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Figure 1. Long Narrative Video Generation. We curate a large-scale cooking video dataset to develop an interleaved auto-regressive
model — VideoAuteur, which acts as a narrative director, sequentially generating actions, captions, and keyframes (two generated examples
here). These elements condition a video generation model to create long narrative videos.

Abstract

Recent video generation models have shown promising re-
sults in producing high-quality video clips lasting several
seconds. However, these models face challenges in gen-
erating long sequences that convey clear and informative
events, limiting their ability to support coherent narra-
tions. In this paper, we present a large-scale cooking video
dataset designed to advance long-form narrative generation
in the cooking domain. We validate the quality of our pro-
posed dataset in terms of visual fidelity and textual caption
accuracy using state-of-the-art Vision-Language Models
(VLMs) and video generation models, respectively. We fur-
ther introduce a Long Narrative Video Director to enhance
both visual and semantic coherence in generated videos and
emphasize the role of aligning visual embeddings to achieve
improved overall video quality. Our method demonstrates
substantial improvements in generating visually detailed
and semantically aligned keyframes, supported by finetun-
ing techniques that integrate text and image embeddings
within the video generation process.

1. Introduction

Video generation [5, 6, 19, 20, 41, 51, 62] has witnessed re-
markable advancements with diffusion [2, 21, 34, 57] and
auto-regressive models [25, 43, 44, 53]. A primary objec-
tive is to generate video clips from text prompts and sup-
ports various downstream applications, such as image ani-
mation [8, 54], video editing [4, 11], video stylization [23].

With the maturity of generating high-fidelity short video
clips, researchers begin setting their sights on the next
north-star: creating videos capable of conveying a com-
plete narrative which captures an account of events unfold-
ing over time. The importance of narratives has been high-
lighted in the literature. For example, Bruner argues that
narratives are essential tools for organizing experiences and
memories [3]. The book Sapiens: A Brief History of Hu-
mankind emphasizes that the ability to share narratives (sto-
ries) has been pivotal in human development, setting hu-
mans apart from other animals [15].

Long Narrative Video Generation (NVG) introduces
several challenges. One particularly challenge is the
scarcity of video data suitable for learning coherent narra-
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tives in video. While our community has developed many
video datasets, most are unsuitable for NVG. First, most
videos are tagged with descriptions that are partially to
NVG. Second, even for the relevant descriptions, these de-
scriptions may be either too coarse or lack detailed actions
needed for NVG. Finally, not all videos contain meaningful
narratives suitable for learning and can be well evaluated.

Consequently, video data with clear, complete, and
meaningful narratives is crucial not only for training but
also for evaluating and comparing NVG methods. How-
ever, compared to story generation through a sequence of
images [14, 24, 32, 56], progress in narrative video gener-
ation has been relatively slow, partly due to the absence of
standardized training and evaluation benchmarks.

This paper contributes to advancing research in narra-
tive video generation in two ways. First, we curate and an-
notate a large-scale video dataset on the cooking domain.
The samples in our dataset are structured with clear narra-
tive flows, each composed of sequential actions and visual
states. Our dataset consists of approximately 200,000 video
clips, with an average duration of 9.5 seconds per clip. We
select cooking videos for their well-defined and less am-
biguous narratives, making them more objective to evalu-
ate consistently. To address video copyright concerns, we
source videos from existing video datasets, YouCook?2 [63]
and HowTol00M [33]. We design various mechanisms
to ensure high-quality videos and captions, organized in a
structured storyboard format, as illustrated in Figure 1.

Additionally, we propose a new auto-regressive pipeline
for long narrative video generation, comprising three main
components: a long narrative director, a rolling-context
conditioned keyframe renderer, and a visual-conditioned
video generation model. The long narrative director pro-
duces a coherent narrative flow by generating a sequence of
visual embeddings or keyframes that represent the story’s
logical progression. Building upon this, the rolling-context
conditioned keyframe renderer utilizes a rolling history
of reference images as contextual conditioning to gener-
ate high-quality keyframes with consistency. Finally, the
visual-conditioned video generation model produces video
clips based on these visual conditions to do narrative.

