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A bear is hugging with a panda.hugging

A polar bear is punching a penguin on an icy plain.punching

A panda is raising a toast with a red panda in a bamboo grove.cheering

A dog is shaking hands with a cat in a cyberpunk city.shaking hands

Figure 1. Relational video customization results of DreamRelation. Given a few exemplar videos, our method can customize specific
relations and generalize them to novel domains, where animals mimic human interactions.

Abstract

Relational video customization refers to the creation of
personalized videos that depict user-specified relations be-
tween two subjects, a crucial task for comprehending real-
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world visual content. While existing methods can person-
alize subject appearances and motions, they still struggle
with complex relational video customization, where precise
relational modeling and high generalization across subject
categories are essential. The primary challenge arises from
the intricate spatial arrangements, layout variations, and
nuanced temporal dynamics inherent in relations; conse-
quently, current models tend to overemphasize irrelevant vi-
sual details rather than capturing meaningful interactions.
To address these challenges, we propose DreamRelation, a
novel approach that personalizes relations through a small
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set of exemplar videos, leveraging two key components: Re-
lational Decoupling Learning and Relational Dynamics En-
hancement. First, in Relational Decoupling Learning, we
disentangle relations from subject appearances using re-
lation LoRA triplet and hybrid mask training strategy, en-
suring better generalization across diverse relationships.
Furthermore, we determine the optimal design of relation
LoRA triplet by analyzing the distinct roles of the query,
key, and value features within MM-DiT’s attention mecha-
nism, making DreamRelation the first relational video gen-
eration framework with explainable components. Second,
in Relational Dynamics Enhancement, we introduce space-
time relational contrastive loss, which prioritizes relational
dynamics while minimizing the reliance on detailed sub-
ject appearances. Extensive experiments demonstrate that
DreamRelation outperforms state-of-the-art methods in re-
lational video customization.

1. Introduction
Recent advancements in text-to-video (T2V) generation,
particularly through powerful video diffusion transformers
(DiT) [5, 65, 104], have significantly propelled customized
video generation [38, 93, 108]. While existing methods suc-
ceed in customizing subject appearances and single-object
motions [85, 97, 112], the challenging task of customizing
higher-order interactions between subjects (i.e., Relational
Video Customization) remains under-explored due to its in-
trinsic complexity. Enhancing video generation through
customized relations is crucial for real-world applications
such as filmmaking, enabling a more profound comprehen-
sion and production of complex relational visual content.

We formulate the task of Relational Video Customiza-
tion as follows: given exemplar videos representing a rela-
tional pattern <subject, relation, subject>, the model aims
to generate videos that exhibit the specified relation within
the pattern, as shown in Fig. 1. While general text-to-video
DiTs like Mochi [79] can generate videos depicting cer-
tain relational concepts, they often fail to: (1) produce un-
conventional or counter-intuitive interactions, such as ani-
mals engaging in human-like relationships as illustrated in
Figs. 2, even when provided with detailed prompts; (2) gen-
erate videos that adhere to precise relational dynamics, such
as “two people approaching each other from predefined po-
sitions.” These issues highlight the need for a novel video
generation method to precisely customize desired relations.

A straightforward approach involves adapting existing
video subject or motion customization methods to cus-
tomize relations between subjects. However, while sub-
ject customization techniques like Dreamix [62] capture de-
tailed appearances using low-level reconstruction loss, they
may hinder high-level relation learning due to severe ap-
pearance leakage. Similarly, motion customization methods

”A bear is hugging with a tiger.”

(a) Results of the base model Mochi. 

“A bear and a tiger stand on their hind legs, each extending their front legs 
wide open towards each other in a warm embrace. Both animals lean ......”

“A bear is hugging with a tiger.”

(b) Results of our DreamRelation.
Figure 2. (a) General Video DiT models like Mochi [79] often
struggle to generate unconventional or counter-intuitive interac-
tions, even with detailed descriptions. (b) Our method can cus-
tomize a specific relation to generate videos on new subjects.

