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Abstract

Existing logit-based knowledge distillation methods typ-
ically employ singularly deterministic categorical distri-
butions, which eliminates the inherent uncertainty in net-
work predictions and thereby limiting the effective trans-
fer of knowledge. To address this limitation, we introduce
distribution-based probabilistic modeling as a more com-
prehensive representation of network knowledge. Specifi-
cally, we regard the categorical distribution as a random
variable and leverage deep neural networks to predict its
distribution, representing it as an evidential second-order
distribution. Based on the second-oder modeling, we pro-
pose Evidential Knowledge Distillation (EKD) which dis-
tills both the expectation of the teacher distribution and the
distribution itself into the student. The expectation cap-
tures the macroscopic characteristics of the distribution,
while the distribution itself conveys microscopic informa-
tion about the classification boundaries. Additionally, we
theoretically show that EKD’s distillation objective pro-
vides an upper bound on the student’s expected risk when
treating the teacher’s predictions as ground truth. Extensive
experiments on several standard benchmarks across vari-
ous teacher-student network pairs highlight the effective-
ness and superior performance of EKD. Our code is avail-
able at https://github.com/lyxiang-casia/EKD.

1. Introduction

As deep neural networks (DNNs) continue to advance, their
performance has rapidly improved, yet their increasing net-
work size and training costs pose challenges, especially
in resource-constrained and real-time processing scenar-
ios [62, 89]. Consequently, logit-based knowledge distil-
lation (KD) [30, 88], which aims to compress the predictive
capabilities of complex models into lightweight ones, has
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Figure 1. [ustrations of vanilla KD and our EKD. (a) Vanilla KD
deterministically converts the logits into categorical distributions
through the softmax function. Each categorical distribution corre-
sponds to a point on the simplex, with each categorical probability
representing the barycentric coordinates of that point. Vanilla KD
is achieved by minimizing the differences between the teacher’s
and student’s barycentric coordinates. (b) EKD treats the categor-
ical distribution as a random variable following a Dirichlet dis-
tribution, parameterized by the logits. The heatmap depicts the
probability density of the Dirichlet distribution across the simplex.
Moreover, EKD includes distillation of both the expectation of the
second-order distribution, and the second-order distribution itself.

gained increasing popularity. KD transfers knowledge by
guiding the predictions of a smaller network to align with
those of a larger network during the training.

Current knowledge distillation methods largely adhere to
the vanilla paradigm [30] where only the categorical distri-


https://github.com/lyxiang-casia/EKD

butions are aligned. As illustrated in Figure 1a, the logits
of a complex network (teacher network) and a lightweight
network (student network) are firstly converted into categor-
ical probabilities using a softmax function. Knowledge is
then transferred through the process of minimizing the KL
divergence between the two categorical distributions. En-
hancements to this distillation process, such as decoupling
the categorical distributions [88], smoothing the distribution
with multiple levels [45], or adopting sample-wise distribu-
tion smoothness [69], have demonstrated notable improve-
ments in the student network’s predictive performance. De-
spite these advancements, all such methods are constrained
by a fundamental limitation in their probabilistic modeling,
which assumes that categorical probabilities are singularly
deterministic [12, 14]. Specifically, vanilla KD implicitly
assumes that for any given sample, its probability belong-
ing to a particular class is deterministic and can be approxi-
mated by a deep neural network. In the case of a three-class
classification problem, as shown in Figure 1a, this assump-
tion is akin to identifying a single point on a 2D simplex
that best represents the entire simplex. However, in prac-
tice, networks trained on finite data with limited capability
exhibit inherent uncertainty in their predictions for specific
samples [39, 47]. For example, networks with different ini-
tial weights may yield different predictions for the same test
samples. Consequently, this singularly deterministic proba-
bilistic modeling creates a bottleneck in the effective repre-
sentation of diverse and uncertain knowledge.