Extensive experiments on the large-scale collected
dataset demonstrate the effectiveness of the proposed
pipeline for long narrative video generation. To sum up,
our contributions are as follows:

* We construct CookGen, a large-scale, structured dataset
accompanied by an effective data pipeline to benchmark
long-form narrative video generation. The dataset along
with the necessary functionalities will be opensourced to
advance future research in the area.

* We propose VideoAuteur, a novel approach for auto-
mated long video generation. It effectively bridges inter-
leaved auto-regressive multimodal LLMs with pretrained

DiTs, employing a rolling context strategy for enhanced
generation quality and visual consistency.

» Extensive experimental results and ablation studies show
that VideoAuteur achieves the state-of-the-art perfor-
mance in long narrative video generation.

2. Related Works

Text-to-Image/Video Generation Text-to-image [7, 26,
35, 36, 38, 50, 58] and video generation [5, 6, 19, 20, 41,
51, 62] have made remarkable progress to generate high-
fidelity video clip of 5-10 seconds. For example, latent de-
sign [38] has become mainstream, balancing effectiveness
with efficiency. Building upon this design, diffusion-based
models like DiT [34], Sora [2], and CogVideo [21, 57]
leveraged larger datasets and explored refined architectures
and loss functions to enhance performance. In contrast,
auto-regressive models such as VideoPoet [25] and Emu se-
ries [43, 44, 53] sequentially predict image or video tokens.
Instead, our work focuses on the model’s ability to generate
long narrative videos beyond a few seconds.

Interleaved Image-Text Modeling Interleaved image-text
generation [1, 9, 13, 13, 45, 55] has garnered attention as
a compelling research area that merges visual and textual
modalities to produce rich outputs. Earlier approaches [29,
37,37, 42] primarily relied on large-scale image-text paired
datasets [12, 39] but were often confined to single-modality
tasks, such as captioning or text-to-image generation. With
the emergence of large language models [47], various
vision-language models [28, 31, 52] have stepped in a
new era of unified representations, leveraging well-curated
datasets for interleaved generation. However, most existing
works focus on the one-time generation and do not address
the coherence of generated content, which is our focus.

Narrative Visual Generation Existing narrative visual
generation primarily focuses on addressing challenges re-
lated to semantic and visual consistency. Recent ap-
proaches such as Narrative Visual Generation, VideoDirec-
torGPT [30], Vlogger [65], Animate-a-story [16], Video-
Teris [46], IC Lora [22], Vlogger [65], and Animate-a-
story [16] employ various methods to enhance semantic
coherence and visual continuity. Unlike most prior meth-
ods that mainly focus on consistent image generation [22,
56, 64], our target is generating coherent narrative videos.
While some works make efforts to be language-centric us-
ing text as conditions for video generation [54, 65] or ap-
pending with keyframes [01], different from these work,
we propose an integrated approach that leverages multi-
modal large language models (LLMs) in conjunction with
in-context diffusion transformer models to ensure global
narrative coherence, subsequently conditioning the video
generation model.
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Figure 2. CookGen contains long narrative videos annotated with actions and captions. Each source video is cut into clips and
matched with the labeled “actions”. We use refined pseudo labels from ASR for Howto100M videos and use manual annotations for
Youcook?2 videos. We use state-of-the-art VLMs (i.e. GPT-40 and an expert captioner) to provide high-quality captions for all video clips.

