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Abstract

Direct preference optimization (DPO) has shown success in
aligning diffusion models with human preference. However,
We identify two potential risks for existing DPO algorithms:
First, current DPO methods for estimating the rewards of
step-wise intermediate samples are biased, leading to inac-
curate preference ordering for step-wise optimization. Sec-
ond, existing DPO methods may inadvertently increase the
sampling probabilities of dispreferred samples, potentially
introducing application risks. To address these issues, we
propose Revised Direct Preference Optimization (RDPO),
a simple but effective step-wise DPO-based text-to-image
diffusion model alignment method. By designing a more theo-
retically grounded and efficient intermediate-step reward es-
timation and introducing an additional regularization terms
to constrain the sampling probability of dispreferred samples,
RDPO can achieve more effective and stable text-to-image
alignment performance. Our experiments on two datasets,
with base models including Stable Diffusion v1.5 and SDXL,
demonstrate that RDPO can effectively learn and construct
reward signals for each step of the model, improving align-
ment performance while ensuring better generalization.
Code is available at https://github.com/yushuiwx/RDPO.git

1. Introduction

Text-to-image generative models [28, 33, 35, 38] have seen
significant advancements in recent years. Notably, large-
scale text-to-image diffusion models such as Imagen [34] and
DALL·E 2 [28] have demonstrated remarkable capabilities in
generating high-quality and creative images based on textual
prompts. However, despite these advancements, current
generative models still suffer from misalignment with human
preferences, such as discrepancies with the provided text
prompts or the generation of incorrect content [25].

Direct preference optimization (DPO), which fine-tunes
the model on paired data to align the model generations with
human preferences, has demonstrated its success in large
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language models (LLMs) [27]. Recently, researchers gener-
alized this method to diffusion models for text-to-image gen-
eration [2, 20, 29, 42, 48]. Given a pair of images generated
from the same prompt and a ranking of human preferences
for them, DPO aims to increase the likelihood of generating
the preferred sample while reducing the likelihood of gen-
erating the less preferred sample. This process enables the
model to produce more visually appealing and aesthetically
aligned images that better reflect human preferences.

However, after carefully revisiting existing DPO methods
for text-to-image diffusion alignment, we identify two poten-
tial risk: (1) First, when estimating the rewards of intermedi-
ate step-wise samples, existing DPO algorithm either relies
on strong assumptions that are difficult to satisfy [41, 47]
or introduces bias [20, 29], leading to an inaccurate deter-
mination of the preference order of step-wise samples. (2)
Second, we find that existing DPO methods can increase
the sampling probabilities of dispreferred samples, as long
as the relative probability between the preferred and dispre-
ferred classes increases, which may introduce application
risks and potential issues with generalization performance.
We conduct detailed theoretical analysis of both two issues
in § 3.2 and § 3.3, respectively.

Therefore, in this paper, we propose Revised Direct Pref-
erence Optimization (RDPO) to address abovementioned
two risk. First, our theoretical analysis reveals that the inter-
mediate reward used in existing DPO algorithms is a Q-value,
representing the expected final reward of the entire diffusion
trajectory up to step t. However, a true step-wise reward at
step t should be the difference between the Q-values (i.e.,
∆Q) at steps t and t− 1, capturing the impact of the denois-
ing process at that step. Thus, unlike previous methods that
approximate step-wise rewards using the full trajectory’s
expectation, RDPO leverages this expectation difference
∆Q, enabling more accurate intermediate-step reward esti-
mation. Additionally, to address risk 2—ensuring that DPO
follows the principle of increasing the generation probability
of preferred samples while decreasing that of dispreferred
samples—RDPO introduce an additional penalty term. This
term is jointly optimized with the loss function to constrain
the sampling probability of dispreferred samples.
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In our experiments, we fine-tune Stable Diffusion v1.5
and SDXL on two datasets using RDPO, improving their abil-
ity to generate images with higher aesthetic scores and better
alignment with human preferences. Compared to strong
baselines, including both RLHF and DPO-style methods,
RDPO achieves superior preference alignment and better
generalization. Our main contributions are:

• We demonstrate that the reward estimation for
intermediate-step samples in existing DPO methods is
biased and propose a more accurate estimation approach.