To overcome the limitations of singularly determinis-
tic probabilistic modeling, we employ a distribution-based
probabilistic modeling, treating the categorical distribu-
tion as a random variable governed by a second-order dis-
tribution. Following Subjective Logic [35] and Demp-
ster—Shafer Theory of Evidence [81], the Dirichlet dis-
tribution, a conjugate prior of the categorical likelihood,
instantiates this second-order distribution, facilitating the
success of evidential deep learning across multiple do-
mains [5, 16, 25]. However, recent studies employing
distribution-based probabilistic modeling are largely con-
fined to macro-level training within a single network, where
the second-order distribution is integrated into a single
categorical distribution during the network’s training pro-
cess [8, 11, 64]. The second-order distribution inherently
provides micro-level information across all possible cate-
gorical distributions, offering advantages in cross-network
information propagation. Therefore, the second-order dis-
tribution serves as a bridge to enable knowledge transfer
at both the macro and micro levels, supported by PAC-
Bayesain theory [19]. As illustrated in Figure 1b, the logits
output by each network are converted into a set of Dirichlet
parameters, forming respective second-order distributions.
Essentially, the second-order distribution assigns varying
weights to all possible first-order categorical distributions,
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where the non-uniformity of these weights reflects the net-
work’s capacity for classification. Building on second-order
predictions, we propose the Evidential Knowledge Distilla-
tion (EKD), integrating both macro and micro perspectives.
At the macro level, we reduce each second-order distribu-
tion to their first-order categorical distributions via an ex-
pectation operation in order to ensure that the centroids of
their Dirichlet distributions coincide. By representing the
entire simplex with a single point, the student is encour-
aged to focus more on the overall density distribution of
the teacher at this stage, which leads to the proportions of
student’s outputs across categories aligning with those of
the teacher. At the micro level, we replace the first-order
distribution with the second-order distribution to enable the
transfer of more granular classification information. As a
complement to proportional alignment, this step refines the
magnitude in the student network’s outputs. Ultimately, the
student model benefits from both the teacher’s overall char-
acteristics and its detailed classification structure.

To summarize, Our main contribution are as follows:
We reformulate network predictions in knowledge dis-
tillation through distribution-based probabilistic model-
ing. Building on this reformulation, we propose EKD,
which distills the teacher’s second-order distribution into
the student model across both macro and micro levels.
With the help of PAC-Bayesian theory [19], we prove that
the distillation objective in EKD serves as an upper bound
on the expected risk of the student network when treating
the teacher network’s outputs as ground truth.

Extensive experiments are conducted on several stan-
dard benchmarcks, encompassing a wide range of teacher
and student models. Without bells and whistles, EKD
achieves performance improvement of up to 3.61% over
KD across various teacher-student network combinations.

2. Related Work

Knowledge Distillation Knowledge distillation enhances
a simpler student network using insights from a complex
teacher network. Existing methods fall into three cate-
gories: logit-based [2, 30, 44, 45, 54, 85, 88], feature-
based [33, 56, 57, 70, 73], and hybrid approaches [22, 31,
34, 58, 80, 82]. Unlike feature-based methods, which de-
mand architecture-specific designs, logit-based methods of-
fer wider applicability by relying solely on network out-
puts [4, 53, 84]. Introduced by Hinton and Geoffrey [30],
logit-based distillation converts teacher and student log-
its into categorical distributions aligned via KL diver-
gence. Subsequent efforts have refined this by adjusting
the temperature parameter dynamically, based on training
stages [45], teacher-student gaps [21], and output vari-
ance [69], or by decomposing distributions [88] and lever-
aging intermediate networks [31, 54].

The aforementioned traditional distillation methods



share a common limitation in their reliance on point es-
timates for model parameters or categorical distributions,
whereas Bayesian distillation [13, 37, 50, 74, 77] employs
distributional estimation, which enables the student network
to inherit the teacher’s strengths in uncertainty estimation.
Initial explorations [24, 37, 46, 51] adopt teacher ensembles
to approximate the distribution of teacher model parame-
ters and utilize the vanilla KD [30] for distillation. Subse-
quent extensions continue to advance by improving the stu-
dent network architecture [20, 50, 61, 72, 76], optimization
objectives [74], and sampling methods [13]. Additionally,
some approaches introduce the utilization of quantized un-
certainty during training to enable more fine-grained knowl-
edge transfer [28, 66, 87]. While these methods introduce
uncertainty into the model parameters and the resultant pre-
dictive distributions, they remain limited by their reliance
on a finite number of ensembles to approximate the dis-
tributions. Consequently, we propose to adopt a continu-
ous probabilistic modeling framework for both the teacher
and the student, while leveraging more advanced distillation
techniques. Unlike Bayesian distillation, which performs
uncertainty-related distillation, we implicitly express the
uncertainty of the predictive distribution through second-
order probabilistic modeling and focus on enhancing the
performance of the student network.

Evidential Deep Learning Based on Subjective Logic
(SL) [35] and Dempster-Shafer Theory (DST) [65], Sen-
soy et al. [64] initially propose a framework in which evi-
dence collected by a deep neural network for each class is
used to parameterize a second-order Dirichlet distribution
for network predictions. This concept of evidence collec-
tion allows evidential networks to express I don’t know” ,
showing advantages in uncertainty estimation. Since then,
numerous studies have advanced and expanded upon Ev-
idential Deep Learning (EDL) from both theoretical and
application-oriented perspectives [17]. Theoretical inves-
tigations have primarily focused on refining the evidence
collection process [11, 15, 18, 40, 55], delving into differ-
ent training strategies [5, 26, 43] and extending evidential
theory to regression networks [1, 49, 52]. Moreover, EDL
has been widely applied in computer vision tasks, including
action localization [5-7, 16], stereo matching [75], anomaly
detection [68], and multi-view classification [25].

