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Abstract

Computed Tomography (CT) enables detailed cross-
sectional imaging but continues to face challenges in bal-
ancing reconstruction quality and computational efficiency.
While deep learning-based methods have significantly im-
proved image quality and noise reduction, they typically re-
quire large-scale training data and intensive computation.
Recent advances in scene reconstruction, such as Neural
Radiance Fields and 3D Gaussian Splatting, offer alter-
native perspectives but are not well-suited for direct vol-
umetric CT reconstruction. In this work, we propose Dis-
cretized Gaussian Representation (DGR), a novel frame-
work that reconstructs the 3D volume directly using a set
of discretized Gaussian functions in an end-to-end man-
ner. To further enhance efficiency, we introduce Fast Volume
Reconstruction, a highly parallelized technique that aggre-
gates Gaussian contributions into the voxel grid with min-
imal overhead. Extensive experiments on both real-world
and synthetic datasets demonstrate that DGR achieves
superior reconstruction quality and runtime performance
across various CT reconstruction scenarios. Our code is
publicly available at hitps://github.com/wskingdom/DGR.

1. Introduction

When a patient undergoes a Computed Tomography (CT)
scan at a hospital, the initial output is not the familiar image
seen on the screen, but rather a series of projection data gen-
erated by X-ray detectors [21]. This data is then processed
by a CT reconstruction algorithm to transform the raw in-
formation into a 3D volume, which radiologists examine to
assess the patient’s condition. This task is challenging due
to three key factors. Firstly, the ionizing radiation exposure
from a complete CT scan poses significant health risks to
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Figure 1. I: CT imaging workflow: X-ray projections are acquired
from multiple angles. II: Deep Learning-based Reconstruction
(DLR): Networks are trained on paired projection-image datasets
to reconstruct volumes, requiring extensive pre-training. III: In-
stance reconstruction (exemplified by 3DGS): Instance-adaptive
optimization of 3D Gaussians via differentiable rendering, tailored
for each instance without the need for training datasets.
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patients, limiting the projections that can be acquired [41].
Secondly, time constraints in emergency situations require
fast reconstruction to enable timely diagnosis [3]. Thirdly,
the method must be generalizable across various CT config-
urations, such as different scan geometries, to accommodate
heterogeneous imaging protocols and patient populations.

As illustrated in Figure 1, existing CT reconstruction
methods broadly fall into two categories: Deep Learning-
based Reconstruction (DLR) and instance reconstruction.
Early DLR approaches, such as FBPConvNet [16] and
RED-CNN [4], primarily focused on image denoising
within the reconstructed domain. Subsequent methods
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like HDNet [15] advanced to joint optimization across
both projection and image domains. More recently, ad-
vanced diffusion-based DLR methods, including Diffusion-
MBIR [6] and SWORD [37], leverage score-based diffusion
models to guide the reconstruction process. Despite these
advancements, DLR methods face persistent challenges:
high training costs and limited generalization across diverse
CT scanner configurations. For instance, models trained on
Cone-Beam CT data often perform poorly on Fan-Beam CT
systems, and networks optimized for chest scans may show
degraded performance on head scans.

In response to these challenges, instance reconstruc-
tion methods have emerged, specifically designed to yield
patient-specific results. Inspired by the success of scene
reconstruction techniques, particularly Neural Radiance
Fields (NeRF) [29] and 3D Gaussian Splatting (3DGS) [19],
numerous adaptations have been proposed for CT recon-
struction. Exemplars of NeRF-based methodologies, such
as NAF [40], Intra-Tomo [39], and SAX-NeRF [2], implic-
itly represent the tomographic scene as a continuous func-
tion of 3D spatial coordinates and optimize a neural network
within the projection domain. However, these methods typ-
ically require hours per reconstruction, which renders them
impractical for real-time clinical deployment. On the other
hand, 3DGS-based methodologies, such as 3DGR-CAR [§]
and X-Gaussian [3], leverage explicit Gaussian functions
to represent tomographic scenes. Nevertheless, directly ap-
plying 3DGS to CT leads to a strong integration bias [41]
due to density inconsistency inherent in 3DGS. While R?2-
Gaussian [41] attempts to mitigate these issues with a rec-
tified 3DGS rasterizer and voxelizer, it introduces compu-
tational overhead stemming from the fundamental discrep-
ancy between 3DGS’s view-oriented rendering and the re-
quirements of discretized tomographic reconstruction.