Generated Video Value Feature

Figure 3. Averaged value feature across all layers and frames in
Mochi. We identify that the relations encompass intricate spatial
arrangements, layout variations, and nuanced temporal dynamics,
presenting challenges in relational video customization.

such as MotionInversion [85] excel in transferring single-
object motions but struggle to precisely capture relational
dynamics between two subjects. We identify that the key
challenge stems from the complexity inherent in the rela-
tions, which involve intricate spatial arrangements, layout
variations, and nuanced temporal dynamics. To illustrate
this, we visualize the Value features in Fig. 3 and provide
detailed analysis in Sec. 3.3. This tangled nature may pre-
vent accurate modeling of relations and cause models to fo-
cus on irrelevant subject appearances. This raises a criti-
cal research question: How can we decouple relations and
subject appearances while accurately modeling relational
dynamics to enhance generalizability?

To that end, we propose DreamRelation, a rela-
tional video customization method that personalizes user-
specified relations from exemplar videos through two con-
current processes: relational decoupling learning and re-
lational dynamics enhancement. In relational decoupling
learning, we decompose the relational pattern from input
videos into relational and appearance information using de-
vised relation LoRA triplet, a composite LoRA [32] set
comprising relation LoRA sets and subject LoRA sets. To
facilitate this decoupling, we introduce hybrid mask train-
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ing strategy that guides the two types of LoRAs to focus on
designated regions with corresponding masks, achieved by
a LoRA selection strategy and an enhanced diffusion loss
based on masks to amplify the learning in target areas.

Furthermore, building on the MM-DiT [18] architecture,
we analyze the query, key, and value features within the
full attention, and empirically identify that the query, key,
and value matrices serve distinct roles in the relation cus-
tomization task. This insight motivates our design of rela-
tion LoRA triplet, particularly in determining the optimal
placement of LoRA components within the model architec-
ture to maximize relational customization effectiveness.

To explicitly enhance relational dynamics learning, we
propose a novel space-time relational contrastive loss,
which emphasizes relational dynamics while reducing the
focus on detailed appearances during training. Concretely,
we pull relational dynamics representations closer through
frame differences in model outputs of videos depicting the
same relation, while distancing them from appearance rep-
resentations derived from single-frame outputs.

We curate a dataset comprising 26 human interactions
from publicly available action recognition datasets [49, 71]
to comprehensively evaluate relational video customization.
Each video is annotated with a textual prompt, and approxi-
mately 20 videos per relation type are randomly selected for
training. The evaluation is conducted on diverse subjects
using 40 designed textual prompts. Extensive experimen-
tal results demonstrate that our DreamRelation outperforms
state-of-the-art methods in this task.

Our contributions are summarized as follows:
• We make the first attempt at the Relational Video Cus-

tomization task by presenting DreamRelation, a method
that generates videos depicting customized relations
based on the MM-DiT architecture.

• We devise relation LoRA triplet with hybrid mask train-
ing strategy to explicitly decouple relation and subject ap-
pearances. To determine the optimal model design of our
method, we further analyze the roles of query, key, and
value features in MM-DiT full attention.

• We propose a novel space-time relational contrastive loss
to enhance relation learning by emphasizing relational
dynamics while reducing focus on appearances.

• Extensive experimental results demonstrate that Dream-
Relation achieves state-of-the-art performance on rela-
tional video customization.

2. Related Work
Text-to-video diffusion models. Text-to-video genera-
tive models have achieved breakthroughs in generating
high-quality and controllable videos using textual prompts
and diverse conditions [1, 3, 4, 7, 17, 24, 29, 41, 48, 56–
59, 67, 74–77, 86–90, 98, 103, 107, 109]. VDM [30] intro-
duces diffusion models into video generation by modeling