3. Method

In this section, we first present the fundamental frame-
work of our Evidential Knowledge Distillation (EKD),
which includes both macroscopic first-order and micro-
scopic second-order distribution distillation. Theoretically,
we utilize PAC-Bayesian theory to demonstrate that the op-
timization objective of EKD effectively represents an upper
bound on the student’s expected risk. At the end of this
section, we illustrate the complementary effect of the two
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distillation strategies with a concrete toy case.

3.1. Preliminaries

Evidential Deep Learning. In accordance with the for-
mulation of evidential deep learning [8, 9, 64], for a clas-
sification task involving K classes, the categorical proba-
bility vector p is treated as a random variable governed by
a conjugate prior Dirichlet distribution. To define this dis-
tribution’s parameters, an evidential activation function o
which we designate as the exponential function (exp), is
employed to transform the network’s output logits z into
a non-negative evidence vector e = o(z). This evidence
vector is subsequently combined with a prior weight A to
yield the the K-dimensional Dirichlet parameters o which
fully specify a Dirichlet distribution Dir(cx) [8]. In terms
of optimization, the widely adopted cross-entropy loss is
computed by integrating over the categorical probabilities,

guided by second-order the Dirichlet distribution.
K

ﬁEDL—ce = / [Z —Yi 1Og(p7)‘| Dir(p|a)dp

i=1
6]

Here, y; denotes the ground truth, ag = S>5 () rep-
resents the Drichlet strength, and 1) refers to the digamma
function. To support the acquisition of evidence, we em-
ploy Eq. (1), rather than the conventional cross-entropy loss,
across all network training stages, including both the train-
ing of the teacher networks and student networks during the
knowledge distillation process.

Knowledge Distillation. Existing logit-based knowledge
distillation methods rely on categorical distribution predic-
tions derived from the softmax function. Specifically, for a
given input sample x, the network produces logits z, which
are then transformed into a categorical distribution via the
softmax operation, denoted as p = softmax(z). Knowl-
edge transfer is accomplished by minimizing the Kullback-
Leibler divergence(KL) divergence between the teacher’s
and student’s predicted distributions, p” and p°:

Lxp = KL(p"[Ip%) 2)
The teacher’s predictions serve as soft labels, replacing the
traditional one-hot labels, capturing inter-class similarities.

K
= 4 (o) — ()
=1

3.2. Evidential Knowledge Distillation

Previous knowledge distillation methods have generally fol-
lowed a unified paradigm, where the network’s output logits
are transformed into categorical probabilities via the soft-
max function, and the student network is guided to align
its categorical distribution with that of the teacher network.
While these approaches have yielded notable success, a fun-
damental limitation persists: they treat categorical proba-
bilities as singularly deterministic values. This assumption



overlooks the uncertainty in network predictions, thus con-
straining the sharing of more granular information. As a
more robust alternative, we predict the distribution of cat-
egorical distributions using neural networks, specifically
modeling it as a second-order Dirichlet distribution. More
importantly, we align both the first-order distribution, ob-
tained by integrating the second-order distribution, and the
second-order distribution itself.

Firstly, we aim to extract the overall characteristics of the
second-order distribution to capture the general distribution
trend of probability density across the simplex, as well as to
achieve alignment between networks in terms of final pre-
dicted classes. Specifically, given the second-order distri-
butions predicted by the teacher and student, Dir(a®) and
Dir(a®), we compute their expectations where all possi-
ble categorical distributions are summed under the weights

specified by the second-order distribution:

ﬁT = ]EpTNDir(aT) [pT]a ﬁS = EDir(pswaS) [pS] €)]

The expectation above, serving as the final predictive out-
come for both teacher and student, is equivalent to the cen-
troid of the second-order distribution, enabling the transfer
of comprehensive probability density information via first-

order distillation at a macro level.
K

TS aj , orag
Lroe = KLT1P%) = 3 Flog( 7))
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Formally, optimizing Eq. (4) involves adjusting the propor-
tion of each class’s Dirichlet parameter relative to the to-
tal, which significantly enhances the alignment between the
student’s and teacher’s predicted classes. In terms of formu-
lation, Eq. (4) is very similar to vanilla KD, yet it is empha-
sized that vanilla KD can be regarded as a special case of
first-order distillation when o = exp(-) and A\ = 0. Proof is
provided in the Supplementary Material.