3. CookGen: a Long Narrative Video Dataset

To the best of our knowledge, datasets for long narrative
video generation research is extremely limited. To enable
in-depth exploration and establish an experimental setting,
we establish CookGen, a large video dataset with detailed
annotations on captions, actions, and annotations. As the
data example provided in Figure 2, our dataset focuses on
cooking videos. We prioritize cooking over other video cat-
egories because each dish follows a pre-defined, strict se-
quence of action steps. These structured and unambiguous
objectives in cooking videos are essential for learning and
evaluating long video narrative generation.

3.1. Overview

We source over 30,000 raw videos about from two exist-
ing video datasets: YouCook?2 [63] and HowTo100M [33].
Each video is filtered and cropped with processing to re-
move corruptions. Table 1 provides detailed information
about the dataset statistics, video and clip details, and the
train/val partitioning. Appendix B provides more details.

Table 2 compares our dataset with existing datasets most
relevant to multimodal narrative generation. Unlike existing
datasets that primarily focus on image-based comic story
generation, our real-world narrative dataset offers several
advantages. First, the videos in our dataset depict procedu-
ral activities (i.e., cooking), providing unambiguous narra-
tives that are easier to annotate and evaluate. Second, our
dataset contains 150x the number of frames compared to
the previous largest dataset, StoryStream. Third, we offer
5% denser textual descriptions, with an average of 763.8
words per video. These advantages make our dataset a bet-
ter resource for narrative video generation.

Data Source # Vid. (train/val) # Clips Clip Len. # Clips / Vid.

YouCook2 1333 /457 ~10K  19.6s 7.7
HowTol0OM (subset)  30039/933  ~183K  9.5s 59

Table 1. Long narrative dataset sources. Our dataset is built
upon Youcook?2 and a cooking subset of Howto100M.

Datasets  Modality Type # Images Text Length
Flintstones Image Comic 122k 86
Pororo Image Comic 74k 74
StorySalon Image Comic 160k 106
StoryStream  Image Comic 258k 146
VIST Image Realworld 210K ~70
CookGen Video  Real world 3IM 763.8

Table 2. Comparison with multi-modal narrative datasets.
Most existing datasets focus on image-based comic story gener-
ation. In contrast, our dataset consists of long narrative videos,
containing 150 the number of frames and 5 x the dense text an-
notations compared to the previous largest dataset, StoryStream.

3.2. Annotation and Processing

To ensure scalability and quality, we design an efficient an-
notation pipeline to support the annotation as below.

Captions. For open-source and scalability, we train a
video captioner based on open-sourced VLM. Inspired
by LLaVA-Hound [59], we begin by collecting a caption
dataset using GPT-40, with a focus on object attributes,
subject-object interactions, and temporal dynamics. Subse-
quently, we fine-tune a captioning model based on LLaVA-
NeXT [60] to optimize captioning performance.

Actions. We use HowTol00M ASR-based pseudo labels
for ‘actions’ in each video, further refined by LLMs to pro-
vide enhanced annotations of the actions throughout the
video [40]. This refinement improves the action quality to
capture events and narrative context. However, the annota-
tions are still noisy and sometimes not informative due to

19165



the inherent errors in ASR scripts.

Caption-Action Matching and Filtering. To ensure align-
ment between captions and actions, we implement a match-
ing process based on time intervals. Using Intersection-
over-Union (IoU) as a metric, we evaluate whether the over-
lap between the captioned clip time and action time meets
a threshold. An action is considered a match if the follow-
ing conditions are met: the difference between the clip start
time and the action start time (start_diff) is less than 5
seconds; the clip end time is later than the action end time;
and the IoU between the clip and action time intervals is
greater than 0.25, or if IToU>0.5. Here, clip_time and
action_time represent the time intervals for the clip and
action, respectively. Using this rule, we filter and match
captions to actions, ensuring that each caption aligns with
the relevant action. We found this step is important for cre-
ating narrative consistency throughout the video.

Annotation Quality Reverification. High-quality captions
are essential for narrative visual generation. To verify the
quality of our annotations, we build an evaluation pipline of
inverse generation and visual understanding through VLM
experts, which are detailed in Appendix §C.1 and §C.2.

