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Abstract

Scene flow provides crucial motion information for au-
tonomous driving. Recent LiDAR scene flow models utilize
the rigid-motion assumption at the instance level, assum-
ing objects are rigid bodies. However, these instance-level
methods are not suitable for sparse radar point clouds. In
this work, we present a novel Traffic-Aware Radar Scene-
Flow (TARS) estimation method, which utilizes motion
rigidity at the traffic level. To address the challenges in
radar scene flow, we perform object detection and scene
flow jointly and boost the latter. We incorporate the feature
map from the object detector, trained with detection losses,
to make radar scene flow aware of the environment and road
users. From this, we construct a Traffic Vector Field (TVF)
in the feature space to achieve holistic traffic-level scene un-
derstanding in our scene flow branch. When estimating the
scene flow, we consider both point-level motion cues from
point neighbors and traffic-level consistency of rigid mo-
tion within the space. TARS outperforms the state of the
art on a proprietary dataset and the View-of-Delft dataset,
improving the benchmarks by 23% and 15%, respectively.

1. Introduction

Scene flow estimates displacement vectors that describe
point motion between two point cloud frames, which facili-
tates subsequent decision making in autonomous driving.

Early point cloud scene flow methods [22, 32] typically
extract point-level or point-patch features and then estimate
the flow by aggregating neighboring information from two
frames. Considering only point-level information can result
in points from the same object moving in different direc-
tions with varying magnitudes [21]. Recent LiDAR scene
flow methods focus on the rigid-motion assumption [12]:
objects move rigidly without deformation and a scene can
be viewed as multiple rigidly moving objects and stationary
parts. These LiDAR-based methods often begin with fore-
ground segmentation, followed by clustering and matching
to obtain instance pairs of the same object in two frames
[14]. Then they predict the rigid motion at the instance level
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Figure 1. Challenges in radar scene flow. LiDAR points are shown
in color, with corresponding radar points overlaid as larger gray
points. (a-b) and (c-d) are two pairs of consecutive frames.

for each object pair [8] or derive the instance-wise transfor-
mation using optimization-based methods [13, 20].

However, these instance-level methods are not suitable
for radar scene flow due to the inherent sparsity of radar data
(cf. Fig. 1). Radar is more robust under different weather
conditions and is typically an order of magnitude less ex-
pensive than LiDAR [30]. Nevertheless, radar point clouds
are considerably sparser than LiDAR ones and fail to cap-
ture object shapes. These challenges lead to a lack of reli-
able correspondences for matching instance pairs. Objects
in radar point clouds may even exhibit deformations be-
tween frames due to the sparsity. Inferring rigid motion at
the instance level may misinterpret such abnormal deforma-
tions as motion. Moreover, even nearby objects may have
only a few reflection points (Fig. 1d), making optimization-
based methods [20, 21] ineffective.

In this work, we focus on reconciling the contradiction
between the rigid-motion assumption and the sparsity of
radar point clouds. Although rigid motion of objects under
radar is difficult to capture at the instance level, we believe
this motion rigidity still exists within the space occupied by
objects. Therefore, we aim for a higher-level scene under-
standing, beyond the instance level, focusing on the traffic
level to capture rigid motion hidden in the traffic context.
When estimating the scene flow, we not only consider the
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motion cues propagated from neighboring points, but also
the consistency of spatial context. This still adheres to the
rigid-motion assumption. In fact, previous methods also as-
sume that motion rigidity exists in Euclidean space when
performing clustering and pairing of LiDAR points [12, 21].
However, to address the aforementioned challenges in radar
scene flow, we do not further refine this assumption down
to the instance level.

On the other hand, perceiving the environment and road
users in the traffic is beneficial for motion prediction. More-
over, scene flow complements object detection with crucial
motion information, enabling a more comprehensive per-
ception. Therefore, we perform scene flow estimation and
object detection jointly. We provide traffic cues to scene
flow estimation through the object detector’s feature map,
which has been trained with detection losses and contains
all relevant features about road users and the environment.

In our network, we achieve the traffic-level scene under-
standing by building a traffic vector field (TVF). We de-
fine the TVF as: a discrete grid map that incorporates traf-
fic information about road users and the environment, with
each cell containing a vector representing the motion. A
conceptual diagram is shown in Fig. 5b. Note that we do
not define an explicit 2D vector field; instead, we embed
this concept within the feature space. The traffic informa-
tion is extracted from the feature map of the object detec-
tion branch, and the motion information is passed through
the hierarchical architecture of our scene flow branch. In
each level of the architecture, we extract point-level motion
cues from point neighbors while also paying attention to
traffic-level motion consistency in Euclidean space. We use
a coarse-grid TVF to achieve a high-level scene understand-
ing, rather than falling into point-level details.