• We introduce an additional penalty term to mitigate the
risks of DPO methods unintentionally increasing the
sampling probability of dispreferred samples.

• Based on the two contributions above, we propose RDPO
and demonstrate through extensive experiments that
RDPO achieves more effective, stable, and generalized
alignment.

2. Related Works
2.1. Diffusion Generative Models
The generative potential of diffusion models [9, 37, 39] has
been extensively explored across various domains, enabling
the synthesis of high-fidelity data from Gaussian noise. This
includes the generation of images [6, 11, 23, 32], audio
signals [21], video sequences [10, 36], three-dimensional
shapes [7, 24], and robotic motion trajectories [3, 13], all
achieved through iterative denoising processes. Furthermore,
diffusion models have been shown to outperform traditional
generative models, such as GANs [14], in certain applica-
tions due to their stable training dynamics and capacity for
more diverse outputs. Their flexible architecture allows them
to be adapted to various types of generative tasks, including
conditional generation, where the model is guided by addi-
tional information, such as labels or other inputs, enabling
targeted synthesis.

2.2. Reinforcement Learning from Human Feed-
back

Diffusion models have demonstrated high-quality genera-
tion capabilities [28, 33–35, 38] by training on large-scale
datasets, but the mixed quality of these datasets often leads
to visually unappealing and misaligned outputs. An effective
solution is to align generative models with human preference
by using Reinforcement Learning with Human Feedback
(RLHF) [16, 30, 46], whose effectiveness has been widely
validated [1, 5, 15, 25, 40]. Proximal Policy Optimization
(PPO) based methods [18, 25, 49, 50] first train a reward
model [15, 43, 45] using labeled pair-wise preference data,
and subsequently utilize it to provide preference signal for
fine-tuning diffusion models. However, this approach re-
quires hosting an additional reward model for training, which
incurs high computational costs and can lead to instability

during the optimization process.
Inspired by the success of Direct Preference Optimiza-

tion (DPO) in the NLP domain [17, 26], some works in-
troduce DPO into the alignment process of diffusion mod-
els [20, 22, 41, 47]. Given a pair of images or videos gen-
erated from the same prompt and a ranking of human pref-
erence for them, DPO aims to increase the probability of
generating the preferred sample while decreasing the proba-
bility of generating another sample, which enables the model
to generate more visually appealing and aesthetically pleas-
ing images that better align with human preferences.

3. Background
3.1. Preliminaries
Diffusion Models. Denoising Diffusion Probabilistic Mod-
els (DDPMs) generate high-quality samples by progres-
sively refining random noise into complex data distributions
through an iterative denoising process.

In the forward process, given an input x0 sampled from
the real distribution pdata, diffusion models gradually add
Gaussian noises to x0 at each step t ∈ [1, T ], as follows:

xt =
√
αtxt−1+

√
1− αtϵt−1 =

√
ᾱtx0+

√
1− ᾱtϵ (1)

where ϵt ∼ N (0, I) denotes the Gaussian noise at step t.
α1:T denotes the variance schedule and ᾱt =

∏t
i=1 αi.

In the reverse denoising process, the diffusion model
is trained to learn p(xt−1|xt) at each step t. Specifically,
following [39], the denoising step at step t is formulated as

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt

)
︸ ︷︷ ︸

x̂0(xt), predicted x0

+
√
1− ᾱt−1 − σ2

t ϵθ(xt, t)︸ ︷︷ ︸
direction pointing to xt

+ σtϵ
′
t︸︷︷︸

random noise

(2)

where ϵθ(·) is a noise prediction network with trainable pa-
rameters θ, which aims to use ϵθ(xt, t) to predict the noise ϵ
in Eq. (1) at each step t. ϵ′t ∼ N (0, I) is sampled from the
standard Gaussian distribution. In fact, xt−1 is sampled from
the estimated distributionN (µθ(xt), σ

2
t I). According to the

reverse process, x̂0(xt) = (xt−
√
1− ᾱtϵθ(xt, t)/

√
ᾱt rep-

resents the predicted x0 at step x.
Direct Preference Optimization (DPO). The DPO
method [41, 47] was originally proposed to fine-tune large
language models to align with human preferences based
on paired datasets. Given a prompt x, two responses y0
and y1 are sampling from the generative model πθ, i.e.,
(y0, y1) ∼ πθ(y|x). Then, y0 and y1 are ranked based
on human preferences. Let yw denote the preferred response
in (y0, y1) and yl denote the dis-preferred response. DPO
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optimizes parameters θ in πθ by minimizing the following
loss function.