4. Method

Given the text input, the task of long narrative video gen-
eration aims at generating a coherent long video ) €
RIXWXF that aligns with the progression of the text in-
put sequentially. The H, W, and F' are generated videos’
height, width, and frame numbers. To achieve this, we
propose VideoAuteur, which involves three main com-
ponents: an interleaved long narrative video director, a
rolling-context conditioned keyframe renderer, and a visual-
conditioned video generation model. The long narrative
video director creates a sequence of language states and
visual embeddings to represent the narrative flow (§4.1).
A pretrained DiT model then renders keyframes using a
rolling history of reference images as contextual condition-
ing (§4.2). Finally, the video generation model produces
video clips based on these visual conditions (§4.3).

4.1. Long Narrative Interleaved Director

As shown in Figure 3a, the long narrative video director
generates a sequence of visual embeddings (or keyframes)
that capture the narrative flow. The interleaved image-text
director creates a sequence where text tokens and visual
embeddings are interleaved, integrating narrative and visual
content tightly. Using an auto-regressive model, it predicts
the next token based on the accumulated context of both
text and images. This helps maintain narrative coherence
and align visuals with the text semantics.

Interleaved auto-regressive model. Our model performs
next-token prediction for cross-modal generation, learning

from sequences of interleaved image-text pairs with a con-
text window size T'. Each text token is supervised with
cross-entropy loss, and the final visual embedding z is re-
gressed using learnable query tokens, as illustrated in Fig-
ure 3b. The auto-regressive conditioning is given by:

p(ye | yi:e—1) = p(ct | €re—1) - p(2¢ | €126, 21:0—1), (1)

where c; represents texts and z, denotes visual embeddings.
Regression latent space. We utilize a CLIP-Diffusion vi-
sual autoencoder with a CLIP encoder i, and a diffusion
decoder D to encode raw images x to visual embeddings
for auto-regressive generation:

z = Eaip(x), %= Dairr(2) 2

This setup generates language-aligned visual embeddings
and reconstructs images from them.

Regression loss. To align the generated visual latents Zpreq
with the target latents Zet, We use a combined loss:

N
zdeg> AN R
i=1

Lo = (1 —
¢ Hzpred” HzlargetH
(3)

where a and § are hyper-parameters.

Narrative from “actions” to “visual states”. The inter-
leaved model generates a coherent narrative sequence by
progressively conditioning each step on the cumulative con-
text from previous steps, Figure 3b. At each time step ¢, the
model generates an action ay, a caption ¢, and a visual state
z;, conditioned on the cumulative history H;_;:

Hiy = {al:t—laclzt—lazl:t—l} )
ay ‘ Hi1 — ¢ | {Htfluat} — Zy | {Htflaafnct}

This layered conditioning improves coherence across the
sequence, aligning actions, language, and visuals.

4.2. Rolling Context Conditioned Render

While the interleaved auto-regressive director model can
learn visual consistency, the CLIP representation space
struggles to preserve fine visual details (e.g., character fea-
tures, clothing patterns), as demonstrated in Appendix Fig-
ure 16. To address this limitation and improve genera-
tion quality, we employ a pretrained Text-to-Image diffu-
sion transformer model to render high-quality keyframes,
conditioning on a rolling history of reference images. The
context length can vary dynamically from 1 to 3, balancing
flexibility and efficiency when generating keyframes.