We evaluate our model TARS on a proprietary dataset
and the View-of-Delft (VOD) dataset [23]. Quantitative
results demonstrate that TARS exceeds the state-of-the-art
(SOTA) scene-flow accuracy on these datasets by 23% and
15%, respectively. Radar scene flow heavily relies on radar
sensors’ ability to measure object velocities. However,
radar can only measure radial velocity, leading to signif-
icant underestimation of tangential motion. Qualitative re-
sults show that TARS effectively captures objects’ rigid mo-
tion while mitigating the tangential motion challenge.

Our main contributions are summarized as follows:

• We present TARS, the traffic-aware radar scene flow
model that addresses the challenges of radar by leveraging
the object detection feature map to obtain traffic context.

• We design the traffic vector field encoder and decoder
modules to encode traffic-level motion understanding into
the TVF and capture rigid motion in Euclidean space.

• TARS achieves SOTA accuracy by a large margin on both
the proprietary dataset and VOD dataset.

2. Related Work
Point cloud scene flow. Scene flow for LiDAR point clouds
has been widely studied over the past few years. Early
methods [18, 22, 32] use PointNet [24] as the point or patch
feature extractor and calculate flow embeddings based on
neighborhood information. Bi-PointFlowNet [4] uses the
bidirectional flow embeddings to capture the motion context
between frames. PV-RAFT [29] extracts point and voxel
features to capture local and long-range correspondences.
HALFlow [27] applies a double attention mechanism to
aggregate information from neighbors. DeFlow [33] em-
ploys a gated recurrent unit (GRU) to transfer voxel fea-
tures to points and improves efficiency on large-scale point
clouds. Flow4D [17] fuses multiple frames into 4D voxels
and extracts spatio-temporal features. These methods infer
scene flow only at the point-patch level, without considering
higher-level motion consistency.

WsRSF [12] and PCAccumulation [14] utilize the afore-
mentioned rigid-motion assumption at the instance level.
They segment instance pairs and then regress the motion
between each pair. Based on this approach, Dong et al.
[8] introduce the nearest neighbor error minimization into
a GRU to iteratively update the scene flow. Meanwhile,
RigidFlow [20] uses the network output as the initializa-
tion for ICP (Iterative Closest Point) and refines the results.
SCOOP [19] trains a pure correspondence model and com-
putes scene flow via optimization with smoothness prior.
Let-It-Flow [25] enforces rigidity in object clustering. MB-
NSF [26] encourages multi-body rigidity by adding a regu-
larization term to the Chamfer loss. ICP-Flow [21] is a non-
learning method using clustering to obtain instance pairs
and a histogram-based approach to initialize ICP. Although
effective for LiDAR, these instance-level rigidity methods
cannot handle the challenges in radar scene flow (Fig. 1).
Radar scene flow. Radar point cloud scene flow has only
gained attention in recent years. MilliFlow [7] estimates
human motion. RaFlow [5] employs motion segmentation
and applies the Kabsch algorithm [15] to estimate the ego-
motion transformation as the static flow. It treats static
points collectively, but lacks a higher-level understanding
of dynamic points. CMFlow [6] leverages additional cross-
modal information as supervision signals to enhance the
performance of radar scene flow. In this work, we provide
additional traffic information for radar scene flow and cap-
ture the rigid motion of objects at the traffic level.
Joint scene flow estimation & object detection. Com-
bining these two tasks enables comprehensive perception
in autonomous driving. Erçelik et al. [10] train a shared
backbone with alternating task-specific heads, while Pil-
larFlowNet [9] uses a voxel representation and a multi-
task head to jointly estimate scene flow and detect objects.
PointFlowNet [3] further infers point-wise motion from
voxels. These fine-grained voxel-based methods are limited
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Figure 2. Overview of TARS. TARS employs a hierarchical architecture. At each level, it infers point-level motion cues using a double
attention mechanism, while the TVF encoder leverages the OD feature map to build a traffic-level motion representation. The TVF decoder
then extracts rigid motion cues in Euclidean space. Finally, dual-level flow embeddings are combined to estimate the scene flow.

to point-patch-level motion understanding, with task inter-
action primarily via sharing backbone features. In contrast,
our work provides a holistic traffic-level understanding for
scene flow through synergistic interactions in the feature
space. TrackFlow [16] directly derives LiDAR scene flow
from object detection and tracking results. However, radar
object tracking is significantly less accurate. Our approach
perceives traffic context by leveraging feature maps, which
reduces the reliance on object detection accuracy.

3. TARS Architecture

We introduce TARS in a top-down approach. First, we
present the hierarchical architecture that progressively re-
fines scene flow (Sec. 3.1). Next, we use the l-th level to
explain the structure of TARS and its dual-level motion un-
derstanding (Sec. 3.2). Thereafter, we dive into details of
our TVF encoder, which encodes traffic and motion context
into the TVF, achieving a traffic-level motion understanding
(Sec. 3.3). The TVF decoder captures rigid motion hidden
in the surrounding context, and the scene flow head com-
bines point and traffic-level flow embeddings to predict the
scene flow (Sec. 3.4). Finally, we briefly describe our recur-
rent module that leverages temporal cues (Sec. 3.5).