These limitations highlight a critical gap: existing DLR
methods are hindered by dataset dependency and training
complexity, while instance reconstruction paradigms are not
well-aligned with tomographic objectives. Motivated by
these challenges, we rethink the framework’s design based
on three core principles: discretized representation, efficient
reconstruction, and unified global optimization.

From these foundational considerations, we propose our
Discretized Gaussian Representation (DGR) method. For
representation, given that the target volumetric grid is dis-
cretized, we directly model the 3D volume as a set of
discretized Gaussian functions. To ensure differentiabil-
ity and accurate preservation of continuous Gaussian con-
tributions within local grid regions, we developed a novel
alignment technique. For reconstruction, we advance be-
yond traditional voxelization with our highly parallelized
Fast Volume Reconstruction method, which can reconstruct
a 256 x 256 x 256 volume from over 150,000 Gaussians in
just 0.09 seconds per iteration. In terms of optimization,

the synergy of our lightweight representation and fast re-

construction allows for joint optimization of all Gaussians,

a departure from 3DGS-based methods that rely on selec-

tive view or block optimization. We evaluate DGR on three

public CT datasets: FIPS [34], AAPM-Mayo LDCT [30],

and FUMPE [27], covering both real-world and synthetic

data. Comprehensive experiments across multiple recon-
struction tasks demonstrate that DGR surpasses state-of-
the-art DLR and instance reconstruction methods in both
quantitative metrics and qualitative assessments.

Our main contributions can be summarized as follows:

* We propose DGR, an end-to-end CT reconstruction
method that directly reconstructs 3D volumes by learn-
ing from discretized Gaussian functions.

* We introduce a fast volume reconstruction technique that
efficiently aggregates Gaussian contributions into a dis-
cretized volume using a highly parallelized approach,
significantly reducing reconstruction time.

* We demonstrate DGR’s superior performance over both
DLR and instance reconstruction methods through exten-
sive experiments on real-world and synthetic datasets.

2. Background

2.1. Deep Learning Reconstruction

Deep Learning Reconstruction (DLR) methods have con-
sistently been a prominent area in CT reconstruction since
the successful application of deep neural networks in im-
age processing [32]. Conventional DLR approaches are pri-
marily categorized into direct-learning and indirect-learning
approaches [38]. Direct learning methods involve train-
ing networks to directly reconstruct images from projec-
tion data (sinograms). Prominent instances include AU-
TOMAP [42], which employs manifold approximation, and
iRadonMAP [12], which utilizes learnable filtering and
back-projection techniques. Conversely, indirect learning
methods [4, 11, 16, 18] frame CT reconstruction as a high-
level denoising problem. These methods first transform raw
projection data into the image domain, typically via filtered
back-projection (FBP) [1] or iterative reconstruction (IR),
and subsequently train networks to map these noisy initial
images to their clean counterparts. Certain indirect meth-
ods, such as HDNet [15], further integrate both projection
and image domains’ knowledge to guide the reconstruction.

Recent advancements in DLR have led to the develop-
ment of diffusion models that further guide the reconstruc-
tion process. Models like MCG [5], DiffusionMBIR [6],
and SWORD [37] learn the score function as a prior, which
helps manage noise and artifacts in the reconstructed im-
ages. However, diffusion-based methods are computation-
ally more intensive than traditional DLR, limiting their
practicality in clinical settings. Despite this, DLR methods
can improve generalization and performance by training on
large datasets with diverse imaging conditions.
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Figure 2. Pipeline of DGR. The 3D volume is initially represented by a set of continuous Gaussians, with each Gaussian’s contribution
confined to a local region surrounding the voxel. The Gaussians are then discretized onto the 3D grid, where their contributions are aligned
to directly reconstruct the entire volume. Fast Volume Reconstruction technique gathers these contributions in a highly parallelized manner.
Within each iteration, these Gaussians are reconstructed and then projected into the measurement domain for optimization.