As illustrated in Figure 3b, we use a rolling history of
two reference images, I; and I,_;. This setup is further
conditioned by the tiled global caption

Ciiled = tiled(c¢—3, ct—2, Ct—1, 1), &)
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Figure 3. Long Narrative Visual Condition Generation. (a) Interleaved Auto-regressive Director: an auto-regressive vison-language
model, takes a user query (e.g., “How to cook a tuna sandwich?”’) and an initial image-text pair as input. It then generates actions, captions,
and visual states (i.e., visual embeddings) step-by-step. (b) Rolling Context Conditioned Render: Apart from the semantics consistency
through interleaved generation, we use a rolling of reference images as direct context conditions to further improve visual consistency
with a diffusion transformer model. With them, a long narrative video can be created using these generated visual conditions (i.e., visual
embeddings and/or keyframes derived from the interleaved director and the keyframe render with rolling context conditioning.)

the predicted visual embeddings z; and z;_1, as well as the
reference images I;_3 and [;_».

D(Ctileda Zi_1, Zy, It—37 It—Q) — It—17It7

(6)

where D(-) denotes the diffusion model for synthesizing a
new keyframe I; by integrating the rolling context of im-
ages, captions, and visual embeddings. This layered condi-
tioning improves coherence across frames.

Flow Matching Loss. We employ a flow matching loss that
aligns the learned drift function fy with the ground-truth
path from x7 to x74 1. We define:

2
Eﬂow(e) - EXT,XT+1,T|:Hf9(XT7T T)H i|) (7)
where v(T") denotes the ideal drift path that transitions xp
towards x741. This objective enforces consistency across
frames without relying on a separate diffusion loss.

4.3. Visual-Conditioned Video Generation

Using the sequence of actions a;, captions c;,visual states
z; and keyframe I; generated by the interleaved director
and rolling context conditioned render, we condition a video
generation model to produce coherent long narrative videos.
Unlike the classic Image-to-Video (I2V) pipeline that only
uses an image as the starting frame, our approach lever-
ages the regressed visual latents z; as continuous conditions
throughout the sequence (see §4.3.1). Furthermore, we im-
prove the robustness and quality of the generated videos
by adapting the model to handle noisy visual embeddings,
since the regressed visual latents may not be perfect due to
regression errors and keyframe uncertainty (see §4.3.2).
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Figure 4. Visual-conditioned video generation. Our interleaved
auto-regressive director and rolling context renderer generates
both text and visual conditions, enabling the video generation pro-
cess to be conditioned on keyframes (VAE embeddings) and CLIP
latents. We apply Gaussian noise, random masking and random
shuffling as regularization during the training process to improve
robustness with the imperfect visual embeddings.

4.3.1 Visual Conditions Beyond Keyframes

Conventional visual-conditioned video generation typically
uses initial keyframes to guide the model, where each frame
x; is generated as x; = Dyigual({;). Our interleaved auto-
regressive director supports generating visual states z; in
a semantically aligned latent space, allowing direct condi-
tioning from a pretrained visual decoder, as shown in Fig-
ure 4. By using these regressed visual latents z, directly,
each frame is generated as x; = Dyjsa(2z:). This fol-
lows the narrative and enhancing consistency by relying on
narrative-aligned embeddings.



Figure 5. Rolling Context Conditioned Render. We integrate
tiled global captions, predicted visual embeddings, and a rolling
context of previous keyframes to render new keyframes throughout
the narrative. By combining semantic conditioning from textual
captions and CLIP embeddings with detailed information from
VAE embeddings, the diffusion transformer maintains consistency
in visual details such as clothing, food details, and character iden-
tities. Generated frames are highlighted with red edges.

4.3.2 Learning from Noisy Visual Conditions

To enhance the robustness over imperfect visual embed-
dings z; from the auto-regressive director, we fine-tune the
model using noisy embeddings z; defined by:

z; = S(M(z; + €)) 8)

where € ~ N(0,02z;) represents Gaussian noise, M is a
masking operator that sets a fraction of elements to zero,
and S is a shuffling operator that permutes the order.

5. Experiments
5.1. Experimental Setup

Models. We initialize the auto-regressive model with [13],
a pretrained 7B multi-modal LLM. We initialize the context
conditioned render model with FLUX.1 Fill model [27].
For video generation, we employ a video generation model
which has been pre-trained on large-scale video-text pairs
and could accept both text and visual conditions.