video distribution in pixel space. ModelScopeT2V [84] and
VideoCrafter [11, 13] integrate spatiotemporal blocks for
text-to-video generation. With the success of DiT [65] that
introduces Transformers [82] as the backbone of diffusion
models, the generated video quality has improved with in-
creased parameters [5, 19, 43, 55, 113]. CogVideoX [104]
incorporates 3D VAE and expert transformers, enhancing
video coherence. Mochi [79] proposes an Asymmetric Dif-
fusion Transformer architecture to scale parameters. Hun-
yuanVideo [42] enhances architecture design and model
training, achieving leading performance. These advance-
ments pave the way for relational video customization.
Customized video generation. Building upon achieve-
ments in image generation and personalization [8, 15, 16,
21, 28, 35, 44, 66, 69, 70, 92, 99, 110, 115], customized
video generation has garnered growing attention [9, 26, 46,
60, 62]. Many studies focus on generating personalized
videos using a few subject or facial images [45, 72, 93–
97, 108, 111, 114], while others tackle the challenging
multi-subject video customization [10, 12, 14, 34, 91]. Be-
sides subject customization, motion customization or mo-
tion transfer have also gained significant interest [37, 38, 68,
80, 81, 100, 105, 112]. For example, MotionInversion [85]
integrates motion embeddings into the temporal attention
of video diffusion models to learn motion dynamics. While
these methods effectively capture the subject appearances or
single-object motions, the challenging task of customizing
interactions between two subjects remains underexplored
due to its inherent complexity. In this work, we pioneer this
relational video customization task by presenting DreamRe-
lation, which can personalize specific relations and generate
diverse videos aligned with text prompts.
Relation generation. Early works on relational image
generation focus on human-object interactions using addi-
tional conditions like bounding boxes [22, 31, 33]. Re-
cently, inspired by image customization methods, several
works have explored relational image customization to per-
sonalize user-specific interactions from a few relational im-
ages [23, 36, 73]. For instance, ReVersion [36] utilizes in-
version techniques to capture relational information in the
text embedding space. Despite these advancements, exist-
ing methods are confined to the relatively simple relations
depicted in images. Direct adaptation of these image-based
methods for relational video customization often leads to
inaccurate relation modeling since dynamic and sequential
interactions cannot be fully represented in a single image.
In contrast, we design our method based on Video DiT ar-
chitecture and precisely model relations through relational
decoupling learning and relational dynamics enhancement.

3. DreamRelation
Our DreamRelation aims to generate videos depicting a
specified relation expressed in a few exemplar videos while
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Figure 4. Overall framework of DreamRelation. Our method decomposes relational video customization into two concurrent processes.
(1) In Relational Decoupling Learning, Relation LoRAs in relation LoRA triplet capture relational information, while Subject LoRAs
focus on subject appearances. This decoupling process is guided by hybrid mask training strategy based on their corresponding masks. (2)
In Relational Dynamics Enhancement, the proposed space-time relational contrastive loss pulls relational dynamics features (anchor and
positive features) from pairwise differences closer, while pushing them away from appearance features (negative features) of single-frame
outputs. During inference, subject LoRAs are excluded to prevent introducing undesired appearances and enhance generalization.

aligning with textual prompts, as illustrated in Fig. 4. We
begin by introducing preliminaries in Sec. 3.1. We then de-
tail relational decoupling learning and relational dynamics
enhancement in Secs. 3.2 and 3.4, respectively, along with
an analysis of the query, key, and value features in Sec. 3.3.

3.1. Preliminaries of Video DiT
Text-to-video diffusion transformers (DiTs) show growing
attention due to their capacity to generate high-fidelity, di-
verse, and long-duration video. Current Video DiTs [79,
104] predominantly adopt MM-DiT [18] architecture with
full attention and employ diffusion processes [28] in la-
tent space with a 3D VAE [39]. Given latent code z0 ∈
Rf×h×w×c from video data x0 ∈ RF×H×W×3 with its tex-
tual prompt c, the optimization process is defined as:

L(θ) = Ez,ϵ,c,t

[
∥ϵ− ϵθ(zt, c, t)∥22

]
, (1)

where ϵ ∈ N (0, 1) is random noise from a Gaussian dis-
tribution, and zt is a noisy latent code at timestep t based
on z0 with the predefined noise schedule. In this work, we
choose Mochi [79] as our base Video DiT model.