3.1. Hierarchical Architecture
Following the hierarchical architecture in prior works [27,
32], TARS has L levels and predicts scene flow in a coarse-
to-fine fashion, progressively refining the prediction. Per-
ceiving the environment and road users in the traffic is
beneficial for motion prediction, as they provide a traffic-
level motion prior. The object detection (OD) feature map,

trained with detection losses, contains all relevant features
about road users and the environment. Therefore, we jointly
perform scene flow estimation and object detection (see Fig.
2b). We focus on enhancing the performance of radar scene
flow, while the OD branch can be any detector, as long as it
can generate bird’s-eye view feature maps to provide traffic
information for the scene flow branch.

The input to our scene flow branch consists of two point
clouds P ∈ RN×(3+2) and Q ∈ RM×(3+2), with 5D
initial features: x, y, z coordinates plus RRV (relative ra-
dial velocity) and RCS (radar cross-section) [34]. The
multi-scale point encoder [24] is first applied to both point
clouds for point feature extraction. Farthest point sam-
pling is also performed to downsample the point clouds,
yielding input point set pairs for each hierarchical level
{P l ∈ RNl×(3+C), Ql ∈ RMl×(3+C)}Ll=1, where C is the
dimension of extracted point feature, Nl and Ml are down-
sampled by a factor γ. Then, starting from the smallest
point set, the (l-1)-th level of TARS computes flow embed-
dings el−1 ∈ RNl−1×D and generates a coarse scene flow
F l−1 ∈ RNl−1×3, which are then used as input for the next
level. After refining the flow using multiple TARS levels,
we obtain the final scene flow for the full point set.

From the second-lowest level, we enhance scene flow es-
timation by incorporating traffic information from the OD
branch (green arrows in Fig. 2b). Here, we feed the point
cloud Q to the OD branch. The reason for using the fea-
ture map from Q rather than P is that: in our hierarchical
architecture, the point cloud P is gradually warped toward
the corresponding positions in Q by each level’s flow pre-
diction. Therefore, using Q’s feature map allows for more
accurate alignment between points and object features.
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3.2. TARS Structure
In radar scene flow, capturing motion rigidity at the instance
level is challenging (cf. Fig. 1). However, we believe that
rigid motion still exists regions occupied by objects. There-
fore, with the help of the OD branch, we aim to achieve a
traffic-level scene understanding to reveal the rigid motion
hidden in the traffic context. Meanwhile, point-level match-
ing information remains crucial for motion estimation. By
integrating both point-level and traffic-level insights, TARS
achieves a comprehensive motion understanding and en-
hances radar scene flow estimation.

Taking the l-th level as an example, Figure 2a shows the
structure of TARS. The point-level understanding extracts
motion cues from neighboring points, while the traffic-level
understanding is achieved by building a TVF (defined in
Sec. 1) to capture the motion consistency.

3.2.1. Point-Level Motion Understanding
Point motion can be inferred from the matching information
between neighboring points across consecutive point cloud
frames [32]. Previous studies [22, 32] use a multi-layer per-
ceptron (MLP) to encode this point-level matching informa-
tion, known as the cost volume, into the flow embeddings.
However, we observed that these MLP-based methods are
unstable in sparse radar point clouds due to larger point
spacing and fewer reflections per object. Therefore, we use
a double attention mechanism [27] to adaptively extract the
matching information from radar point clouds.

For a point pli ∈ R3 in P l, we compute cross-attention
between pli and its K nearest neighbors in Ql (blue circle
in Fig. 2a); then we apply self-attention between pli and its
neighboring points in P l (purple circle in Fig. 2a). Unlike
HALFlow [27], we remove the direction vector to mitigate
the point spacing issue, and we employ heterogeneous keys
and values to obtain fully attentive flow embeddings.

Specifically, we first warp the point cloud P l closer to its
neighbors in Ql using the upsampled coarse flow from the
previous level: P l

warp = P l + Interp(F l−1). For simplic-
ity, we omit this in the equations below. Let pl

i,ql
j ∈ RC

represent the point features of pli, q
l
j . We compute the cross-

attentive matching embeddings ecross(p
l
i) for each point pli:

ecross(p
l
i) = Attention(pl

i,NQ(p
l
i),NQ(p

l
i)), (1)

Attention(·, ⋄, ⋆) = softmax(
Q(·)K(⋄)T√

dk
)V(⋆), (2)

where NQ(p
l
i) = KNN(pli, Q

l) denotes the K nearest
neighbors of pli in Ql. Q(·),K(·),V(·) are linear layers.

Then, the point-level flow embeddings epoint(p
l
i) for a

point pli is computed via self-attention as:

epoint(p
l
i) = Attention(ecross(p

l
i),Ne(p

l
i),Ne(p

l
i)), (3)

where Ne(p
l
i) = KNN(pli, ecross) fetches the matching em-

beddings for the neighbors of pli in P l.