Data. We use a total of ~32K narrative videos for model
training and another ~1K videos for validation. All the
videos are resized to 448 (short-side) and then center-
cropped with 448 x448 resolution.

Training & Evaluation. We train the interleaved auto-
regressive director model for 5,000 steps by default. Train-
ing loss is a combination of cosine similarity loss and MSE
loss for visual tokens and CrossEntropy loss for language
tokens. For rolling context conditioned render, we use
the flow matching loss following FLUX [27]. For visual-
conditioned video generation, we use the diffusion loss fol-
lowing DiT [34] and Stable Diffusion 3 [10]. Narrative gen-
eration is mostly evaluated on the Youcook?2 validation set
because of the high-quality of action annotations and the
Howto100M validation set is mostly used for data quality
evaluation and I2V generation. Please refer to the appendix
for implementation details.

Evaluation Metrics. The common metrics CLIP score [17]
and FVD [49] are used to assess overall video quality, while
the FID [18] score evaluates the quality of the generated
keyframes. Additionally, when comparing to state-of-the-
art baselines, human evaluation is used to assess generation
aesthetics, realism, visual consistency across video clips,
and the narrative score which reflects the coherence of the
generated cooking steps, and if the cooking process has
been successfully completed.

5.2. Rolling Context Conditioning

As detailed in Section 4.2, we leverage the in-context con-
ditioning capabilities of the transformer architecture and
adopt a rolling context conditioning strategy to enable DiT
to render keyframes with superior visual consistency, while
adhering to the extended narrative semantics produced by
the interleaved auto-regressive director model. As shown
in Figure 5, our keyframe renderer preserves fine visual de-
tails and exhibits high visual quality and aesthetics with the
help of large-scale pretraining [27]. The reason is that the
in-context conditioned VAE features could preserve visual
details and the semantics are preserved through the auto-
regressive model. Notably, the rolling context conditioning
approach allows the renderer to strike a flexible balance be-
tween generation efficiency and visual consistency by dy-
namically adjusting the number of frames generated in each
forward pass (i.e., a dynamic number of frames).

5.3. Visual-Conditioned Video Generation

As detailed in Section 4.3, we fine-tune the model to
be directly conditioned on the visual latents and gen-
erated by our interleaved director and keyframes gener-
ated by rolling-context renderer. Table 3 compares the
keyframe-conditioned approach with our visual embedding-
conditioned strategy. Our method improves CLIP-T [17]
scores on both validation sets—from 259 to 26.4 on
YouCook2 and from 26.6 to 27.3 on HowTol00M. Addi-
tionally, FVD scores decrease, indicating better video qual-
ity (557.7 vs. 512.6 on YouCook2, 541.1 vs. 520.7 on
HowTol100M). Videos conditioned on visual embeddings
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Figure 6. Quality comparison on long narrative generation. Here is a case with a narrative topic of “Step-by-step guide to cooking

blueberry muffins”. Our interleaved director sequentially generates “actions
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i

captions,” and image embeddings to construct a narrative

on how to cook the dish step by step and then render keyframes. Our method shows state-of-the-art visual quality with superior consistency.