3.2. Relational Decoupling Learning
Relation LoRA triplet. To customize complex relations
between subjects, we decompose the relational pattern from
exemplar videos into distinct components emphasizing sub-
ject appearances and relations. Formally, given a few videos
depicting interactions between two subjects, we represent
their relational patterns as a triplet <subject, relation, sub-
ject>, denoted as <S1, R, S2> for brevity, where S1 and
S2 are two subjects and R is the relation [106].

To differentiate relations and subject appearances in the
relational pattern, we introduce relation LoRA triplet, a

composite LoRA set comprising Relation LoRAs to model
relational information and two Subject LoRAs to capture
appearance information, as depicted in Fig. 4. Specifically,
we inject Relation LoRAs into the query and key matrices
of the MM-DiT full attention. Concurrently, we design two
Subject LoRAs corresponding to the two subjects involved
in the relation and inject them into the value matrix. This
design is motivated by our empirical findings that the query,
key, and value matrices serve distinct roles within the MM-
DiT full attention. More details on the analysis are pro-
vided in Sec. 3.3. Additionally, we devise an FFN LoRA to
refine the outputs of the Relation and Subject LoRAs and
inject it into the linear layers of full attention. Note that
the two branches of text and vision tokens in MM-DiT are
processed by different LoRA sets.
Hybrid mask training strategy. To achieve the decou-
pling of relational and appearance information in the intro-
duced relation LoRA triplet, we propose hybrid mask train-
ing strategy (HMT) to guide Relation and Subject LoRAs
to focus on designated regions using corresponding masks.
We first employ Grounding DINO [50] and SAM [40] to
derive masks for the two individuals in a video, indicated as
Subject Masks MS1 and MS2 . Inspired by representative re-
lation detection approaches [78, 101, 102] that utilize mini-
mum enclosing rectangles to delineate subject-object inter-
action zones, we define the Relation Mask MR as the union
of the two Subject Masks to indicate the relation area. Since
the 3D VAE in Video DiT compresses the video’s temporal
dimensions by a factor of Tc, we average the masks over
every Tc frame to represent the latent masks.

We then devise a LoRA selection strategy and an en-
hanced diffusion loss for better disentanglement during
training. Specifically, we randomly select either the Re-
lation LoRAs or one type of Subject LoRAs in relation
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(a) Visualization of Query, Key, and Value Features in MM-DiT Full Attention. (b) Subspace similarity among the Query, Key, and Value Matrices across different models.
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A boy is shaking hands with a girl in the park.
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Figure 5. Features and subspace similarity analysis of MM-DiT. (a) Value features across different videos encapsulate rich appearance
information, and relational information often intertwines with these appearance cues. Meanwhile, query and key features exhibit similar
patterns that differ from those of value features. (b) We perform singular value decomposition on the query, key, and value matrices of
each DiT block and compute the similarity of the subspaces spanned by their top-k left singular vectors, indicating query and key matrices
share more common information while remaining independent of the value matrix. This observation holds for both MM-DiT (Mochi [79]
and HunyuanVideo [42]) and CrossAttn-based DiT (Wan2.1 [83]) architectures.

LoRA triplet to update for each training iteration. When
the Relation LoRAs are chosen, the two Subject LoRAs are
trained simultaneously to provide appearance cues, assist-
ing the Relation LoRAs in concentrating on relational infor-
mation. This process facilitates the decoupling of relational
and appearance information. The FFN LoRAs are consis-
tently engaged throughout training to refine outputs from
the selected Relation or Subject LoRAs.