3.2.2. Traffic-Level Scene Understanding
Our goal is to reconcile the rigid-motion assumption with
the sparsity of radar point clouds. Instead of applying this
assumption at the instance level [12, 21], we capture the
rigid motion at the traffic level to address the challenges in
radar. To achieve this, we design a TVF encoder that builds
a traffic-level scene understanding. Then we employ a TVF
decoder to capture rigid motion hidden in the traffic context.

Specifically, the feature map χl
od from the OD branch

contains traffic information, and the flow embeddings el−1

passed from the previous level carry motion information.
The TVF encoder combines and encodes them into a coarse-
grid TVF in the feature space, enabling traffic-level scene
understanding (green & blue arrows in Fig. 2a). The TVF
decoder employs cross-attention between points and TVF
grids to perceive rigid motion and generate the traffic-level
flow embeddings. In the TVF encoder, we apply global at-
tention to build a holistic traffic-level understanding within
the TVF. In contrast, the TVF decoder restricts the cross-
attention to a local area, which helps to capture the rigid
motion in spatial context. Finally, we combine point-level
epoint and traffic-level flow embeddings etraffic to enhance
scene flow estimation (purple & green arrows in Fig. 2a).

3.3. Traffic Vector Field Encoder
Our TVF encoder integrates traffic and motion information
into the TVF, and it progressively updates this traffic-level
motion representation across TARS’s hierarchical levels.

To this end, the TVF encoder employs two stages:
(i) Scene update: A GRU [1] leverages the OD feature map
to update the TVF from the previous level; (ii) Flow paint-
ing: Point-to-grid self-attention adaptively paints the coarse
flow from the previous level onto the scene representation.
Finally, we generate the new TVFl ∈ RH×W×DTVF using
global attention. Figure 3 illustrates these two stages. The
TVF maintains the same shape across each level and is con-
figured to a coarse grid, e.g., 2m×2m, enabling a high-level
scene understanding without falling into point-level details.
Scene update. In this stage, we update the scene represen-
tation by leveraging traffic features from the l-th level of the
OD feature pyramid to refine the previous level’s TVFl−1.

First, we apply CNN and pooling layers to the feature
map χl

od to adapt the object features and match the pre-
defined shape of the coarse TVF. Then we use χl

od as the
input to a GRU, with TVFl−1 as the hidden state. The GRU
is applied in an inter-level manner for updating the scene
representation Xl

traffic across hierarchical levels:

X̃
l

traffic = tanh(WG ∗ χl
od + UG ∗ (rl ⊙ TVFl−1)), (4)

Xl
traffic = zl ⊙ TVFl−1 + (1− zl)⊙ X̃

l

traffic, (5)
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Figure 3. TVF encoder. Scene update: updates traffic information
on the TVF using GRU; Flow painting: incorporates motion infor-
mation into the TVF and build a holistic traffic representation.

where ∗ is the convolution operation, ⊙ is the element-wise
multiplication, WG,UG are 2D convolution kernels, rl, zl
are the reset and update gates, see [1] for details.
Flow painting. In this stage, we project the coarse flow
from the previous level onto the grid, using point-to-grid
self-attention. Next, we fuse the motion representation with
the scene representation and apply global attention to build
a high-level scene understanding.

Specifically, we concatenate the (l-1)-th level’s flow em-
beddings el−1 with the point features pl−1 extracted by the
multi-scale encoder, and then project them onto the pre-
defined 2D grid. Because our TVF grid is coarse, each
cell may contain multiple points with varying motion pat-
terns (see Fig. 3). Therefore, we apply point-to-grid self-
attention to adaptively extract motion features. We perform
both channel-wise and point-wise self-attention within each
grid cell and obtain the motion embedding field Xl

motion.
Next, we fuse the traffic feature Xl

traffic and motion fea-
ture Xl

motion using spatial attention [31]. We concatenate the
two feature maps and process them through CNN layers fol-
lowed by a pixel-wise softmax to generate spatial attention
weights. The fused traffic-level feature Xl

fusion is obtained
as a weighted sum of Xl

traffic and Xl
motion.

High-level scene understanding should not be limited to
local areas. A global receptive field is crucial for model-
ing dependencies of rigid-body motions in traffic, e.g., the
motion patterns of vehicles in the same lane. We use ax-
ial attention [28] to provide the global vision and build the
traffic-level motion understanding. It splits a standard atten-
tion block into separate row-wise and column-wise compo-
nents, reducing complexity yet preserving global context.
By stacking ω axial attention blocks, we enhance the fused
features Xl

fusion and obtain the final TVFl.