2.2. Instance Reconstruction

Instance Reconstruction-based methods constitute another
category of CT reconstruction techniques, focused on re-
constructing images through solving an optimization prob-
lem. These methods are fundamentally rooted in iterative
reconstruction (IR) [9], where an objective function bal-
ances data fidelity with regularization terms. These terms
impose prior knowledge or constraints, such as sparsity,
smoothness, or edge preservation, to guide the reconstruc-
tion. Common approaches like algebraic reconstruction
techniques (ART) [13], simultaneous iterative reconstruc-
tion technique (SIRT) [35], and total variation (TV) [33]
regularization are widely adopted to enhance image quality
and reduce artifacts compared to direct analytical methods
like filtered back projection (FBP) [1].

Recent advancements for CT imaging have seen the
adaptation of instance reconstruction methods, such as Neu-
ral Radiance Fields (NeRF) [29] and 3D Gaussian Splat-
ting (3DGS) [19]. NeRF-based approaches like NAF [40]
and Intra-Tomo [39] optimize by minimizing the difference
between synthetic and ground-truth projections, incorporat-
ing both local and global geometric priors. SAX-NeRF [2]
further enhances Sparse-View X-ray reconstruction through
transformer-based structure-aware modeling. These NeRF-
based methods typically require hours of inference time per
instance [41], making them impractical for clinical use.

Generally, 3DGS-based methods surpass NeRF-based
methods in both speed and image quality. Following the
original 3DGS, they represent the CT scene as a set of 3D
Gaussians. 3DGR-CT [24, 25] integrates 3D Gaussians
with a differentiable CT projector for Cone-Beam CT re-
construction. 3DGR-CAR [8] leverages a U-Net [32] to

initialize Gaussian centers before employing 3DGS for fi-
nal reconstruction. DIF-Gaussian [26] uses 3D Gaussians
to model feature distributions for estimating attenuation co-
efficients. X-Gaussian [3] adapts 3DGS for novel view
synthesis in X-ray imaging. However, these 3DGS-based
methods are not ideal for direct 3D volume reconstruction.
R2-Gaussian [41] identified integration bias in the standard
3DGS formulation and proposed rectified rasterizer and dif-
ferentiable voxelizer to mitigate this limitation.

3. Preliminary

Problem Formulation Clinical CT imaging involves cap-
turing X-ray projections of the patient from various angles,
which are then processed to reconstruct a 3D volume that
represents the internal structures. The CT imaging system
for a 2D image slice can be described as:

y = Az + 8, 6]

where x € R™“*" denotes the 2D image with width w
and height h, and y € R™*™ represents the projection
matrix, where m is the number of projection views and
n is the number of detector elements per view. The ma-
trix A € R™*"*xwxh is the Radon Transform [31] ma-
trix, which maps the geometric relationship between the ob-
ject and the X-ray source/detector system. The noise term
B € R™*" represents measurement noise.

Optimization Goal. The goal of CT reconstruction is to
accurately estimate the underlying image = from measured
projection data y. While the Inverse Radon Transform the-
oretically offers a perfect mapping, real-world issues like
data noise and the underdetermined nature of the inverse
problem makes perfect reconstruction unattainable.

25075



The reconstruction process is commonly formulated as
an optimization problem:

v* = argmin €(Az,y) + R(x), @)

where £ is the data fidelity term, which measures the dis-
crepancy between the estimated measurement Ax and the
actual measurement y, often using the L1 or L2 norm. The
regularization term R(x) enforces properties like smooth-
ness or sparsity in the reconstructed image, with Total Vari-
ation (TV) [33] regularization being a popular choice [28].

4. Methodology

We illustrate our DGR framework in Figure 2. DGR aims to
directly reconstruct the 3D tomographic volume in an end-
to-end and efficient manner. We organize our method sec-
tion into three parts: Discretized Gaussian Representation
(Section 4.1), Fast Volume Reconstruction (Section 4.2),
and Global Optimization (Section 4.3).

4.1. Discretized Gaussian Representation

Continuous Gaussian Representation We begin by intro-
ducing the basic formulation of the continuous Gaussian
representation for tomographic volume reconstruction. We
define the Gaussian function centered at p with covariance
Y as:

Gp, %) = e*%(F*M)Tﬁfl(P*#), (3)

where p € R%, d = 3 is the 3D point in the scene (For clar-
ity in the Einstein Summation representation presented in
this section, we maintain the notation of a constant d = 3).
The Gaussian function is bell-shaped and symmetric around
the mean p, with its spread controlled by the standard de-
viation o, determining its extent in 3D space. We utilize
isotropic Gaussians rather than anisotropic ones to represent
the 3D volume. This choice is justified by the isotropic at-
tenuation properties of CT tissues, particularly soft tissues,
which exhibit minimal directional dependence. As noted
in [17], small distributed source elements can be treated as
isotropic, consistent with tissue behavior.