Following LoRA selection, we apply the corresponding
masks to amplify the loss weight within the focused area,
which can be defined as:

Lrec = Ez,ϵ,c,t

(
λmMl + 1

)
·
∥∥ϵ− ϵθ(zt, c, t)

∥∥2
2
, (2)

where l ∈ {S1, S2, R} indicates the selected mask type,
and λm is the mask weight. By employing the LoRA se-
lection strategy and the enhanced diffusion loss, Relation
and Subject LoRAs are encouraged to concentrate on their
designated area, facilitating effective relation customization
and improving the generalization capacity.
Inference. During inference, we exclude Subject LoRAs
to prevent undesired appearances and inject only Relation
LoRAs and FFN LoRAs into the base Video DiT to main-
tain learned relations and enhance generalization.

3.3. Analysis on Query, Key, and Value Features
To determine the optimal model design, we analyze query,
key, and value features and matrices in MM-DiT’s full at-
tention via visualization and singular value decomposition,
revealing their impacts on relational video customization.
Visualization analysis. We start with two types of videos:
a single-subject video with multiple attributes, and a two-
subject interaction video, as illustrated in Fig. 5(a). We
compute the averaged query, key, and value features across
all layers and attention heads at timestep 60, focusing solely
on those associated with vision tokens. These features are
then reshaped into an f × h × w format, and we visualize
the averaged features across all frames with shape h × w.
From the observations in Fig. 5(a), we draw two conclu-
sions: 1) Value features across different videos encapsulate

rich appearance information, and relational information of-
ten intertwines with these appearance cues. For instance, in
the single-subject video, high-value feature responses oc-
cur at locations like “blue glasses” and “birthday hat.” In
the two-subject video, high values are observed both in re-
gions of relations (e.g., handshakes) and appearances (e.g.,
human face and clothing), indicating the entanglement of
relational and appearance information within the features.
2) Query and key features exhibit highly abstract yet similar
patterns, distinctly diverging from the value features. Un-
like the obvious appearance information in value features,
query, and key features exhibit homogeneity across differ-
ent videos, clearly differing from value features. To further
validate this point, we analyze query, key, and value matri-
ces from a quantitative perspective.

Subspace similarity analysis. We further analyze the
similarity of the subspace spanned by the singular vectors
of the query, key, and value matrix weights from the base
Video DiT model Mochi. This similarity reflects the de-
gree of overlap in contained information between two ma-
trices. For the query and key matrices, we apply singular
value decomposition to obtain left-singular unitary matri-
ces UQ and UK . Following [32, 52], we select the top r
singular vectors from UQ and UK , and measure their nor-
malized subspace similarity based on the Grassmann dis-
tance [25] using 1

r

∥∥Ur⊤
Q Ur

K

∥∥2
F

. The other similarities are
calculated in a similar way. The results in Fig. 5(b) demon-
strate that the subspaces of the query and key matrices are
highly similar, whereas their similarity to the value matrix
is minimal. This suggests that the query and key matrices in
MM-DiT share more common information while remaining
largely independent of the value matrix. In other words, the
query and key matrices exhibit a strongly non-overlapping
relationship with the value matrix, which facilitates the de-
sign of our decoupling learning. This observation aligns
with the visualization results in Fig. 5(a). To further ver-
ify the generalizability of this finding, we conduct similar
analyses on various models, e.g. HunyuanVideo [42] and
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Wan2.1 [83]. The results in Fig. 5(b) indicate that the higher
similarity between the query and key matrices remains con-
sistent across different MM-DiT models and other DiT ar-
chitectures (CrossAttn-based DiT).

Building on these observations, we empirically argue
that the query, key, and value matrices serve distinct roles
in relational video customization, motivating our design of
relation LoRA triplet. Specifically, given that value fea-
tures are rich in appearance information, we inject Sub-
ject LoRAs into the value matrix to focus on learning ap-
pearances. In contrast, due to the homogeneity observed in
the query and key features and their non-overlapping nature
with the value matrix, which facilitates decoupling learning,
we inject Relation LoRAs into both query and key matrices
to disentangle relations from appearances. The results in
Tab. 3 confirm our analysis, showing this design achieves
optimal performance. We believe our findings can advance
video customization research based on DiT architecture.