The first-order distillation objective above only provides
macroscopic guidance for the student’s second-order dis-
tribution, failing to accurately and comprehensively rep-
resent the weighting of each categorical distribution. In
other words, given a fixed teacher distribution, the student
Dirichlet distribution that minimizes Eq. (4) is not unique.
Therefore, we propose a microscopic second-order distil-
lation as a complement to first-order distillation, aiming
to provide fine-grained teacher supervision signals across
the entire simplex for the student distribution. Specifically,
we achieve this by applying the KL divergence directly be-
tween the two Dirichlet distributions:

Long = KL(Dir(p” |aT)|| Dir(p®|a®))

_jog L) - RAGH)
~T(as) ;l IT(af)
K
+2_(af —ad)(al) —v(ef)  ©)
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Here, T'(-) denotes the Gamma function. The detailed
derivation for Eq. (5) is provided in Supplementary Ma-
terial. Since Eq. (5) considers the whole (K — 1) dimen-
sional simplex, overflow may occur [50]; thus, we apply the
log(1 + ) function to smooth the network outputs. While
the above Eq. (4) aims to optimize the proportional rela-
tionships between classes, Eq. (5) here places greater em-
phasis on aligning the magnitudes within each class. Here,
the alignment within the class means that the gradients of a
loss function with respect to the output for a particular class
do not conflict with the gradients of the output for other
classes. This meticulous numerical alignment supplies each
point on the (KX — 1)-dimensional simplex of the student’s
second-order distribution with the corresponding teacher la-
bel, ensuring a precise mapping of knowledge across the en-
tire distribution space. By doing so, it strives to faithfully
replicate the teacher’s second-order predictive nuances at
a granular, micro-level, capturing the fine-grained patterns
and uncertainties inherent in the teacher model’s outputs.

By combining these two complementary optimization
objectives, one optimizing proportional relationships at the
macro level and the other aligning numerical values at the
micro level, we arrive at the final EKD distillation:

Lexp = List + 7Lond, (6)
where ~ represents the coefficient that adjusts the balance
between the first-order and second-order distillation.

3.3. Theoretical Analysis

In this section, we provide theoretical support for Eq. (6) us-
ing PAC-Bayesian Theory [19]. While PAC-Bayesian the-
ory has been explored in the context of the Dirichlet dis-
tribution [26], its application remains confined to single-
network optimization, neglecting the relationship among
multiple networks. Therefore, we aim to estimate the align-
ment of different networks across the entire data distribution
based on their alignment on training samples.

Let x denote a certain sample and y denote its corre-
sponding label. Under the PAC setting, samples are drawn
from a fixed but unknown distribution D. A classifier h
maps x to y. Moreover, we define a classifier h correspond
to a point on the (K — 1)-dimensional simplex, i.e., a cate-
gorical distribution p. Essentially, the Dirichlet distribution
made by each network serves as the posterior distribution of
a set of classifiers. By weighting the set of classifiers with
its posterior distribution, we obtain the final majority vote
classifier (or Bayesain classifier):

BT =Epjram)[p’], 7)

B® = Epiras) [P, ®)
where BT and B® denote the final classification results of
the teacher and student classifiers, respectively.

In knowledge distillation, the student treats the teacher’s
predictions as soft labels. Below, we define the student’s



misclassification risk using cross-entropy, which is equiva-
lent to KL divergence from an optimization perspective.

R® =E,.p[ - BT log B®], 9)

. 1

RS:jVEZL—begBﬂ. (10)
=1

where R® represents the expected risk of the student over
the entire data distribution D and R° denotes the empirical
risk on the training set D, containing N training samples.

Theorem 1. Forany 6 € (0,1] and vy € R*, RS is bounded
above by the sum of RS, Zjlv KL(Dir(al)||Dir(af)),
and a constant related to 0, denoted as C(9):

N
S< RSy L ir(aD)||Dir(a’
Pp,.pv(R”> < R” + N ;KL(Dzr(al )| Dir(a))
+C(0)) =1 -4
1D

Detailed proof and definition of C'(§) can be found in
Supplementary Material. Theorem | indicates that the
upper bound on the student’s excepted risk over the un-
known data distribution D consists of two components: the
alignment of the first-order distribution with the true labels
(teacher labels) and the similarity between the predicted
second-order distribution and the true second-order distri-
bution (teacher distribution). Clearly, this upper bound in-
dicates that the empirical risk optimization represented by
Eq. (2) does not guarantee a reduction in the student’s ex-
pected risk, suggesting that the transfer of the teacher’s gen-
eralization performance is both inefficient and incomplete.
In contrast, EKD directly adopts this upper bound as op-
timization objectives, refining the formulation of empiri-
cal risk while incorporating second-order distribution align-
ment between the student and teacher, thereby striving to
minimize the student’s expected risk.