Direct Reconstruction Let the target volume be denoted
by V € Rwxhxe where w, h, and ¢ correspond to the
width, height, and depth (or length) of the volume, respec-
tively. The intensity of a voxel V' (p) at a spatial coordinate
p within this volume is expressed as the cumulative contri-
bution from all n constituent Gaussians:

n

V(p) =Y Gp,pi, %) - I )

i=1

where I; € R represents the scalar intensity value of the i-
th Gaussian, functioning as both its individual contribution
to the voxel intensity and its weight. The quadratic form
(p — p) "X (p — ) is recognized as the squared Maha-
lanobis distance, which quantifies the statistical distance of

point p from the Gaussian center u, normalized by the dis-
tribution’s shape. This quantity will be referred to as D? in
subsequent discussions for conciseness.

The direct computation of every Gaussian’s contribution

to the entire volume presents a significant challenge, leading
to unacceptable computational expense (see Table 5). For
a deeper understanding of this computational complexity,
please refer to Appendix E.2. To mitigate this issue, we
restrict each Gaussian’s effect to a localized region around
its assigned voxel, as detailed below.
Gaussian Effect Confinement The influence of a Gaussian
on a given voxel is known to attenuate with increasing dis-
tance from the Gaussian’s centroid. Leveraging this prin-
ciple, restricting the contributions to only those Gaussians
within a specified proximity of each voxel can substantially
accelerate the reconstruction process.

To formalize this concept, we define the effective prox-
imity for each Gaussian as a cuboid wy X hg X ¢y, where
wy, ho, ¢y are all odd integers. This box is centered on the
voxel, and we denote the set of all 3D coordinates within
this cuboid as By C R3.

Naturally, the specific coordinates within the cuboid By
depend on the Gaussian function’s center p. For a Gaus-
sian centered at u, its influence is evaluated at coordinates
B = By — i, and B is a constant tensor. This is because the
coordinates within By are relative to ;, meaning that sub-
tracting p yields a fixed pattern of offsets independent of its
absolute position. Mathematically, this reflects the transla-
tion invariance of the Gaussian function’s shape: shifting p
only changes the peak’s location, not the function’s overall
form.

Now, we can compute the squared Mahalanobis distance
D? for a given relative coordinate in B with respect to the
Gaussian’s mean (which is implicitly at the origin for these
relative coordinates) as:

D?=BTC'B. (5)

Here, C denotes the covariance matrix of the Gaussian. The
contribution of the i-th Gaussian to the voxel intensity at a
relative coordinate described by B is then given by:

e 2Dy, (6)

While this localized confinement might lead to a loss of in-
formation from more distant Gaussians, it is worth noting
that all Gaussians are trainable and can compensate for any
missing information from more distant Gaussians.

Discretize and Align In reconstructing a 3D volume V/, di-
rectly using the continuous mean p for indexing and sum-
ming all Gaussian contributions presents a challenge: the
gradient with respect to p cannot propagate through this
summation. This occurs because the discretized 3D vol-
ume V relies on integer coordinates, while p is continuous.
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Simply discretizing p by rounding it to the nearest integer
for indexing would render the reconstruction process non-
differentiable, thereby hindering optimization. To circum-
vent this, rather than directly discretizing u, we calculate
each Gaussian’s contribution at the discretized grid posi-
tions aligned with their floored integer coordinates. More
precisely, we select the floored integer of the box’s center
as the indexing point, denoting this integer-centered box as
| B].

For enhanced clarity, we define the residual between the
continuous center  and its floored integer counterpart as:

Ap=p—|u], (7

where || signifies the floor function. This Ap quantifies
the offset between the continuous and discretized positions,
thereby enabling precise alignment between the continuous
Gaussian center and the discretized grid.

Subsequently, we establish a relationship between the
coordinates of the new box | B| and the original box B by
accounting for this offset. The transformation from B to
| B] is expressed as:

Bwo,hu,co,d - A,un,l.,l 1,d,- (8)

y Ly

LBJ n,wo,ho,co,d —

Here, Ay is implicitly broadcast across the dimensions of B
to enable element-wise subtraction. This adjustment guar-
antees that each Gaussian’s contribution is accurately eval-
uated at its corresponding position on the discretized grid,
relative to its floored mean. This ‘Discretize and Align’
procedure thus enables seamless optimization by ensuring
the unimpeded flow of gradients through the aggregation of
Gaussian contributions, thereby preserving the differentia-
bility of the reconstruction pipeline.