3.4. Relational Dynamics Enhancement
To explicitly enhance relational dynamics learning, we pro-
pose a novel space-time relational contrastive loss (RCL),
which emphasizes relational dynamics while reducing the
focus on detailed appearance during training. Specifically,
at each timestep t, we compute the pairwise differences of
the model output along the frame dimension, denoted as
ϵ̄ ∈ R(f−1)×h×w×c. We then reduce dependency on pixel-
level information by averaging these differences across the
spatial dimensions, resulting in 1D relational dynamics fea-
tures A ∈ R(f−1)×c, which serve as anchor features.
Subsequently, we sample npos 1D relational dynamics fea-
tures from other relation videos as positive samples P ∈
R(f−1)×npos×c. For each frame in A, we sample nneg 1D
features from single-frame model outputs ϵi ∈ R1×h×w×c

as negative samples N ∈ R(f−1)×nneg×c, which capture ap-
pearance information while excluding relational dynamics.

Our objective is to learn representations with relational
dynamics by pulling together the pairwise differences from
different videos depicting the same relation, while distanc-
ing them from spatial features of single-frame outputs to
mitigate appearance and background leakage. Following
InfoNCE [61, 64] loss, we formulate the proposed loss as:

LRCL = − log

f−1∑
i=1

npos∑
j=1

exp(A
⊤
i Pij

τ
)

npos∑
j=1

exp(A
⊤
i Pij

τ
) +

nneg∑
k=1

exp(A
⊤
i Nik

τ
)

, (3)

where τ is the temperature hyper-parameter.
Additionally, we maintain a memory bank M to store

and update the positive and negative samples, both ran-
domly selected from the 1D features of the current batch
videos and previously seen videos. This online dynamic
update strategy can enlarge the number of positive and neg-

ative samples, enhancing the contrastive learning effect and
training stability. At each iteration, we store all current an-
chor features A and the 1D features of ϵi into M. The mem-
ory bank is implemented as a First In, First Out queue.

Overall, the training loss Ltotal consists of both recon-
struction and contrastive learning loss, defined as:

Ltotal = Lrec + λ1LRCL, (4)

where λ1 is the loss balancing weight.

4. Experiment
4.1. Experimental Setup
Datasets. We conduct experiments on the NTU RGB+D
Action Recognition Dataset [49, 71]. We select 26 types of
human relations, such as handshakes and hugs, each labeled
with a text prompt like “A person is shaking hands with a
person.” For evaluation, we design 10×26 prompts with
uncommon subject interactions, such as “A dog is shaking
hands with a cat”, to assess generalization to novel domains.
More details are provided in Appendix A.
Baselines. Given the absence of existing methods for re-
lational video customization, we define four baseline cate-
gories: 1) The base model Mochi. 2) Direct LoRA finetun-
ing. 3) Adapted relational image customization methods.
We reproduce ReVersion [36] on Mochi for relational video
customization. 4) Motion customization methods, which
mostly rely on Temporal Attention Layers that are absent
in MM-DiT, face challenges in direct adaptation. Thus, we
choose the recent and adaptable MotionInversion [85] as a
baseline, reproducing it on Mochi for comparison.
Evaluation metrics. We evaluate our method by focusing
on four aspects: 1) Relation Accuracy. Instead of using bi-
ased classifiers trained on test sets with limited diversity like
previous methods [23, 36], which hinders test accuracy and
generalizability, we propose the Relation Accuracy metric
to assess relations using advanced Vision-Language Models
(VLMs). Specifically, we input generated videos to Qwen-
VL-Max [2], a leading VQA model [20, 53], asking if the
video matches the specified relation, and converting yes/no
responses into relation accuracy percentages. We repeat this
process 10 times to calculate the average accuracy. 2) Text
Alignment. We employ CLIP image-text similarity (CLIP-
T) to measure alignment with text prompts. 3) Temporal
Consistency, which computes the average cosine similarity
across consecutive frames [17]. 4) Video Quality. We use
FVD to evaluate the video quality. The reference videos are
800 videos from the AnimalKingdom test dataset [63].
Implementation details. We adopt Mochi [79] as our
base model. We use AdamW [54] optimizer with a learning
rate of 2e-4 and weight decay of 0.01. The training itera-
tion is 2400. We set LoRA rank to 16, λm to 50, and λ1 to
0.01. Generated video resolution is 61×480×848, and the
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Figure 6. Qualitative comparison results. Our method outperforms all baselines in precisely capturing the intended relation and mitigating
appearance and background leakage.