3.4. TVF Decoder & Scene Flow Head
Although radar point clouds are sparse, motion rigidity per-
sists in Euclidean space. When building the traffic-level
motion understanding, we encoded the rigid motion cues

Flow
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Figure 4. TVF decoder & scene flow head: capture motion rigidity
in spatial context; combine dual-level embeddings for prediction.

into the coarse-grid TVF. We then use the TVF decoder to
perceive rigid motion hidden in the traffic context.

Specifically, we apply grid-to-point cross-attention be-
tween each point pli and its surrounding traffic context in the
TVF, thereby integrating rigid motion cues into the flow em-
bedding. To focus on relevant local rigid motion, the atten-
tive receptive field is restricted to the nearby region around
each point (see Fig. 4). We interpolate the coarse flow em-
beddings el−1 and concatenate with the point feature pl as
the query, and the TVF grids as keys and values. This en-
ables the resulting traffic-level flow embeddings etraffic(p

l
i)

to be aware of motion consistency in the traffic context:

p̂l
i = Concat(Interp(el−1)i,pl

i), (6)

etraffic(p
l
i) = Attention(p̂l

i,NTVF(p
l
i),NTVF(p

l
i)), (7)

whereNTVF(p
l
i) = KNN(pli,TVFl) fetches the surrounding

K cells of pli from TVFl.
Combining point-level and traffic-level motion under-

standing, we obtain the final flow embeddings el =
Concat(epoint, etraffic, Interp(el−1)). Finally, we apply an-
other self-attention as in Eq. (3) on el, reduce it back to
C channels, and predict the final scene flow F l.

3.5. Temporal Update Module
Recurrent layers can leverage long-range temporal informa-
tion to enhance radar scene flow. CMFlow uses a GRU
to retain flow embeddings across frames but experiences a
slight drop in accuracy [6]. In contrast, we employ Point-
GRU layers [11] as the temporal module (distinct from TVF

PointGRU
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MLP MLP MLP

(a) Temporal update module

Multi-Scale
Encoder

Multi-Scale
Encoder

{{

(b) Conceptual diagram of TVF

Figure 5. (a) Temporal update module: leverages low-level point
dependencies using PointGRU. (b) Conceptual diagram of TVF.
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encoder’s inter-level GRU) to capture dependencies in low-
level point features. We initialize the hidden state with the
features of point cloud O at time t−2 and update it between
the current point cloud pairs (see Fig. 5a). During training,
we sample sequences of T frames as mini-clips.

4. Experiments

4.1. Experimental Setup
Dataset. We conducted experiments on the VOD dataset
[23] and a proprietary dataset from Aptiv. Both datasets
provide synchronized radar, LiDAR, camera and GPS/IMU
odometry data. The VOD dataset contains primarily ur-
ban traffic scenes recorded with a low-resolution 4D radar,
which captures about 256 radar points per frame and in-
cludes 4,662 training samples and 2,724 test samples. The
proprietary dataset comprises urban, suburban and highway
scenes, merging data from multiple high-resolution radars
to obtain about 6K radar points per frame and containing
107,382 training samples and 24,198 test samples.
Metrics. On the VOD dataset, we adopt the evaluation met-
rics from CMFlow [6]: 1. EPE: mean end-point-error (L2

distance) between the ground truth (GT) and the predicted
scene flow. 2. AccS/AccR: Strict/Relaxed Accuracy, the per-
centage of points with EPE < 0.05/0.1 m or a relative error
< 5%/10%. 3. RNE: resolution normalized EPE, to accom-
modate low-resolution radar. 4. MRNE and SRNE: RNE
computed separately for moving and static points.

The proprietary dataset was collected using high-
resolution radars. Therefore, we omit RNE. Since mov-
ing objects are critical in real-world autonomous driving,
we focus on the accuracy of moving points. For moving
points, we measure the following: 1. MEPE: EPE of mov-
ing points. 2. MagE and 3. DirE: magnitude and direction
error between the GT and prediction. 4. AccS/AccR of mov-
ing points. For static points, we only calculate 5. SEPE;
and we use 6. AvgEPE, the mean of MEPE and SEPE, as an
overall metric. Metric details are provided in Appendix D.1.

4.2. Implementation Details
Model details. The hyperparameters for both datasets are
listed in Tab. 1. Since the VOD dataset has only 256 points
per frame, we do not perform downsampling. Our TVF uses
a coarse grid to gain a high-level understanding rather than
being confined to point-level details. On VOD, we use the
Adam optimizer with a learning rate 10−3, a decay rate of
0.9 per epoch, over 60 epochs. On the proprietary dataset,
which is 20× larger, we set the learning rate to 10−4 with
a decay of 0.8 per 30K steps, training for 3 epochs. In the
Appendix, we provide details of the OD branch (A.7, B.1),
runtime analysis (C) and dual-task training strategy (A.6).