4.2. Fast Volume Reconstruction

Parallel Computation To improve computational effi-
ciency, we compute the squared Mahalanobis distance D?
for each local region in parallel. For each voxel, D? is cal-
culated using the discretized box | B], leading to:

D?=|B|TC7!B]. )

To represent this computation more clearly and compactly,
we utilize the Einstein summation convention, which im-
plicitly sums over repeated indices. The expression for D?
thus becomes:

D7217w0,h0,c0 = Z |_BJ n,wo,ho,co,dcyz;d I_BJ n,wo,ho,co,d*
d

Once D?is computed, the contributions of all Gaussians are
summed to form the reconstructed volume.

Decomposition To further reduce computation in Equa-
tion 10, we decompose the computationally expensive Ein-
stein summation into smaller, more manageable summa-
tions. The squared Mahalanobis distance D? can be explic-
itly decomposed into a combination of the following four

smaller Einstein sums:

T~—1 _ T —1
B C B”*“m’hovct) - z :Bwo,homod On,d7d mehmco,dv
d
T~—1 _ § T —1
B C A/”’n;anhOvCO - Bwo,ho,CO,d Cn,dvd AMH,l,l,d?
d
T~—1 _ E T —1
AM C Bn7w07h0>co - Alu’n,l,l,d Cnﬁd,d Bwo,ho,c(),ch
d
Tr—1 T -1
Ap  C  Appi11 = E Aty 11,0 Cpg.a Dlna,1,ds
d

Subsequently, we compute the squared Mahalanobis dis-
tance D? as:

D?=(BTC™'B) — (BTC7'Ap)
—(Ap"CTIB)+ (ApTCT AR, (10)

The final contribution of the Gaussians within the local re-
gion is computed as:

[ = e 2Pnwonoco . T, (11)

where I' € R"*woxhoXco represents the contributions of
n Gaussians within the local region. This decomposition
allows us to calculate the contributions in a highly efficient
manner, reducing time complexity without increasing space
complexity. Specifically, B hg,co,4 15 Only % the size of
| B n,w0,ho,co.d» €nabling far more efficient computations.
The quantitative evidence supporting this efficiency gain is
presented in Table 5.

Then we aggregate the contribution of each Gaussian
into its corresponding voxels within the volume. Specifi-
cally, for each contribution I'; ;. ,, . from the i-th Gaussian
to the voxel located at position (z, y, z), the volume update
proceeds as:

V;c,y,z — Vx,y,z + Fi,x,y,z- (12)

This aggregation is performed for all Gaussians, guarantee-
ing the precise accumulation of their contributions at the
appropriate locations within the reconstructed volume. A
highly parallelized implementation of this update process is
available in our codebase for further reference.

Notably, our Fast Volume Reconstruction is a plug-and-
play module that can be seamlessly integrated into exist-
ing methods leveraging 3D Gaussians. For instance, while
X-Gaussian [3] originally focuses on novel view synthesis
without volume reconstruction, integrating our module into
its pipeline prior to loss computation enables it to perform
volume reconstruction, as demonstrated in Table 1.

4.3. Global Optimization

Subsequent to reconstructing the 3D volume from the Gaus-
sians, we adopt a joint optimization of the Gaussian param-
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Figure 3. Qualitative Comparison of our DGR with previous state-of-the-art instance reconstruction methods SAX-NeRF and R?-Gaussian,
with major differences highlighted in Red boxes. Please zoom in for better visibility.

eters within the projection space. Diverging from conven-
tional 3DGS and its variants, which typically optimize pa-
rameters per selected view [3, 19] or local blocks [41], our
global optimization strategy achieves convergence in fewer
than 1K iterations, representing a substantial improvement
over standard approaches (e.g., requiring 30K iterations).

The initial phase of this optimization involves project-
ing the reconstructed 3D volume back into the projection
domain. To accomplish this, we define a general geometry
projection transformation 7 :

P=T(V), (13)

where P € R™*"*? denotes the estimated projection.