LDPO(θ) =

−E(x,yw,yl)

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)] (3)

where σ is the sigmoid function, and β is a hyper-parameter.
πref represents the reference model, usually set as the pre-
trained models before fine-tuning.
DPO for Diffusion Models. We take D3PO [47] as an
example for explanation. For a text-to-image diffusion model
πθ parameterized by θ, given a text prompt c, D3PO first
samples a pair of generation trajectories [x0

T , . . . , x
0
0] and

[x1
T , . . . , x

1
0]. Then, they compare the reward scores r(c, x0

0)
and r(c, x1

0) of generated images, using the reward model
r(·), and rank their preference order. The preferred image
is denoted by xw

0 and the dis-preferred image is denoted
by xl

0. D3PO assumed that the preference order of final
images (x0

0, x
1
0) represents the preference order of (x0

t , x
1
t )

at all intermediate steps t. Subsequently, the diffusion model
is fine-tuned by minimizing the following DPO-like loss
function for Φ = (c, xw

t , x
l
t, x

w
t−1, x

l
t−1) at the step level:

LD3PO(θ) =

−EΦ

[
log σ

(
β log

πθ(x
w
t−1|xw

t , c)

πref(xw
t−1|xw

t , c)
− β log

πθ(x
l
t−1|xl

t, c)

πref(xl
t−1|xl

t, c)

)]
.

(4)

Without loss of generality, we take D3PO as the baseline
in the following sections (§ 3.2 and § 3.3) to analyze the
potential risk of existing DPO algorithms applied to diffusion
models.

3.2. Potential Risk 1 of DPO in Diffusion
In the context of text to-image diffusion models, the de-
noising process is typically conceptualized as a multi-step
Markov Decision Process (MDP). Therefore, when optimiz-
ing with the DPO loss, determining the perferred and disper-
ferred samples at each step is crucial. Since the intermediate
states consist of noise and partially generated images, it is
challenging for humans to accurately judge which segment
is better. Existing works can be categorized based on two
different assumptions for assigning rewards to intermediate
steps:

Assumption 1 The preference order between the final gen-
erations (x0

0, x
1
0) can consistently represent the preference

order between corresponding noisy samples (x0
t , x

1
t ) at all

intermediate steps.

Both Diffusion-DPO [41] and D3PO [47] introduce this
strong assumption to label the preference order of interme-
diate steps directly based on the preference order of final
generations. However, prior work [20, 29] has demonstrated
that this assumption does not always hold. To better align

Figure 1. The change curve of the ratio of dispreferred sample
log πθ(yl|x)

πref(yl|x)
during the D3PO [47] fine-tuning process with differ-

ent reward signal (aesthetic scorer, compressibility and ImageRe-
ward [45]). We find that the ratio keep increasing while using
different reward signals.

the preference labels with the denoising performance at each
step, both SPO [20] and TailorPO [29] biuld their methods
upon below assumption 2:

Assumption 2 the step-wise reward of xt can be estimated
by the corresponding reward of the predicted x0 (shown in
Eq.2) at t step.

Here, we carefully revisit the assumption 2, as the as-
sumption 1 has already been proven to be invalid. Previous
studies [4, 8, 29] have proven that E[x0|c, xt] = x̂0(xt)
and the expectation of image rewards E[r(c, x0)|c, xt] can
be approximated by the reward of the expected image
r(c,E[x0|c, xt]), then they take the reward of x̂0(xt) as the
reward for t step to determine which sample is preferred.

rt(c, xt) ≜ E[r(c, x0)|c, xt] ≈ r(c, x̂0(xt)) (5)

We indicate that r(c, x̂0(xt)) is actually a Q-value in the
MDP process, i.e., Q(c, xT :t) = r(c, x̂0(xt)), representing
the expected reward of the final image generated by the entire
diffusion chain from step T (the initial step) to step t. This
reflects the cumulative effect of the entire chain. However,
the true unbiased step-wise reward at step t should be the
difference between the Q-values at steps t and t− 1., i,e, the
expected change in expectation reward:

r∗t (c, xt) ≜ ∆Q ≈ (r (c, x̂0 (xt))− r (c, x̂0 (xt−1))) (6)

This difference bwtween Q-value represents the expected
reward change before and after the denoising process at step
t, which more accurately reflects the quality of the sampling
at step t.