On the proprietary dataset, we simulate real-world au-
tonomous driving by providing all models with ego-motion

Table 1. Params for two datasets. L,N,M, T : number of levels,
points or mini-clips. γ: downsampling factor. C,D,DTVF: feature
channels of points, flow embeddings, or TVF. ω: number of axial
attention blocks. NQ,NTVF: KNN points or TVF cells. TVF grid:
shape [H,W ] and grid size. ego-info: availability of ego-motion.

Dataset L N,M γ C D DTVF ω NQ NTVF T TVF grid ego-info
VOD 4 256 1 64 256 128 4 16 9 5 [40,40] 1.28m Sup.

proprietary 4 6K 2 64 256 128 4 8 9 12 [70,40] 2.0m Input

Table 2. Model variants and supervision signals.

TARS EM (ego-motion Ω) availability Supervision
train test Note Label Note

ego ✓ ✗ as GT to train an EM head Cross w/ all losses
superego ✓ ✓ as input to compensate EM Cross+ w/o Lseg, Lego,Lopt

no-ego ✗ ✗ no EM operation / w/o Lseg, Lego,Lopt

FlowStep3D [18], RaFlow [5], etc. Self w/ only Lsc, Lss,Lrd

Ω ∈ R4×4 from the GPS/IMU sensor as known input. We
apply ego-motion compensation to align P and Q into the
same coordinate system. In this case, the GT for static
points is the zero vector. On the VOD dataset, we test our
model under two setups: (i) TARS-ego: following CMFlow
[6], using the ego-motion transformation to train an addi-
tional ego-motion head for a fair comparison; (ii) TARS–
superego: using ego-motion as known input and applying
compensation, same as on the proprietary dataset. For de-
tails of the setups, please see Appendix A.2 and A.3.
Weakly-supervised training. Since annotating scene flow
is extremely difficult, we adopt the self-supervised losses
in [5] and cross-modal losses in [6], and introduce an addi-
tional background loss for static points. Detailed loss func-
tions are given in Appendix D.2. On both datasets, we apply
the following losses: 1. soft Chamfer loss Lsc: aligns Pwarp
and Q by minimizing nearest-point distances, handling out-
liers via probabilistic matching; 2. spatial smoothness loss
Lss: enforces neighboring points to have similar flow vec-
tors, weighted by distance to ensure spatial smoothness; 3.
radial displacement loss Lrd: constrains the radial projec-
tion of predicted flow vectors using radar’s RRV measure-
ments; 4. foreground lossLfg: derives the pseudo scene flow
GT from a LiDAR multi-object tracking model, applied to
the predicted flow F l

fg of foreground moving points at each
level; 5. additionally, we employ a background loss Lbg:
using the ego-motion transformation as pseudo GT F̂ l

bg for
static points. The overall loss Lall is formulated as:

Lall = Lsc + Lss + Lrd +
∑L

l=1
(Ll

fg + λbgLl
bg), (8)

where Ll
fg and Ll

bg are computed for each level, λbg = 0.5.
When training TARS-ego on the VOD dataset, we in-

corporate cross-modal losses [6]: motion segmentation loss
Lseg: uses pseudo segmentation GT (derived from odome-
ter and RRV measurements) to train a motion-segmentation
head; ego-motion loss Lego: uses GT ego-motion to train
an ego-motion head; and optical flow loss Lopt: projects the
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Table 3. Scene flow evaluation on the VOD dataset. Mean metric values across the test set are reported. “Sup.” indicates the supervision
signal, Self: training with only self-supervised losses [5], Cross: with additional cross-modal losses [6], Cross+: setup for TARS-superego,
without Lseg, Lego, and Lopt while using ego-motion Ω as known input for ego-motion compensation, same as on the proprietary dataset.

Overall Moving Static
Method Sup. EPE [m]↓ AccS [%]↑ AccR [%]↑ RNE [m]↓ MRNE [m]↓ SRNE [m]↓

PointPWC-Net [32] Self 0.422 2.6 11.3 0.169 0.154 0.170
SLIM [2] Self 0.323 5.0 17.0 0.130 0.151 0.126
FlowStep3D [18] Self 0.292 3.4 16.1 0.117 0.130 0.115
Flow4D-2frame [17] Cross 0.255 10.0 26.2 0.103 0.125 0.098
RaFlow [5] Self 0.226 19.0 39.0 0.090 0.114 0.087
DeFlow [33] Cross 0.217 11.8 31.6 0.087 0.098 0.085
CMFlow [6] Cross 0.130 22.8 53.9 0.052 0.072 0.049
TARS-ego (ours) Cross 0.092 (-0.038) 39.0 (+16.2) 69.1 (+15.2) 0.037 (-0.015) 0.061 (-0.011) 0.034 (-0.015)
TARS-superego (ours) Cross+ 0.048 76.6 86.4 0.019 0.057 0.014

Table 4. Scene flow evaluation on the proprietary dataset. Mean metric values across the test set are reported. Ego-motion compensation
and Cross+ setup are applied to all models, making them “superego”. PointGRU is applied in all models except for the one in the first row.