3.4. Toy Case

Figure 2 demonstrates the complementary roles of first-
order and second-order distillation through a three-class ex-
ample. Initially, the student Dirichlet parameters differ sig-
nificantly from those of the teacher, both in relative pro-
portion and in absolute values. The left side of Figure 2
illustrates the essence of first-order distillation, which min-
imizes the distance between the expectations of two Dirich-
let distributions over the (K — 1) dimensional simplex mea-
sured by KL divergence. However, the expectation of the
Dirichlet distribution depends solely on the proportion of
each class’s Dirichlet parameter relative to the overall sum,
which can lead to discrepancies in the specific values of
the student’s output compared to the teacher’s. Although
this discrepancy does not affect the final class prediction,
it causes the student’s second-order distribution to differ
significantly from the teacher’s. To address this, we use
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Figure 2. A toy case illustrating the complementary roles of the
two distillation losses in EKD. Given the Dirichlet parameters out-
put by teacher and student networks, the left panel shows the re-
sults when only first-order distillation is used to optimize the pro-
portion of each category. The right panel presents the outcome
when only second-order distillation is applied for intra-class nu-
merical alignment. The center panel presents the results of com-
bining both objectives, which yields the optimal performance.

second-order distillation as a complement to first-order dis-
tillation, aiming to align the Dirichlet parameter values.
In contrast to first-order distillation, second-order distribu-
tion alignment encourages consistency of parameters within
the same class across different networks, disregarding the
relative magnitudes among different classes. As a result,
we combine these complementary distillation objectives to
achieve a comprehensive alignment of the second-order dis-
tribution. The quantitative effects of the two types of distil-
lation will be discussed in detail in Section 4.2

4. Experiments

Datasets. Our experiments are primarily conducted on
two standard datasets including CIFAR100 [38] and Ima-
geNet [60]. The CIFAR-100 dataset [38] consists of 60k
32x32 color images divided into 100 classes, with each
class containing 600 images. It is split into a training set
of 50k images and a validation set of 10k images. Ima-
geNet [60] is a large-scale visual database comprising 1,000
categories that cover a diverse range of objects and scenes.
It includes approximately 1.28 million labeled images for
training and an additional 50,000 images for validation.

Implementation Details. We adopt the experimental set-
tings established in prior studies [10, 69, 88]. For the



Table 1. Results on the CIFAR-100 validation set. The teacher and student networks share the same architecture. The best and second-
best results among logits-based methods are highlighted in bold and underlined, respectively. A denotes the improvement of the distilled
student model compared to the independently trained student model. Note that “Softmax” indicates that the model uses the vanilla KD

probabilistic model, while “EDL” indicates that the model are trained by Eq. (1). “*” indicates our reproduced results.

Experiment Group 1 2 3 4 5 6 7
Architecture ResNet32 x4 VGG13 WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110

Teacher Softmax 79.42 74.64 75.61 75.61 72.34 74.31 74.31

EDL 79.53 74.96 75.41 75.41 73.09 74.67 74.67
Architecture ResNet8 x4 VGG8 WRN-40-1 WRN-16-2 ResNet20 ResNet32 ResNet20

Student Softmax 72.50 70.36 71.98 73.26 69.06 71.14 69.06
EDL 72.77 70.67 71.84 73.36 69.22 70.9 69.22

RKD[CVPR’19] [56] 71.90 71.48 72.22 73.35 69.61 71.82 69.25
CRDI[ICLR’20] [70] 75.51 73.94 74.14 75.48 71.16 73.48 71.46

Feature ReviewKD[CVPR’21] [10] 75.63 74.84 75.09 76.12 71.89 73.89 71.34
SimKD[CVPR’22] [3] 78.08 74.89 74.53 75.53 71.05 73.92 71.06
CAT-KD[CVPR’23] [23] 76.91 74.65 74.82 75.60 71.62 73.62 71.37
TopKD[ICML’24] [36] 75.40 74.01 74.43 75.75 71.58 73.77 71.47
KD[NeurIPS’14] [30] 73.33 72.98 73.54 74.92 70.66 73.08 70.67

A 0.83 2.62 1.56 1.66 1.6 1.94 1.61

DKD[CVPR’22] [88] 76.32 74.68 74.81 76.24 71.97 74.11 71.06

A 3.82 4.32 2.83 2.98 291 2.97 2.0

Logit CTKD[AAAI’23] [45] 73.39 73.52 73.93 75.45 71.19 73.52 70.99
g A 0.89 3.16 1.95 2.19 2.13 2.38 1.93
Logit_Stand[CVPR’24] [69] 76.62 74.36 74.37 76.11 71.43 74.17 71.48