3.3. Potential Risk 2 of DPO in Diffusion
In this section, we take a step back and examine the DPO
loss shown in Eq. 4. The gradient of LD3PO with respect to
parameters θ is given by (proven by Ren et al. [29]):

∇θLD3PO(θ) ∝ −E
[(
ft/σ

2
t

)
· Â

]
, (7)
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while

ft ≜ β(1− σ(β log
πθ(x

w
t−1|xw

t , c)

πref(xw
t−1|xw

t , c)
− β log

πθ(x
l
t−1|xl

t, c)

πref(xl
t−1|xl

t, c)
)). (8)

Here µθ(·) and σt represents the mean and variance of the
conditional distribution. Eq. 8 means that standard DPO
loss can lead to a increasing of the model’s likelihood of the
dispreferred completions, as long as the relative probability
between the preferred and dispreferred classes increases. We
further validate this phenomenon by visualizing the change
of the ratio log πθ(yl|x)

πref(yl|x) during preference aligning process
in Figure 1. We find that the ratio of disperferred samples
keep increasing, which further evidence of our findings.

Why is this an issue? First, fine-tuning a diffusion model
using DPO increases the likelihood of generating dispre-
ferred samples, which may contain undesirable content such
as violence, distortions, or other human dispreferred artifacts.
This poses potential risks when deploying the fine-tuned
model in real-world applications. Additionally, a large body
of research focuses on distilling multi-step diffusion models
into few-step or parameter-efficient variants to accelerate the
generation process. However, the tendency of DPO to in-
crease negative sample probability introduces potential risks
in the distilled models, making them more prone to generat-
ing undesired content. Moreover, fine-tuning with DPO on
a specific dataset increases the model’s probability mass on
that dataset, reducing generalization ability and making the
training process unstable, often leading to mode collapse.

4. Revised Direct Preference Optimization

To address the aforementioned two potential risk, we propose
the Revised Direct Preference Optimization (RDPO) for
better aligning diffusion models with human preferences.
Specifically, given a text prompt c and the time step t, we
have two noisy samples x+

t−1 and x−
t−1 both sampled from

xt.
To determine the preference order between x+

t−1 and
x−
t−1, we compute the step-wise reward of r∗t (c, x

+
t−1)

and r∗t (c, x
−
t−1) by using Eq. 6. The sample with the

larger reward is assigned xw
t−1, while the other, the dis-

preferred sample, is assigned xl
t−1. To address the po-

tential risk 2 described in Sec 3.3, we add a penalty term

Ψ = min
(
0, log

πref(x
l
t−1|xt,c)

πθ(xl
t−1|xt,c)

)
to the DPO loss to incen-

tivise maintaining a low log-likelihood of the dispreferred
sample. This penalty term is 0 when πratio(x

l
t−1|xt, c) ≤ 1

and decreases as the ratio goes below 1.
We present the full algorithm details of RDPO in Algo-

rithm 1 and the final optimization objective of RDPO is given
by:

LRDPO(θ) = −E(c,xt,xw
t−1,x

l
t−1)

Algorithm 1 RDPO: Revised Direct Preference Optimiza-
tion
Input: Diffusion model πθ(·), reference model πref(·), re-

ward model r(·), text prompt c
1 Initialize xT ∼ N (0, I) for t = T, . . . , 1 do
2 Sample x+

t−1, x−
t−1 from πθ(·|xt, c) Rank x+

t−1 and
x−
t−1 based on their step-wise rewards r∗ to obtain

xw
t−1 and xl

t−1

// Fix the potential risk 1 in Sec. 3.2
3 if r∗t (c, x

+
t−1) > r∗t (c, x

−
t−1) then

4 xw
t−1 ← x+

t−1 xl
t−1 ← x−

t−1

5 end
6 else
7 xl

t−1 ← x+
t−1 xw

t−1 ← x−
t−1

8 end
9 Optimize πθ(·) using Eq. (9) xt−1 ← xw

t−1

// Fix the potential risk 2 in Sec. 3.3
10 end

Output: The fine-tuned diffusion model πθ(·).