Moving Overall Static
Method PointGRU MEPE [m]↓ MagE [m]↓ DirE [rad]↓ AccS [%]↑ AccR [%]↑ AvgEPE [m]↓ SEPE [m]↓

PointPWC-Net [32] ✗ 0.453 0.363 1.218 44.2 52.2 0.244 0.036
PointPWC-Net [32] ✓ 0.213 0.178 0.762 49.0 60.5 0.124 0.035
HALFlow [27] ✓ 0.170 0.135 0.721 50.9 63.8 0.104 0.038
TARS (ours) ✓ 0.069 (-0.101) 0.059 (-0.076) 0.599 (-0.122) 69.8 (+18.9) 86.8 (+23.0) 0.054 (-0.05) 0.038

scene flow onto the image plane and is trained with pseudo
optical flow labels. Tab. 2 summarizes the variants of TARS
and their supervision signals.

4.3. Comparison with State of the Art
Experiments on the VOD dataset. We compare our model
TARS with SOTA scene flow methods on the VOD dataset
(see Tab. 3). TARS clearly outperforms the previous SOTA
model CMFlow [6] across all evaluation metrics in both se-
tups. Under the same setup as CMFlow, our TARS-ego re-
duces the overall EPE from 0.13m to 0.092m, marking a
0.038m reduction and achieving a new milestone by bring-
ing EPE below the AccR threshold of 0.1m. Moreover,
TARS-ego improves AccS and AccR, two accuracy met-
rics computed based on EPE, by 16.2% and 15.2%, re-
spectively. RNE is computed as RNE = EPE

rR/rL
, where

rR
rL

is the ratio of radar to LiDAR resolution (on average
2.5). Therefore, reductions in RNE metrics are numerically
smaller. Nevertheless, TARS-ego shows substantial im-
provements in all three RNE-related metrics. We also com-
pare TARS-ego with latest LiDAR models [17, 33]. These
models perform worse because their fully-voxel represen-
tation, designed for large-scale LiDAR point clouds, is un-
suitable for radar scene flow. Ego-motion from the odome-
ter is a simple R4×4 matrix yet effective booster. Assuming
real-world autonomous driving with an available odometer,
TARS-superego applies ego-motion compensation and re-
duces EPE down to 0.048m, MRNE to 0.057m, and boosts
AccS and AccR to 76.6% and 86.4%, respectively.
Experiments on the proprietary dataset. The proprietary
dataset includes more complex and high-speed scenarios
such as highways and suburban scenes, which makes radar
scene flow estimation particularly challenging. Therefore,
to simulate real-world autonomous driving, we apply ego-

Table 5. Ablation study on the proprietary dataset. Point Level:
point-level motion understanding. OD Featmap: using OD feature
map. Coarse Grid: using coarse-grid TVF. Glob Attn: global at-
tention applied. The chosen setup of TARS is highlighted in blue.

No. Point OD Coarse Glob Moving Overall Static
Level Featmap Grid Attn MEPE↓ AccS↑ AccR↑ AvgEPE↓ SEPE↓

1 ✓ 0.178 47.9 61.6 0.106 0.033
2 ✓ ✗ ✓ ✓ 0.144 45.0 63.3 0.093 0.041
3 ✓ ✓ ✗ ✓ 0.104 51.4 69.9 0.076 0.049
4 ✓ ✓ ✓ ✗ 0.074 65.6 84.2 0.053 0.031
5 ✓ ✓ ✓ ✓ 0.069 69.8 86.8 0.054 0.038
6 Decoder NTVF = 5 0.071 67.2 86.5 0.064 0.057
7 Decoder NTVF = 9 0.069 69.8 86.8 0.054 0.038
8 Decoder NTVF = 13 0.077 59.9 84.0 0.060 0.043

motion compensation to all models and focus on moving
points during evaluation (see Tab. 4). Furthermore, we inte-
grate our temporal update module (Sec. 3.5) into other mod-
els for a fair comparison. Our model TARS outperforms the
previous SOTA model HALFlow [27] by a large margin, re-
ducing MEPE from 0.17m to 0.069m and improving AccS
and AccR by 18.9% and 23%, respectively. Qualitative re-
sults in Fig. 6 show that TARS effectively captures the rigid
motion of radar points on the same object and mitigates the
tangential motion challenge mentioned in Sec. 1.