A 4.12 4.00 2.39 2.85 2.37 3.03 242
SDD[CVPR’24] [48] 75.92% 73.90* 74.26% 75.98* 70.72% 73.90* 71.43%*

A 3.42% 3.54%* 2.28% 2.72% 1.66%* 2.76%* 2.37%
TeKAP[ICLR’25] [31] 74.79 73.8%* 73.80 75.21 71.71 73.50* 71.00*

A 2.29 3.44%* 1.82 1.95 2.65 2.36% 1.94%

EKD(Ours) 77.21 74.71 74.43 76.15 71.48 73.68 71.51

A 4.44 4.04 2.59 2.79 2.26 2.78 2.29

Table 3. The top-1 and top-5 accuracy (%) on the ImageNet val-
idation set [60]. The best and second best results are emphasized
in bold and underlined. “*” indicates our reproduced results.

independent runs. Additional experimental details are pro-
vided in the Supplementary Material.

Baselines. To benchmark EKD, we incorporate five
Architecture ResNet34 ResNet50 state-of-the-art logit-based distillation methods: DKD
Accuracy top-1  top-5 top-1 top-5 > > :
Teacher Softmar 7331 9142 7616 9286 (CVPR’22) [88], CTKD (AAAI’23) [45], Logit_Stand
EDL 73.83 91.69 76.10  92.98 (CVPR’24) [69], SDD (CVPR’24) [48] and TeKAP
Student Agcgtiztcure © R?SNettLg s o i\’[Nvio S (ICLR’25) [31]. Additionally, a selection of feature-based
uden ul - - - - . L. . ..
SOftmag 691.)75 891_)07 681.)87 881.)76 distillation methods [3, 10, 23, 56, 59, 70] is included as
EDL 7028 8958  69.92  89.46 references to facilitate a broader contextual analysis.
CRD [70] 7117 90.13 7137  90.41 .
Feat ReviewKD [10]  71.61 90.51  72.56  91.00 4.1. Main Results
cature SimKD [3] 71.59 9048 7225  90.86 .
CAT-KD [23] 7126 9045 7224  91.13 Performance comparison on CIFAR100. We conduct ex-
KD [30] 71.03  90.05 70.50 89.80 periments comparing EKD with other distillation methods
DKD [88] 71.70 9041  72.05  91.05 under various teacher-student pair settings. Table | and
Logit CTKD [45] 7138 90.27  71.16 90.11 .
Logit Stand [69] 7142 9020 7218  90.80 Table 2 present the accuracy .results for s§tt1ngs vyhere the
SDD [48] 7144  90.05 72.15%  90.79% teacher and student have identical and distinct architectures.
EKD(Ours) 71.73  90.69  72.54 91.20

experiments on CIFAR-100, we use the SGD optimizer
with 240 epochs. The learning rate is set to 0.01 for
MobileNets [32, 63] and ShuffleNets [86] and 0.05 for
other networks, including ResNets [27], WRNs [83] and
VGGs [67], with a decay factor of 0.1 applied at epochs 150,
180, and 210. Regarding hyperparameter configuration, we
set v in Eq. (6) to 1 by default, requiring no additional hy-
perparameter tuning. All results represent the mean of five

As presented in Table 1, EKD demonstrates favourable per-
formance improvements over KD, ranging from 0.66% to
3.61%. In particular, EKD demonstrates its strongest per-
formance in Groups 1, 2, and 7, while achieving compa-
rable results to DKD [88] in Groups 3—-6. The underlying
reason for this phenomenon lies in the performance gap be-
tween the teacher and student. In groups 1, 2, and 7, the
average performance gap between the teacher and student
is 5.51%, whereas it is 3.31% in groups 3—6. Furthermore,
we observe that pairs with a larger performance gap tend
to have a higher distillation loss, indicating a greater opti-
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Table 2. Results on the CIFAR-100 validation set. The teacher and student networks have different architectures. The best and second-
best results among logits-based methods are highlighted in bold and underlined, respectively. A denotes the improvement of the distilled
student model compared to the independently trained student model. Note that “Softmax” indicates that the model uses the vanilla KD
probabilistic model, while “EDL” indicates that the model are trained by Eq. (1). “*” indicates our reproduced results.