Table 1. Quantitative comparison results.

Method Relation
Accuracy CLIP-T Temporal

Consistency FVD↓

Mochi (base model) [79] 0.2623±0.04 0.3237 0.9888 2047.37
Direct LoRA finetuning 0.3258±0.05 0.2966 0.9945 2229.08
ReVersion [36] 0.2690±0.01 0.3013 0.9921 2682.69
MotionInversion [85] 0.3151±0.03 0.3217 0.9855 2084.51

DreamRelation 0.4452±0.01 0.3248 0.9954 2079.87

batch size is 1. We set npos to 4 and nneg to 10. The memory
bank size is 64, and τ is 0.07. During inference, we gener-
ate 30-fps videos using Euler Discrete method [47, 51] with
64 steps. The classifier-free guidance [27] scale is 6.0.

4.2. Main Results
Qualitative results. Qualitative comparisons in Fig. 6 re-
veal that all baseline methods, including the base model
Mochi, fail to generate videos that match the relations de-
fined in exemplar videos. For example, Direct LoRA fine-
tuning struggles with appearance and background leakage,
while other methods like MotionInversion cannot capture
desired relational dynamics due to the complexity inherent
in relations. In contrast, our DreamRelation precisely gen-
erates videos with intended relations and diverse subjects,
effectively preventing appearance and background leakage.
Quantitative results. Tab. 1 presents the quantitative
comparison results. Direct LoRA finetuning improves the
base model’s Relation Accuracy but suffers from reduced
CLIP-T and FVD due to appearance leakage. Inversion-
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(a) Visualization of Attention Maps. (b) Human evaluation results. 

Figure 7. (a) Our method focuses on the desired relational region.
(b) Our method is most preferred by users across all aspects.

based methods like ReVersion and MotionInversion achieve
better CLIP-T than finetuning but fail to model desired rela-
tions accurately. In contrast, while comparable to the base
model in FVD, our DreamRelation consistently surpasses
baselines across other metrics, verifying its effectiveness.
Attention map analysis. To verify the effectiveness of
our method, we compute averaged attention maps from all
layers and heads, extracting values for text tokens of rela-
tions like “shaking hands” and all vision tokens [6]. These
attention maps are reshaped and visualized in Fig. 7(a). We
observe that the base model’s attention map for “shaking
hands” is messy, leading to poor generation. In contrast, our
method’s attention map effectively focuses on the relational
area, producing more natural results and demonstrating its
capability to capture relational information.
User study. We conduct user studies to evaluate our
DreamRelation, involving 15 annotators who rate 180 video
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A person is patting a person’s shoulder.

A bear is patting a tiger’s shoulder on the grassland.

Figure 8. Qualitative ablation study on each component.
Table 2. Ablation studies on effects of hybrid mask training
strategy (HMT), space-time relational contrastive loss (RCL),
and each type of LoRA. Removing any of the above components
significantly reduces the overall performance.

Method Relation
Accuracy CLIP-T Temporal

Consistency FVD↓

w/o HMT 0.3574±0.02 0.3244 0.9938 2248.52
w/o RCL 0.3416±0.03 0.3185 0.9953 2136.95
w/o Relation LoRAs 0.3626±0.02 0.3035 0.9950 2318.49
w/o Subject LoRAs 0.3769±0.04 0.3147 0.9949 2408.59
w/o FFN LoRAs 0.4021±0.03 0.3241 0.9914 2369.98

ours 0.4452±0.01 0.3248 0.9954 2079.87

groups generated by four methods. Each group contains
four generated videos, a reference video, and a textual
prompt. Evaluations are based on majority votes in three
aspects: Relation Alignment, Text Alignment, and Over-
all Quality. Results in Fig. 7(b) indicate that our method
is most preferred by users across all aspects. More details
about the user study are provided in Appendix B.