4.4. Ablation Studies
Importance of key components. We demonstrate the ef-
fectiveness of the key components of TARS on the propri-
etary dataset. Ablation study No. i refers to the i-th row
of Tab. 5. No. 1: We completely remove the traffic level,
causing the model to revert to inferring motion cues solely
at the point level, resulting in MEPE of 0.178m, close to
HALFlow (Tab. 4). No. 2: We activate the traffic level but
without the OD feature map, meaning no scene update is
performed in the TVF encoder. This reduces our model to
simply combining point- and voxel-based motion features,
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Figure 6. Qualitative results on the proprietary dataset, compared with HALFlow [27]. LiDAR point clouds serve as reference. Arrows
indicate the predicted scene flow. After ego-motion compensation, static points are expected to yield zero vectors if predicted correctly. By
perceiving traffic-level motion cues, TARS effectively captures the rigid motion in Euclidean space, as well as tangential movements.

leading to unsatisfactory AccR of 63.3%. No. 3: We en-
able the OD feature map and scene update, but change the
coarse grid of TVF to a fine grid, from 2m×2m to 1m×1m
with shape [140, 80]. In this case, our traffic-level under-
standing falls into point-level details, resulting in a reduc-
tion of MEPE by 0.04m, yet the improvement in accuracy
is limited (AccR 69.9%). No. 4: We apply a coarse TVF
to achieve high-level understanding, which further reduces
MEPE by 0.03m and boosts the accuracy; but we replace
the global attention in the TVF encoder with local convo-
lutions. This makes the TVF focus on local areas, achiev-
ing the lowest SEPE of 0.031m, while limiting its ability
to capture global traffic information (e.g., motion of vehi-
cles in the same lane). No. 5: We construct a holistic traffic
model using global attention. Compared to No. 4, this im-
proves AccS by 4.2% and AccR by 2.6%. Although SEPE
increased, all models maintain a low SEPE (below 0.05m)
due to ego-motion compensation, and we prioritize dynamic
objects in autonomous driving. No. 6-8 show the effect of
NTVF: the number of TVF cells that a point query attends
to, when capturing motion context. In the cross-attention,
considering more spatial context NTVF = 9 (surrounding
neighbors) improves AccS by 2.6% and reduces SEPE by
0.019m, compared to NTVF = 5 (only direct neighbors).
However, expanding to NTVF = 13 (second-order neigh-
bors) increases SEPE and significantly reduces AccS due to
the inclusion of irrelevant parts in the attention. Moreover,
on PointPWC-Net in Tab. 4, we demonstrate the importance
of applying PointGRU to utilize temporal information.
Effect of losses. We evaluate the impact of losses on the
VOD dataset (Tab. 6). Group No. 1: we test the impact
of the proposed background loss Lbg using a TARS-no-ego
model, which excludes the ego-motion head of TARS-ego
as well as three losses Lseg, Lego, and Lopt. The experiments
show that setting the background weight λbg = 0.5 results
in the lowest MRNE of moving points. Further increasing
λbg could inflate AccS&AccR as they reflect overall accu-

Table 6. Ablation study on the VOD dataset. TARS-no-ego: with-
out ego-motion head and supervision signals L{seg, ego, opt}. The
chosen setup of TARS-ego is highlighted in blue.

No. TARS {Lseg, Lbg Overall Moving Static
Lego,Lopt} or λbg EPE↓ AccS↑ AccR↑ RNE↓ MRNE↓ SRNE↓

1

no-ego ✗ 0.25 0.124 23.6 54.7 0.050 0.066 0.048
no-ego ✗ 0.50 0.111 28.5 59.3 0.045 0.065 0.043
no-ego ✗ 0.75 0.103 32.5 63.2 0.042 0.066 0.039
no-ego ✗ 1.00 0.098 34.3 65.8 0.040 0.067 0.036

2 ego ✓ ✗ 0.107 32.5 62.4 0.043 0.062 0.040
ego ✓ 0.50 0.092 39.0 69.1 0.037 0.061 0.034

3
ego Decoder NTVF = 5 0.094 38.8 68.5 0.038 0.062 0.034
ego Decoder NTVF = 9 0.092 39.0 69.1 0.037 0.061 0.034
ego Decoder NTVF = 13 0.093 38.1 68.7 0.037 0.062 0.034

racy on the VOD dataset, where static points dominate the
scene. However, it undermines the MRNE. We advocate
emphasizing dynamic objects in radar scene flow, which is
why we set λbg = 0.5. Group No. 2: we include the ego-
motion head but initially without Lbg, which yields AccR of
62.4%. After enabling Lbg, both moving and static points
get improved. Group No. 3: we test the impact of NTVF.
However, it did not yield significant differences among the
three setups, because each frame in the VOD dataset con-
tains only 256 points, resulting in a highly sparse TVF.

5. Conclusion
We introduced TARS, a traffic-aware radar scene flow
model. Leveraging traffic information from an object de-
tector, TARS employs the traffic vector field encoder to
build a holistic traffic-level scene understanding and uses
the TVF decoder to perceive motion rigidity in the traffic
context. Quantitative results show that TARS significantly
outperforms SOTA on both the proprietary dataset and VOD
dataset. Ablation studies highlight the effectiveness of key
components in our design, such as incorporating OD fea-
ture maps, using a coarse-grid TVF, and applying global
attention. Qualitative results demonstrate TARS’s ability to
capture rigid motion and tangential movements.
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