log σ
δ − λ ·min

(
0, log

πref(x
l
t−1|xt, c)

πθ(xl
t−1|xt, c)

)
︸ ︷︷ ︸

penalty term Ψ


 , (9)

while

δ = β

(
log

πθ(x
w
t−1|xt, c)

πref(xw
t−1|xt, c)

− log
πθ(x

l
t−1|xt, c)

πref(xl
t−1|xt, c)

)
. (10)

Here λ > 0 is a hyperparameter. By adding the term Ψ,
the model can no longer minimise the loss by increasing
the log-likelihood of the both preferred and dispreferred
examples while keeping the relative probability of picking
the preferred completion over the dispreferred. It must also
ensure that the log-likelihood of the dispreferred examples
remains low relative to the log-likelihood under the reference
model.

5. Experiments
5.1. Experimental Setting
Compared Baselines. We compare our RDPO with all
strong relevant baselines: Diffusion-DPO [41], D3PO [47],
DDPO [2], SPO [20] and TailorPO [29]. We implement our
RDPO based on the our implementation of TailorPO-G and
set two versions of our RDPO for better validating each
component in our methods. Here we use RDPO∗ denotes us-
ing better intermediate step reward mentioned in § 3.2, while
RDPO indicates using both two components we proposed
for two failure modes.
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Table 1. Reward values of images generated by diffusion models fine-tuned using different methods. The prompts are related to common
animals [47]. Experiments were conducted for three runs and we report the average results for fair comparison. – denotes the corresponding
reward can not be applied to this method.

Aesthetic scorer ↑ ImageReward ↑ HPSv2 ↑ PickScore ↑ Compressibility ↑ VP-Score ↑
Stable Diffusion v1.5 5.79 0.65 27.51 20.20 -105.51 25.61
DDPO [2] 6.57 0.99 28.00 20.24 -37.37 25.77
D3PO [48] 6.46 0.95 27.80 20.40 -29.31 26.09
SPO [19] 5.89 0.95 27.88 20.38 – 26.15
TailorPO [29] 6.66 1.20 28.37 20.34 -6.71 26.34
TailorPO-G [29] 6.96 1.26 28.03 20.68 – 26.27
RDPO∗ (Ours) 7.28 1.39 28.57 20.83 -4.41 26.59
RDPO (Ours) 7.80 1.48 28.42 21.10 -2.37 26.93

Table 2. Reward values of images generated by diffusion models fine-tuned using different methods. The prompts are randomly selected
from Pick-a-pic [15]. Experiments were conducted for three runs and we report the average results for fair comparison. – denotes the
corresponding reward can not be applied to this method.

Aesthetic scorer ↑ ImageReward ↑ HPSv2 ↑ PickScore ↑ Compressibility ↑ VP-Score ↑
Stable Diffusion v1.5 5.28 0.14 23.36 19.60 -143.82 22.96
DDPO [2] 5.41 0.16 24.07 19.79 -93.44 23.43
D3PO [48] 5.47 0.16 24.11 19.67 -97.57 23.30
SPO [19] 5.30 0.17 24.08 19.91 – 23.70
TailorPO [29] 5.44 0.16 24.93 20.02 -82.81 23.68
TailorPO-G [29] 5.58 0.25 24.67 19.86 – 23.87
RDPO∗ (Ours) 5.71 0.29 25.11 20.23 -76.60 24.07
RDPO (Ours) 5.90 0.37 25.71 20.27 -69.63 24.32

For SPO, we used the officially released implementation
and adopted the same hyperparameters as specified in the
original paper. For all other methods, we followed the hy-
perparameter settings outlined in [48], except for reducing
the batch size across all methods. Specifically, within all our
frameworks, image generation was performed using T = 20,
and Tfine-tune = 5 time steps were uniformly sampled for
fine-tuning. That is, we fine-tuned the model only at specific
steps t = 20, 16, 12, 8, 4.
Training Details. Following the experimental settings de-
scribed in D3PO [48], and TailorPO [29], we use the prompts
of animals released by Yang et al. [47] and prompts in the
Pick-a-pic [15], respectively. For training rewards, i.e.,
the preference scorers, we follow existing works by se-
lecting commonly used ones, Aesthetic scorer, ImageRe-
ward [45], HPSv2 [43], PickScore [15], Compressibility and
VP-Score [44].