This concise formulation is independent of specific CT
acquisition geometries, demonstrating strong compatibil-
ity with various CT settings, including Fan-Beam or Cone-
Beam CT, as well as Sparse-View or Limited-Angle CT. In
each iteration, we optimize the Gaussian parameters to min-
imize the discrepancy between the estimated projection P
and the reference projection P. This optimization is guided
by an objective function combining £, loss, SSIM [36] loss
(Lssr1n), and total variation [33] loss (L7 ):

Liow = ML1(P, P)+ o Lssu(P, P)+A3Lrv(V), (14)

where Ay = 0.6, Ay = 0.2, and A3 = 1 are the respective
weights for the £1, Lssiv, and L1y. We discuss the defini-
tion and usage of these loss functions in Appendix D.1.

To further enhance the optimization process, we adopt
the well-established adaptive density control for 3D Gaus-
sians [19]. This involves cloning under-reconstructed Gaus-
sians, splitting over-reconstructed ones into smaller Gaus-
sians, and pruning those with near-zero gradient magni-
tudes. As this process is standard and not our core con-
tribution, we provide full details in Appendix F.

5. Experiments

5.1. Experiment Settings

Datasets and Evaluation Setup We conducted experi-
ments using three distinct datasets: FIPS [34], AAPM-
Mayo LDCT [30], and FUMPE [27]. To ensure a fair and
reproducible evaluation, we maintained consistent settings
for all compared methods and grouped them by task, as de-
tailed below: For Cone-Beam Sparse-View CT, we eval-
uated on the FIPS [34] dataset, following the setup used
by R2-Gaussian [41]. This dataset includes both real-world
and synthetic data. The real-world evaluation utilized three
cases with 721 real projections, while the synthetic por-
tion involved 15 real CT volumes encompassing a range
of subjects from organisms to artificial objects. For Fan-
Beam Sparse-View CT and Limited-Angle CT, we followed
the evaluation protocols of SWORD [37] and Diffusion-
MBIR [6], using the widely adopted AAPM-Mayo LDCT
dataset. This dataset comprises 5388 slices with a Imm
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Table 1. Comparisons of 75/50/25-view Sparse-View CT on FIPS dataset. Best in Bold.

75-view 50-view 25-view

Methods

PSNRT SSIM{T Time] PSNRT SSIMT Timel PSNRT SSIM{  Timel

Real-World Dataset
FDK [7] 30.03 0.535 - 27.38 0.449 - 23.30 0.335 -
IntraTomo [39] 36.79 0.858 2h25m 36.99 0.854 2h19m 35.85 0.835 2h18m
NAF [40] 38.58 0.848 51m28s  36.44 0.818 51m31ls  32.92 0.772  51m24s
SAX-NeRF [2] 34.93 0.854 13h2Im  34.89 0.840 13h23m  33.49 0.793  13h25m
X-Gaussian* [3] 38.27 0.894 10m21s  37.80 0.881 10m5s 35.12 0.859 9m55s
R2-Gaussian (iter=10k) [41]  38.10 0.872 3m39s 37.52 0.866 3m37s 35.10 0.840 3m23s
R2-Gaussian (iter=30k) [41]  39.40 0.875 14ml6s  38.24 0.864 13m52s  34.83 0.833 12m56s
DGR (iter=300) 3991 0937 3m36s 3866 0929 3m24s 3516 0.883 2m59s
DGR (iter=1000) 41.28 0.952 13ml4s  39.27 0940 11m48s  34.58 0.870 8mb54s
Synthesis Dataset

FDK [7] 28.63 0.497 - 26.50 0.422 - 22.99 0.317 -
IntraTomo [39] 35.42 0.924 2h7m 35.25 0.923 2h9m 34.68 0914 2h19m
NAF [40] 37.84 0.945 30m43s  36.65 0.932 32m4s 3391 0.893 31mls
SAX-NeRF [2] 38.07 0.950 13h5m 36.86 0.938 13h5m 34.33 0.905 13h3m
X-Gaussian* [3] 38.22 0.955 9m58s 37.50 0.946 9m50s 35.18 0.924 9m51s
R2-Gaussian (iter=10k) [41]  38.29 0.954 2m38s 37.63 0.949 2m35s 35.08 0.922 2m35s
R2-Gaussian (iter=30k) [41]  38.88 0.959 8m2l1s 37.98 0.952 8ml4s 35.19 0.923 8m28s
DGR (iter=300) 3871 0957 2m24s 3805 0954 2ml7s 3576 0930 2mlds
DGR (iter=1000) 39.63 0.964 Tm27s 38.74 0.960 7m13s 36.55 0.947 6m53s