4.3. Ablation Studies
Ablation on each component. We perform an ablation
study on the effects of each component, as shown in Fig. 8.
Without hybrid mask training strategy, the model gener-
ates the desired relations but experiences some background
leakage due to incomplete decoupling of relational and
appearance information. Omitting space-time relational
contrastive loss reduces background leakage but results in
videos exhibiting inaccurate relations.

Quantitative results in Tab. 2 show that removing hybrid
mask training strategy or space-time relational contrastive
loss degrades performance across all metrics, confirming
that each component is crucial to overall performance; see
Appendix C for more ablation studies.
Ablation on each LoRA in relation LoRA triplet. We
conduct ablation studies to verify each LoRA’s effects. The
results in Tab. 2 indicate that removing Relation LoRAs or
Subject LoRAs significantly reduces Relation Accuracy and

Table 3. Ablation study of Relation LoRA position.
Relation
LoRA

Subject
LoRA

Relation
Accuracy CLIP-T Temporal

Consistency FVD↓

V Q, K 0.3444±0.02 0.3225 0.9953 2233.48
Q K, V 0.3921±0.03 0.3301 0.9951 2284.65

K, V Q 0.3937±0.04 0.3196 0.9954 2180.27

Q, K V 0.4452±0.01 0.3248 0.9954 2079.87

Table 4. Effects of space-time relational contrastive loss on mo-
tion customization method (MotionInversion).

Method Relation
Accuracy CLIP-T Temporal

Consistency FVD↓

MotionInversion [85] 0.3151±0.03 0.3217 0.9855 2084.51
MotionInversion + RCL 0.3633±0.05 0.3181 0.9862 2063.30

CLIP-T due to insufficient decoupling of appearance and
relational information. Excluding FFN LoRAs also lowers
accuracy, highlighting the need for refinement.
Ablation on Relation LoRAs position. To determine the
optimal position of Relation LoRAs, we experiment with
different settings in the query (Q), key (K), and value (V)
matrices, as shown in Tab. 3. Inserting Relation LoRAs to
the V matrix results in the lowest Relation Accuracy, likely
because V features predominantly exhibit appearance infor-
mation, making it challenging to accurately capture the de-
sired relations. Placing Relation LoRAs in the Q matrix or
KV matrices is suboptimal since the overlapping nature of
the QK matrices hinders their ability to process different in-
formation separately, which is not conducive to decoupling
relations from appearances. In contrast, inserting Relation
LoRAs to the QK matrices achieves the best Relation Accu-
racy, consistent with our analysis of full attention in Fig. 5.
Ablation on space-time relational contrastive loss
(RCL). To verify the effectiveness of RCL among dif-
ferent methods, we integrate it with MotionInversion [85].
Results in Tab. 4 show that incorporating RCL enhances
Relation Accuracy and Temporal Consistency while main-
taining comparable CLIP-T, demonstrating its potential for
generalization across different methods.

5. Conclusion

In this paper, we present DreamRelation, a novel relational
video customization method that accurately models com-
plex relations defined in exemplar videos through relational
decoupling learning and relational dynamics enhancement.
We introduce relation LoRA triplet to decompose relations
into appearance and relational information and further en-
hance this decoupling with hybrid mask training strategy.
Our analysis of query, key, and value features in MM-
DiT’s full attention motivates and offers interpretability for
our model design. To further enhance relation dynamics
learning, we propose space-time relational contrastive loss,
which prioritizes relational dynamics over detailed appear-
ances. Extensive experimental results demonstrate the su-
perior customization capabilities of DreamRelation.
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