We utilized the DDIM scheduler [39] with η = 1.0 and
employed T = 20 inference steps. The generated images
were produced at a resolution of 512× 512. To fine-tune the
UNet parameters, we leveraged LoRA [12] with a dataset
comprising a total of 10,000 samples and a batch size of 2.
The baseline model was initialized as the pre-trained Stable
Diffusion v1.51. We run all experiments with 8 × H100
GPUs (each with 80GB). We set λ = 1, 00 by default and

1https : / / huggingface . co / runwayml / stable -
diffusion-v1-5

provide the corresponding ablation study results in § 5.3.

5.2. Main Results
In this section, we compare our RDPO with all strong rel-
evant baselines from both quantitative and qualitative per-
spectives.
Quantitative results. Following Ren et al. [29] , we ran-
domly sampled five images for each prompt and computed
the average reward value of all the images for quantitative
evaluation. We present the quantitative results on the ani-
mal prompts and pick-a-pic prompts on Tab. 1 and Tab. 2,
respectively. We find that: (1) Since our RDPO∗ builds upon
TailorPO-G by incorporating the better revised intermediate
step reward mentioned in § 3.2, we compare RDPO∗ and
TailorPO-G and find that RDPO∗ consistently achieves su-
perior performance across different settings where various
rewards are used as training signals, which demonstrates the
effectiveness of our proposed the better revised intermediate
step reward. (2) By comparing RDPO∗ and RDPO, while
the only difference between them is using penalty term Ψ or
not, we find that RDPO achieves overall improvements over
RDPO∗, further validating the effectiveness of our proposed
penalty term Ψ.
Qualitative results. We visualize the corresponding gen-
eration results in Fig. 2 and Fig 4, and these visual results
show that the images generated by RDPO align better with
the prompts, are more aesthetically pleasing, contain richer
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SD v1.5 [31] D3PO [47] DDPO [2] SPO [19] TailorPO-G [29] RDPO (Ours)

Figure 2. Visualization of images generated by diffusion models fine-tuned using different methods on animal prompts [47]. Among these
results, we can find that the images generated by RDPO are more aligned to text and with higher fidelity and more visually pleasing.

Table 3. Ablation study results for penalty term Ψ in Eq. 9. Prompts
are related to common animals provided by Yang et al. [47]. ∆
means performance gains. All results are reported as the mean over
three independent runs.

Aesthetic scorer ImageReward

Stable Diffusion v1.5 5.79 0.65
D3PO [48] 6.46 0.95
D3PO + Penalty TermΨ 7.33∆=+0.87 1.14∆=+0.19

SPO [19] 5.89 0.95
SPO + Penalty TermΨ 6.54∆=+0.65 1.21∆=+0.26

TailorPO [29] 6.66 1.20
TailorPO + Penalty TermΨ 7.51∆=+0.85 1.44∆=+0.24

details, and exhibit fewer distortions and deformations.

5.3. Ablation Studies
Hyperparameter λ. We conduct an ablation study over
the value of λ in Eq. 9 to determine the sensitivity of
the model’s performance to this parameter. We test λ ∈
{10, 100, 10, 000} on animal prompts with aesthetic scorer
and show the results in Fig 3 (a). We find that adding penalty
term Ψ always leads to better performance compared to base-
line, but a too-large value of λ may lead to model collapse
(see the λ = 10, 000 at step 175).
Effectiveness of Penalty Term Ψ in Eq. 9. First, we vi-
sualize the change trend of ratio of RDPO∗ and RDPO in
Eq 9 at Fig 3 (b), while the only difference RDPO uses the
penalty term Ψ. We find that by adding this penalty term,
we effectively limit the model’s tendency to increase the
sampling probability of dispreferred samples. This ensures

that the model does not generate potentially harmful content
and prevents overfitting, which could occur if both preferred
and dispreferred sample probabilities were increased without
the penalty term, leading to reduced generalization.

