facial features. In any case, it is clear that the
blurring was not sufficient to safeguard data privacy.

7. Conclusion
In this work, we provide a more comprehensive privacy
audit of multi-model models, by introducing the problem
of Identity Extraction. Previous work on IMI yields only
training set membership, whilst IE recovers previously un-
known names to an attacker. We introduce a more compre-
hensive attacker set including a set of names gathered from
Wikipedia. We showed that CLIP models can still select
the correct name amongst millions with our IESA attack,
and provided an attack function outperforming a baseline.
Finally, we showed that even without a candidate set con-
taining the ground truth, an attacker can still recover names
directly from the CLIP model through optimization. We
believe IE is a valuable new framework to audit models and
demonstrated a dataset which fell short on protecting pri-
vacy.
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