Visual Condition ‘ YouCook2 HowTo100M Method Prompting Gen. Metric| Human Evaluation
CLIP-T FVD | CLIP-T 1 FVD | Prompt Src. Cond. |CLIP-T FID|Aes. Real. Consist. Narr.
Keyframe 25.9 557.7 26.6 541.1 SD-XL [35] External Text 27.1 40 29 33 N/A
Emtf‘ij‘g?‘g (W/;’ Reg.) ;2 i g?gz igg g;g; FLUX.1-s[27]  External Text 279 - |48 31 34 NA
Embedding (w/ Reg.) - g . : ICLora[22]  External  Text | 279 34.1|47 41 47 NA
. . X . ) StoryDiffusion [64]  External Text 259 364/39 29 37 N/A
Table 3. Visual-conditioned Video Generation with Regular- :/yl [(ﬂ[) ! Y — 55 455120 24 31 37
. . . . ogger [6° ex . . X : . .
lzatl(.)l‘l. Evaluate CLIP-T and FYD scores for.V1deo generation Seed-Story [55] Interleaved  V.Emb. | 241 321[19 41 42 4.1
con(.htloned on kf:yframes. versus v1.sua1 embeddl.ngs.generated by Ours wo RCC) Tnterleaved V.Emb. | 26.1 253|201 43 45 44
our interleaved director with and without regularization. Ours (w. RCC) Interleaved T+V.Emb.| 280 294|48 45 48 46

demonstrate higher semantic alignment and improved gen-
eration quality. We also provide qualitative samples on the
demo page and in the appendix.

5.4. Comparisons of Long Narrative Generation

As most existing narrative generation methods [55, 64]
only support image generation, we compare our model
with state-of-the-art methods on the task of long narrative
keyframe generation. We provide both quantitative com-
parisons in (§5.4.1) and qualitative comparisons (§5.4.2).

5.4.1 Long Narrative Keyframe Generation

We compare our method with leading narrative keyframe
generation approaches, including IC Lora [22], StoryDiffu-
sion [64], Vlogger [65], and Seed-Story [55], as well as a
language-centric strategy that relies solely on captions (us-
ing models such as SD-XL [35] and FLUX.1-schnell [27]).
Except for IC Lora and Seed-Story, which are fine-tuned

Table 4. Quantitative comparisons with metrics and human
evaluation. Each method is evaluated by both image generation
metrics (CLIP-T and FID) and human ratings. Higher values indi-
cate better performance for all human-evaluation metrics (5 tiers,
from 1 to 5, higher is better). SD-XL and FLUX.1-s use narrative
captions generated by our model and IC-Lora uses a tiled version.
RCC: Rolling Context Conditioning. We use our generated narra-
tive captions for the text-conditioned methods (row 1-5).

on our CookGen dataset for two epochs, all other methods
follow their official inference guidelines with the official
checkpoints. As shown in Table 4, our approach achieves
the highest generation scores, with a CLIP-Text score of
28.0 and an FID score of 25.3. We also conduct a human
evaluation (Table 4) using a five-tier rating scale, where
higher is better. Our method attains top performance in
aesthetics (4.8 vs. 4.7, IC Lora), realism (4.5 vs. 4.1, Seed-
Story), and visual consistency (4.8 vs. 4.7, IC Lora), as well
as the highest narrative score of 4.6. These results demon-
strate that our method achieves state-of-the-art performance
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Loss Type Training Validation
MSE Cosine | L2 Dist | Cosine Sim. T CLIP-T 1 FID |
v X 0.41 0.82 23.6 31.9
X v 1.1 0.82 24.1 32.1
v v 0.41 0.83 25.1 30.1

Table 5. Both scale and direction matter. We track the training
convergence and evaluate models with the CLIP-T and FID met-
rics on the validation set. The combination of both MSE loss and
Cosine Similarity loss performs best on the validation metrics.

for long narrative generation.
5.4.2 Qualitative Comparisons

In Figure 6, we compare our method with state-of-the-
art long narrative keyframe generation approaches, in-
cluding StoryDiffusion, Vlogger, and Seed-Story, and ob-
serve that our results maintain superior visual quality and
consistency. In particular, our keyframes balance real-
ism with appealing aesthetics while preserving character
identities and smooth transitions. In contrast, competing
methods often exhibit color inconsistencies or lose track
of concepts—Vlogger occasionally produces uneven color
schemes between frames, StoryDiffusion can introduce vi-
sual confusion, and Seed-Story sometimes generates mis-
matched clothing across different scenes. This compari-
son aligns with the human evaluation results in Table 4,
demonstrating our method achieves state-of-the-art perfor-
mance for long narrative visual generation. The generated
keyframes can be extended into full video clips with consis-
tent visuals and coherent storytelling.