To further validate the effectiveness and generalization of
the penalty term Ψ, we add this penalty term to baselines,
and train these baselines and their variants with this term
(denoted as Ψ) on the animal prompts dataset, using the
aesthetic scorer and imagereward as the reward signal. The
results, shown in Table 3, demonstrate that this penalty term
not only improves the performance and stability of our own
model but also enhances the performance and stability of
other baselines.

5.4. Further Analysis
In this section, we present further analysis of RDPO to vali-
date the effectiveness.
r∗ in Eq. 6 better represents the reward at each step. To
validate that r∗ is more effective, we adopt an intermediate-
step best-of-N sample testing approach. Specifically, at each
step from xt to xt−1, we sample N candidates for xt−1

and score them based on the corresponding intermediate-
step rewards, selecting the best xt−1 for the next sampling
step. To evaluate the accuracy of the intermediate rewards,
we measure the quality of the final generated image. We
set N = 8, 32 and use SD v1.5 as the generative model
on animal prompts for the experiments. We compare our
r∗ with r in Eq. 5 [29] and step-preference reward model
proposed by Liang et al. [20]. The results are shown in
Table 4. We find that our r∗ achieves the best intermediate-
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(a) (b) (c)

Figure 3. (a) Visualization of reward model values change with different λ used in Eq. 9. (b) Using penalty tern Ψ can limit the model’s
tendency to increase the ratio of dispreferred sample log πθ(yl|x)

πref(yl|x)
during the aligning process. (c) RDPO is more stable than baseline DPO

methods.
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Figure 4. Visualization of images generated by diffusion models fine-tuned using different methods on Pick-a-pic prompts [15]. Among
these results, we can find that the images generated by RDPO are more aligned to text and with higher fidelity and more visually pleasing.

Table 4. Intermediate-step best-of-N results. Prompts are common
animal prompts [47]. We take Stable Diffusion v1.5 as the base
model and use aesthetic scorer as the final generation evaluator.

N = 8 N = 32

Stable Diffusion v1.5 5.79 5.79
+ step-preference reward model [20] 5.93 6.31
+ r in Eq. 5 [29] 6.02 6.17
+ r∗ in Eq. 6 (Ours) 6.24 6.40

step Best-of-N performance, indicating that r∗ is better at
selecting the optimal sample from multiple intermediate
steps. In other words, r∗ is a more effective estimator of the
intermediate-step reward.

Training process of RDPO is more stable. A potential
concern is that the DPO algorithm is sensitive to out-of-
distribution preference data, as it assumes that πref can ade-
quately capture and represent the distribution of preference
data. This could lead to instability during DPO training. To

address this, we increased the number of samples (i.e., train-
ing steps) from 10,000 to 30,000 using Aesthetic scorer on
animal prompts. We show the changes in training rewards
for our model and the baseline D3PO in Figure 3 (c). We
observe that both D3PO and SPO exhibit collapse, while our
model continuously and stably optimizes, maintaining an
increase in reward.

Generalize to Out-of-Distribution Data. As discussed in
§ 3.3, we are concerned that the standard DPO algorithm,
by increasing the ratio of win and lose samples, may lead to
overfitting on the training data, resulting in poor generaliza-
tion. We hypothesize that our penalty term Ψ (see in § 3.3)
can mitigate this by constraining the ratio of dispreferred
samples, allowing the model to effectively focus on win sam-
ples and maintain better generalization. here we conduct
experiments to test this hypothesis using out-of-distribution
(OOD) prompt data. Specifically, we optimize our model on
common animal prompts [47] and test it on prompts sampled
from the Pick-a-Pic dataset [15]. The results are summarized
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Table 5. Out-of-Distribution evaluation. Models are fine-tuned
using common animals prompts provided by Yang et al. [47] and
evaluated on prompts sampled from Pick-a-pic [15]. All results are
reported as the mean over three independent runs.

Aesthetic scorer ImageReward

Stable Diffusion v1.5 5.28 0.14
D3PO [48] 5.20 0.13
SPO [19] 5.17 0.14
TailorPO-G [29] 5.32 0.15
RDPO 5.77 0.25

Table 6. Generalize experiments on other diffusion scheduler. We
use DDPM here and models are fine-tuned using prompts provided
by Pick-a-pic [15]. All results are reported as the mean over three
independent runs.