thickness, commonly used in CT reconstruction research.
Additionally, we performed evaluations on the FUMPE [27]
dataset, which contains 8792 chest CT images. Follow-
ing standard practice, we adopted Peak Signal-to-Noise Ra-
tio (PSNR) [14] and Structural Similarity Index Measure
(SSIM) [36] as our image quality metrics.
Implementation Details We implemented DGR using Py-
Torch. Most experiments were trained on a single NVIDIA
RTX 6000 GPU. However, for the 75/50/25-view Sparse-
View CT experiments on the FIPS dataset, we utilized a sin-
gle NVIDIA RTX 3090 GPU to ensure a fair comparison by
maintaining the same training environment as R?-Gaussian.
We initialized the number of Gaussians to 150K and set the
local box size to 17x 17 x 17. The Adam optimizer [20] was
employed with an initial learning rate of 3 x 10~%, which
decayed to 3 x 10~° by the end of training. For Cone-Beam
Sparse-View CT, the training process was limited to 1K it-
erations. For Fan-Beam Sparse-View CT, we did not set the
iteration limit, and the training process is ceased when the
validation loss converges in the projection domain.

5.2. Experimental Results and Analysis
5.2.1. Cone-Beam Sparse-View CT Reconstruction

In Table 1, we present a comparison of DGR with advanced
instance reconstruction methods on the FIPS dataset.
Baselines include NeRF-based methods (IntraTomo [39],

NAF [40], SAX-NeRF [2]) and 3DGS-based methods (X-
Gaussian [3], R?-Gaussian [41]), with X-Gaussian specif-
ically implemented using our Fast Volume Reconstruc-
tion module. DGR demonstrates superior image quality
and computational efficiency across all view counts, sig-
nificantly outperforming previous instance reconstruction
methods. Even with just 300 iterations, DGR surpasses
most advanced methods while completing reconstruction in
approximately 3 minutes.

The faster reconstruction time achieved by DGR is at-
tributed to the discretized representation, which is inher-
ently well-aligned with the reconstruction task and avoids
redundant computation. Furthermore, DGR’s lightweight
framework enables the joint optimization of all Gaussians,
significantly reducing computation time without compro-
mising reconstruction quality, as illustrated in Figure 3.

5.2.2. Fan-Beam Sparse-View CT Reconstruction

In Table 2, we compare DGR with leading DLR meth-
ods on the AAPM-Mayo LDCT dataset [30]. The term
‘Data’ in these tables refers to the number of images used
to train the DLR methods, whereas our DGR optimizes
without relying on additional training data. The baseline
methods include traditional CNN-based approaches such as
FBPConvNet [16], U-Net [23], and PLANet [38], along-
side advanced diffusion-based methods like GMSD [10],
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Table 2. Comparisons of 180/120/90/60-view Sparse-View CT on AAPM-Mayo LDCT dataset. Best in Bold.

Method Extra Data 180-view 120-view 90-view 60-view
PSNRT SSIMtT PSNRfT SSIMtT PSNRfT SSIMtT PSNRT  SSIMtT
FBP [1] 0 31.69 0.882 28.30 0.787 26.20 0.701 23.18 0.595
FBPConvNet [16] 4839 42.23 0.988 39.45 0.983 37.11 0.976 35.63 0.966
U-Net [23] 4839 38.37 0.985 35.58 0.977 30.09 0.947 28.83 0.937
PLANet [38] 4176 42.76 0.965 41.67 0.962 40.99 0.957 38.97 0.941
GMSD [10] 4839 41.44 0.988 39.41 0.981 37.25 0.974 34.31 0.958
SWORD [37] 4839 45.08 0.994 42.49 0.990 41.27 0.986 38.49 0.978
DGR 0 46.13 0.997 44.64 0.994 43.23 0.992 40.25 0.985
Table 3. Fan-Beam Limited-Angle CT 90° reconstruction. Table 4. Effect of Box Size on 60-view Sparse-View CT
Method Data PSNRAT“;‘SIMT PSNIEOTrOgglIMT PSngaTgi[gaSlIMT Box-Size 13x 13 x 13 15 x 15 x 15 17 x 17 x 17 19 x 19 x 19
FBP[1] 0 1491 0397 1707 0411 1546 0.403 Time (minutes) 7.92 11.07 16.58 26.99
FBPConvNet [16] 3142 26.76  0.879 2577 0.874 22.92  0.841 V-Ram (GiB) 10.70 13.29 16.87 21.32
ADMM-TV [28] 3142 23.19 0793 2296 0.758 19.95 0.782 PSNR/SSIM  35.99/0.960 38.90/0.973  40.25/0.985  40.98/0.987