5.5. Ablation Studies

In this section, we ablate important designs in VideoAu-
teur, which improve the interleaved auto-regressive model
and the visual-conditioned video generation model for in-
terleaved narrative visual generation.

Latent scale and direction matter. To determine an effec-
tive supervision strategy for visual embeddings, we firstly
test the robustness of the latents to pseudo regression errors
by rescaling (multiplying by a factor) and adding random
Gaussian noise. Figure 17 indicates that both scale and
direction are critical in latent regression. Notably, rescal-
ing primarily affects object shape while preserving key se-
mantic information (i.e. object type and location), whereas
adding noise drastically impacts reconstruction quality. As
shown in Section 5.5, combining MSE loss (for scale ) and
cosine similarity (for direction) leads to the best generation
quality, improving CLIP-T by 1.5 points and reducing FID
by 1.8 points compared to using MSE alone.

From “Actions” to “Visual States””. We also explore how
different regression tasks influence the director’s capability
in narrative visual generation. Specifically, we compare var-
ious reasoning settings for the interleaved director, examin-
ing transitions from sequential actions to language states,

Training Validation
Regression Task L2 Dist | Cosine Sim. T CLIP-T 1 FID |
Action — Vis. Embed. 0.43 0.82 22.7 279
Caption — Vis. Embed. 0.41 0.82 25.7 26.1
Action — Caption — Vis. Embed. 0.41 0.83 26.1 25.3

Table 6. From “Actions” to “Visual States”. We report the
L2 distance and cosine similarity scores for tracking the training
convergence and evaluate the generation images with CLIP score
and FID score. Models are trained and evaluated on the collected
Howto100M subset. SEED-X latent is used for visual regression.

Regularization Setting CLIP-T1T FVD|

Naive Baseline 26.4 554.3
+Random Masking 26.9 539.7
+Random Gaussian. Noise 27.2 522.1
+Random Shuffling 27.3 520.7

Table 7. Learn from Noisy Visual Conditions. Our train-
ing regularization strategy enhances the robustness of the visual-
conditioned video generation model. Specifically, we apply ran-
dom masking and shuffling at a rate of 25%, and introduce Gaus-
sian noise with 0.5 std of the embeddings of two thousand samples.

and ultimately to visual embeddings. As shown in Table 6,
a chain of reasoning that progresses from actions to lan-
guage states and then to visual states proves effective for
long narrative visual generation. This approach enhances
both training convergence, achieving a lower L2 distance
(0.41 vs. 0.43), and generation quality, reflected in a supe-
rior FID score of 25.3 (an improvement of +0.8).

Learn from noisy visual conditions. Table 7 presents an
ablation study examining the effect of robustness regular-
ization on the visual-conditioned video generation model.
We evaluate the generated videos using CLIP-T and FVD.
The progressively improved results from 26.4 to 27.3 on
CLIP-T and 554.3 to 520.7 on FVD demonstrate the ef-
fectiveness of our regularization strategy, which combines
random masking, Gaussian noise, and shuffling.

6. Conclusion

In this paper, we tackle the challenges of generating long-
form narrative videos and empirically evaluate its efficacy
in the cooking domain. We curate and annotate a large-scale
cooking video dataset, capturing clear and high-quality nar-
ratives essential for training and evaluation. Our proposed
two-stage auto-regressive pipeline, which includes a long
narrative director, a rolling context conditioned keyframe
renderer and a visual-conditioned video generation model,
demonstrates promising improvements in semantic and vi-
sual consistency in generated long narrative videos with an
unified pipeline. Through experiments on our dataset, we
observe enhancements in spatial and temporal coherence
across video sequences. We hope our work can facilitate
further research in long narrative video generation.
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