Experiment Group 1 2 3 4 5 6 7
Architecture ResNet32x4  ResNet32x4  ResNet32x4 WRN-40-2 ‘WRN-40-2 VGG13 ResNet50

Teacher Softmax 79.42 79.42 79.42 75.61 75.61 74.64 79.34
EDL 79.53 79.53 79.53 75.41 75.41 75.11 79.69
Architecture SHN-V2 WRN-16-2 WRN-40-2 ResNet8 x4 MN-V2 MN-V2 MN-V2

Student Softmax 71.82 73.26 75.61 72.50 64.60 64.60 64.60
EDL 72.73 73.36 75.41 72.77 65.39 65.39 65.39

RKD[CVPR’19] [56] 73.21 74.86 77.82 75.26 69.27 64.52 64.43
CRDI[ICLR’20] [70] 75.65 75.65 78.15 75.24 70.28 69.73 69.11

Feature ReviewKD[CVPR’21] [10] 77.78 76.11 78.96 74.34 71.28 70.37 69.89
SimKD[CVPR’22] [3] 78.39 77.17 79.29 75.29 70.10 69.44 69.97
CAT-KD[CVPR’23] [23] 78.41 76.97 78.59 75.38 70.24 69.13 71.36
TopKD[ICML’24] [36] 76.33 74.34% 76.18* 75.83* 69.54* 69.32% 70.11*
KD[NeurIPS’14] [30] 74.45 74.90 77.70 73.97 68.36 67.37 67.35

A 2.63 1.64 2.09 1.47 3.76 2.77 2.75

DKD[CVPR’22] [88] 77.07 75.70 78.46 75.56 69.28 69.71 70.35

A 5.25 2.44 2.85 3.06 4.68 5.11 5.75

Logit CTKD[AAAI’23] [45] 75.37 74.57 77.66 74.61 68.34 68.50 68.67
g A 3.55 1.31 2.05 2.11 3.74 3.90 4.07
Logit_Stand[CVPR’24] [69] 75.56 75.26 77.92 77.11 69.23 68.61 69.02

A 3.74 2.00 2.31 4.61 4.63 4.01 4.42
SDD[CVPR’24] [48] 76.88* 75.92% 78.54* 74.83* 70.14* 69.06* 69.31%*

A 5.06%* 2.66* 2.93%* 2.33% 5.54% 4.46% 4.71%
TeKAP[ICLR’25] [31] 75.43 75.26* 76.93 74.99* 68.65* 68.27* 68.75*

A 3.61 2.00%* 1.32% 2.49% 4.05% 3.67* 4.15%

EKD(Ours) 77.65 76.51 78.91 76.75 69.20 69.94 70.38

A 4.92 3.15 3.50 3.98 3.81 4.55 4.99

Table 4. Ablation study for each components in EKD. The “MSE”
refers to aligning the magnitude of model outputs with mean
square error. The “Accuracy” denotes the Top-1 accuracy (%) on
the CIFAR100 validation set. ResNet32x4 and ResNet8x4 are
adopted as teacher and student.

Distillation Objective
Lxp List Long MSE

v 74.45

v 73.80
76.42
76.10
77.21
76.83
76.34
76.13

Index Accuracy

4
4

O AW~

AN

mization space during distillation. Conversely, for teacher-
student pairs with closer performance, their distillation loss
is generally smaller, leading EKD to encounter local min-
ima during optimization. For the distillation of distinct net-
works shown in Table 2, EKD achieves the highest per-
formance in half of the experimental groups. When using
MobileNet [63] as the student network, the student trained
solely with EDL achieves a 0.79% higher performance than
the one trained with softmax alone. However, the result for
EKD is only comparable to that of other methods. We at-
tribute this phenomenon to the inherent performance ceiling
of the student network due to its limited capacity.

Performance comparison on ImageNet. Table 3 presents
the performance of EKD on the large-scale ImageNet
dataset. EKD markedly outperforms other logit-based
methods in the ResNet50-MNV1 experiment and achieves
results comparable to top methods in the ResNet34-
ResNet18 experiment. The modest gains in the latter can
also be attributed to the narrow performance gap between
the teacher and student.

4.2. Ablation Studies

To elucidate the superiority of the two alignment strategies
implemented in EKD and their alignment with theoretical
underpinnings, the ablation study presented in Table 4 eval-
uates various distillation objectives on student model per-
formance. In addressing alignment with respect to the pro-
portional distribution across output classes, we investigate
two methodologies: the conventional vanilla KD approach
presented in Eq. (2), which aligns softmax-based categor-
ical distributions, and L, in Eq. (4). Comparative anal-
yses between Index 1 and Index 2, Index 5 and Index 7,
and Index 6 and Index 8 consistently demonstrate that £
surpasses vanilla KD. This finding underscores that EKD’s
first-order alignment serves as a robust generalization of
vanilla KD, effectively incorporating the alignment of cate-
gorical distributions by leveraging the centroids of second-
order Dirichlet distributions.