MCG [5] 3839 26.01 0838 2455 0823 21.59 0.706
Lahiri et al. [22] 3142 28.08 0931 26.02 0.856 2324 0.812
DiffusionMBIR [6] 3142 3492 0956 3248 0.947 28.82 0.832
DGR 0 3822 0970 3932 0969 3835 0.970

and SWORD [37]. To ensure a fair comparison for
180/120/90/60-view Sparse-View CT, we replicated the set-
tings used in SWORD [37]. Notably, DGR surpasses ad-
vanced DLR methods that incorporate prior knowledge in
Fan-Beam Sparse-View CT reconstruction, despite requir-
ing zero training data. This validates DGR’s ability to ad-
dress diverse CT reconstruction tasks without architectural
modifications while achieving superior performance.

5.2.3. Fan-Beam Limited-Angle CT Reconstruction

In Table 3, we report the performance of Limited-Angle
CT reconstruction experiments conducted on the AAPM-
Mayo LDCT dataset [30], following the methodology of
DiffusionMBIR [6]. The baseline methods include tradi-
tional CNN-based techniques such as FBPConvNet [16]
and Labhiri er al. [22], alongside advanced diffusion-based
approaches like MCG [5] and DiffusionMBIR [6]. For these
evaluations, the angular data acquisition was restricted to a
90° range within a total of 180°. Without any prior knowl-
edge, DGR still demonstrates a substantial improvement
over these advanced DLR methods.

5.2.4. Additional Evaluations and Visualizations

Our DGR is further evaluated on the FUMPE dataset [27]
for Fan-Beam 180/120/90/60-view chest CT reconstruction,
with the quantitative results detailed in Appendix Table 9.
Furthermore, iterative reconstruction visualizations of DGR
are showcased in Appendix Figures 4, 5, and 6.

5.3. Ablation Study

In Table 4, we evaluate the impact of local box size on
60-view Sparse-View CT reconstruction using the AAPM-
Mayo LDCT dataset. Each configuration was assessed over
1K iterations to ensure stable measurements of training time

and video memory usage. We observe that performance
improves with increasing box size; however, this comes at
the cost of increased time consumption and video memory.
Consequently, we chose 17 x 17 x 17 as the default box
size for our experiments, as it achieves an optimal balance
between performance and efficiency.

Effect of Fast Volume Reconstruction In Table 5, we com-
pare the video memory and time consumption of our Fast
Volume Reconstruction (denoted as FVR below) against the
Direct reconstruction (Equation 4). We observe that Fast
Volume Reconstruction achieves a significant reduction in
video memory consumption. The decomposition further re-
duces the reconstruction time from 1.05s to 0.09s, thereby
enabling the highly efficient reconstruction capabilities.

Table 5. Video-Memory and Time Per Iteration

Method VRAM (GiB) Time (s)
Direct Reconstruction (estimated) 16662.50 /
FVR w/o Decomposition 16.87 1.05
FVR w/ Decomposition 16.87 0.09

Analysis of Loss Functions In Appendix Tables 6, 7, and 8,
we discuss the usage of various loss functions. Results in-
dicate that a combined use of £ loss, SSIM loss (Lss1a),
and total variation loss (L) yields the best performance.
Analysis of Isotropic Gaussians and Voxelizer As de-
tailed in Appendix Sections D.2 and D.3, our ablation stud-
ies demonstrate that DGR surpasses alternative designs in
both image quality and reconstruction speed.

6. Conclusion

We present DGR, a novel framework that rethinks CT re-
construction through representation, reconstruction, and op-
timization. Evaluated on multiple datasets against both
Deep Learning Reconstruction and instance reconstruction
baselines, DGR achieves superior image quality and speed,
demonstrating significant potential for clinical application.
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