Aesthetic scorer ImageReward

Stable Diffusion v1.5 5.37 0.21
D3PO [48] 5.44 0.23
SPO [19] 5.40 0.23
TailorPO-G [29] 5.48 0.28
RDPO 5.60 0.31

in Table 5. We find that (1) some dpo methods achieve lower
performance than baseline SD v1.5 (e.g., D3PO and SPO),
indicating that DPO may harm the generalization ability
of diffusion models by increasing the sampling probability
of both preferred and dispreferred samples. (2) our RDPO
achieves the best OOD performance, which validating that
he penalty term Ψ enhances the model’s generalization by
constraining the sampling probability of dispreferred sam-
ples.
Generalize to Other Diffusion Scheduler. In the main
experiments of § 5, we primarily conducted experiments
on DDIM [39]. To further validate the effectiveness of our
model, we also performed related experiments on DDPM [9].
The experimental settings followed those outlined in § 5.1,
where we used animal prompts as the training set and SD
v1.5 as the baseline. The results are presented in Table 6.
We observe that RDPO achieves comparable performance
on DDPM, indicating that RDPO is robust to different sched-
ulers.
Generalize to Other Strong Diffusion Models. While our
main experiments utilize SD v1.5 as the base model for fine-
tuning, to further validate the effectiveness of our RDPO,
we extend our study by adopting SDXL2 as the new founda-
tion model and follow the experimental setup described in
§ 5.1. Specifically, we use animal-related prompts provied
by Yang et al. [47] as the training prompt set. The results are
summarized in Table 7, wihch demonstrate that our RDPO
continues to achieve superior alignment performance, and

2https : / / huggingface . co / stabilityai / stable -
diffusion-xl-base-1.0

Table 7. Generalize experiments on other strong diffusion baseline
model. Prompts are provided by Pick-a-pic [15]. All results are
reported as the mean over three independent runs.

Aesthetic scorer ImageReward

Stable Diffusion XL (SDXL) 6.33 1.79
D3PO [48] 6.52 1.90
SPO [19] 6.54 1.83
TailorPO-G [29] 6.62 1.80
RDPO 6.77 1.85

Table 8. Reward generalization: the model fine-tuned towards a
reward model also exhibited higher reward values on other different
but related reward models.

Train
Evaluate

Aesthetic scorer ImageReward HPSv2 PickScore

SD v1.5 5.61 0.69 27.77 20.51
Aesthetic scorer 7.33 1.12 27.99 20.57
ImageReward 6.14 1.46 28.30 20.81

HPSv2 5.34 0.99 28.29 20.65
PickScore 6.31 1.03 27.93 21.02

further validates that our RDPO can generalizes well to
stronger diffusion models.
Reward generalization. We follow Ren et al. [29] to con-
duct reward generalization expirements. We selected one re-
ward model from the aesthetic scorer, ImageReward, HPSv2,
and Pickscore for fine-tuning, and used the other three re-
ward models for evaluation. Table 8 shows that after being
fine-tuned towards the aesthetic scorer, ImageReward, and
PickScore, the model usually exhibited higher performance
on all these four reward models. In other words, our method
boosted the overall ability of the model to generate high-
quality images.

6. Conclusion
In this work, we presented findings on two potential risk of
DPO in text to-image diffusion models. First we indicates
that the reward estimation for intermediate-step samples in
existing DPO methods is biased and propose a more accu-
rate estimation approach. Then, we find that the standard
DPO loss can lead to an increased likelihood of the model
generating dispreferred completions, which may pose po-
tential risks in real-world applications. In order to mitigate
above two issues, we introduce a new diffusion alignment
method named RDPO, which we show overcomes the two
potential risk of DPO and is competitive with strong relevant
baselines, both quantitatively and qualitatively.
Potential societal impacts. Our method focuses on aligning
the text to-image diffusion model with human preferences.
While our approach aims to improve this alignment process,
a potential risk lies in the possibility of inherent biases in the
human-provided preference signals (e.g., gender, race, etc.).
These biases may pose risks during the alignment process of
the diffusion model and debiasing may become an important
future direction.
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