In addition to the second-order distillation, £o,,4, shown
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Table 5. The Top-1 accuracy (%) of combining EKD with feature
distillation-based methods on CIFAR-100.

Teacher Architecture VGG13  ResNet32x4
Accuracy 74.96 79.53
Student Architecture VGG SHN-V2
Accuracy 70.67 72.73
Logit EKD 74.71 77.65
Feat RKD [56] 71.48 73.21
cature CAT-KD [23] 74.65 78.41
. . EKD+RKD [56] 74.997 78.081
LogittFeature  pyn  CATKD [23] 74917 78.461

in Eq. (5), another intuitive approach to aligning model out-
put magnitudes is through mean squared error (MSE). Con-
sequently, we compare L2, and MSE in Table 4. Compar-
isons across Index 3 and Index 4, Index 5 and Index 6, and
Index 7 and Index 8 reveal that Ls,4 consistently outper-
forms MSE. These empirical results corroborate the theo-
retical conclusions delineated in Section 3.3. It is suggested
that Lo,4, being part of the upper bound on the student’s ex-
pected risk, directly optimizes the student’s generalization
performance, whereas the MSE objective does so indirectly.

4.3. Further Remarks

Visualizations. Figure 3 presents the t-SNE visualizations
of the laerned feature representations and, in parallel, the
differences in logits between the teacher and student net-
works, where the teacher is implemented as ResNet32x4
and the student as ResNet8 x4. As shown in the first row,
EKD achieves a clear improvement over vanilla KD base-
line with respect to class separability, leading to more dis-
tinctly clustered feature distributions. Furthermore, the log-
its produced under EKD exhibit a noticeably stronger align-
ment with those of the teacher network, indicating a closer
match in predictive behavior compared to the results ob-
tained with vanilla KD.

Compatibility with feature-based methods. Table 5
presents the results of integrating EKD with several repre-
sentative feature-based distillation methods [23, 56]. For
feature-based approaches, the introduction of EKD en-
hances their performance, demonstrating strong compatibil-
ity, particularly with methods that originally exhibit lower
performance [56]. Conversely, these methods can further
compensate for the limitation of the EKD approach in ex-
pressing knowledge through logits.

Distilling ViT. Transformer-based models are gaining in-
creasing popularity, and logit-based distillation methods
can be easily applied to these models. Therefore, we test
the distillation effectiveness of EKD on the ViT model,
as presented in Table 6. Following the configuration in
[41, 42], we use ResNet56 as the teacher model and four
ViT variants, DeiT-Ti [71], PiT-Ti [29], PVT-Ti [78], and
PVTv2 [79], as the student models. EKD achieves an aver-
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(a) Vanilla KD (b) EKD

NRRRENRTIRAREIZNESTZNS
(d) EKD
Figure 3. Visualization of features and logits output. The first
row shows the t-SNE of features learned by vanilla KD and EKD.
The second row illustrates the difference of correlation matrices of

logits between the student and teacher.

(c) Vanilla KD

Table 6. Top-1 accuracy of various ViT student models on CI-
FAR100. Teacher model is ResNet56.

Architecture Size EDL Softmax KD [30] AutoKD [42] EKD(Ours)
DeiT-Ti [71] 5M 64.77 65.08  73.25 78.55 78.64
PiT-Ti [29] 5M 73.48 73.58 7547 78.76 79.33
PVT-Ti [78] 13M 69.02 69.22  73.60 78.43 78.74
PVTv2[79] 3M 76.68 7744 7881 79.37 79.80

age performance improvement of 3.75% over KD [30] and
an average improvement of 0.25% over AutoKD [42].

5. Conclusion

This paper reinterprets vanilla knowledge distillation (KD)
through a distribution-based probabilistic framework, em-
ploying evidential second-order distributions to effectively
capture predictive uncertainty and provide a comprehensive
knowledge representation. This pioneering methodology
underpins Evidential Knowledge Distillation (EKD), facil-
itating knowledge transfer across macro and micro levels.
At the macro level, aligning the expectation of the second-
order distribution, which reflects its global characteristics,
enhances optimization of inter-class proportions in the stu-
dent’s output. At the micro level, aligning the second-order
distribution aligns the magnitudes of the student’s output.
These complementary mechanisms ensure a robust distil-
lation process. Through PAC-Bayesian theory, EKD opti-
mizes the upper bound of the student’s expected risk. Ex-
tensive experiments underscore EKD’s pronounced advan-
tage over prevailing logit-based distillation techniques.
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