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Figure 1. Overview of our training-free Audio Description (AD) generation framework. The input video clip (corresponding to the AD interval)
is extended to include adjacent shots, providing richer temporal visual context. Each video frame is labeled with its corresponding shot number.
The extended clip then undergoes a film grammar prediction process, where the thread structure and shot scales are estimated. The AD is generated
in two stages: Stage I utilises the predicted cinematic information as training-free prompt guidance to produce dense video descriptions. Stage
II then employs an LLM to generate a summarised AD output.

Abstract

Our objective is the automatic generation of Audio Descriptions
(ADs) for edited video material, such as movies and TV series.
To achieve this, we propose a two-stage framework that lever-
ages “shots” as the fundamental units of video understanding.
This includes extending temporal context to neighboring shots
and incorporating film grammar devices, such as shot scales
and thread structures, to guide AD generation. Our method
is compatible with both open-source and proprietary Visual-
Language Models (VLMs), integrating expert knowledge from
add-on modules without requiring additional training of the
VLMs. We achieve state-of-the-art performance among all prior
training-free approaches and even surpass fine-tuned methods
on several benchmarks. To evaluate the quality of predicted
ADs, we introduce a new evaluation measure – an action score –
specifically targeted to assessing this important aspect of AD.
Additionally, we propose a novel evaluation protocol that treats
automatic frameworks as AD generation assistants and asks
them to generate multiple candidate ADs for selection.

1. Introduction
In movies and TV series, Audio Descriptions (ADs) are
narrations provided for the visually impaired, conveying visual
information to complement the original soundtrack. Their

purpose is to ensure a continuous and coherent narrative flow,
enabling audiences to follow the plot effectively. Unlike video
captions, ADs are constrained by length, prioritising the most
visually salient and story-centric information, such as character
dynamics and significant objects, whilst omitting redundant
details like background figures or unchanging locations.
Additionally, ADs are typically produced by professional
narrators in a specific style and format, ensuring coherence
while not interfering with the original audio.

With the advent of Visual-Language Models (VLMs), there
has been a growth of interest in automatically generating ADs
for both movies [16, 23–25, 45, 72, 86, 89] and TV mate-
rial [19, 82]. However, as anyone who has ever watched a movie
or read a book about film editing knows – the fundamental unit
of edited video material is the shot, not the frame [37, 50, 52].
Shots are used to structure the video material, defining the
granularity and temporal context through choices in its scale
(close-up, long shot, etc.) and its movement (panning, tracking,
etc.). The “film grammar” is then used to convey meaning
through specific editing choices on shot transitions (cuts, fades,
etc.), durations, and composition (threads, montage, etc.).

Current approaches to automating AD generation, and
video large language models (VideoLLMs) in general, are not
shot-aware, hindering interpretation of edited video material that
has frequent shot transitions [68]. In this paper, our principal
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objective is to incorporate shot information and editing structure
into the AD generation process. To this end, we consider
temporal context in terms of shots, and take account of the two
key properties of thread structure and shot scale.

Thread structure identifies the sequence of shots captured
with the same camera. An example of a scene with multiple
simultaneous threads in space-time is shown in Fig. 3. We
develop a robust thread clustering method and use its predictions
to guide VLMs in understanding shot-wise relationships.

Shot scale typically implies the type of content of the
frame. For instance, close-up shots often highlight characters’
facial expressions or gaze interactions, while long shots
tend to depict the overall environment and ambience of the
scene, as shown in Fig. 4 (top). We leverage this property by
developing an off-the-shelf shot scale classifier and employing
a scale-dependent prompting strategy to improve the contextual
relevance of VLM-generated descriptions.

In this paper, we develop a training-free AD generation ap-
proach. Inspired by AutoAD-Zero [82], as illustrated in Fig. 1,
we adopt a two-stage pipeline in which a VideoLLM generates
dense text descriptions in the first stage, followed by an LLM
that produces the final AD outputs from this text. We improve
the effectiveness of training-free approaches by incorporating
two key improvements based on: (i) shot-based temporal con-
text; and (ii) the shot scale and thread structure, that are both cru-
cial to cinematic composition and understanding. Previous meth-
ods could describe human-object interactions or human-human
interactions, such as looks [47], within a frame or shot. With
the improvements we introduce, the generated AD also includes
such interactions when they are implied by the shot structure.

As well as the challenge of generating ADs, another
challenge is how to evaluate the predicted ADs. Apart
from conventional metrics [8, 44, 55, 71], several new AD
metrics [23, 25, 89] have been proposed, including CRITIC [25]
measuring who is mentioned in the AD. However, these metrics
fail to emphasise character actions – one of the most critical
aspects of ADs. To address this, we introduce an action score,
assessing whether the predictions accurately capture the actions
described in GT AD, independent of character information.

Moreover, as ADs are time-limited, there is always a choice
on which visual aspect (characters, actions, objects, etc.) should
be included. Consequently, a single video clip can have multiple
equally valid ADs, each highlighting a different aspect. This
observation is supported by the inter-rater agreement experi-
ments in AutoAD-III [25] and previous user studies [78]. There-
fore, beyond evaluating single AD performance, we assess our
framework’s capability as an assistant to generate multiple AD
candidates, and report the performance of the selected one AD.

In summary, we propose an enhanced training-free AD
generation framework, with the following contributions: (i) We
incorporate shot-based temporal context into AD generation via
training-free prompting techniques including shot number refer-
ral and dynamic frame sampling; (ii) We develop state-of-the-art
methods for thread structure and shot scale predictions, and
demonstrate that incorporating predicted film grammar knowl-

edge enhances AD generation; (iii) We improve the current AD
evaluation by introducing the character-free action score, and a
new assistance-oriented evaluation protocol; (iv) Our approach
achieves state-of-the-art performance in training-free AD gener-
ation, and furthermore, surpasses fine-tuned models on multiple
benchmarks. This is the first time a training-free approach has
achieved superior performance to fine-tuned methods.

2. Related work
Audio Description generation. Efforts have been made to
curate Audio Description (AD) datasets for both movies [25, 67]
and TV series [82], with human annotations sourced from
platforms such as AudioVault [2].

For automatic AD generation, prior works [19, 23–
25, 45, 72] fine-tune pre-trained VLMs on AD annotations
to produce descriptions in an end-to-end manner. However,
these methods face challenges due to limited high-quality
AD annotations and the high computational cost of fine-
tuning each new backbone. Alternatively, training-free
approaches [16, 82, 86, 89] have gained traction for their
scalability and flexibility, allowing customised AD output
based on official guidelines [1] or specific needs. Yet, these
methods still lag in performance, while our approach is the first
to achieve results on par with fine-tuned methods.

Instead of limiting the video input to each AD interval,
UniAD [72] and DistinctAD [19] fine-tune VLMs with multi-
ple AD clip inputs to incorporate broader temporal context. In
contrast, our method systematically extends AD clip to adjacent
shots and introduces a training-free approach that enables pre-
trained VideoLLMs to better capture localised temporal context.
Film grammar analysis. Prior research has sought to under-
stand film grammar from two major perspectives: (i) intra-shot
properties, (ii) shot-wise relationships.

For individual shots, several datasets [5, 31, 36, 62, 65] cat-
egorise their characteristics based on camera setups, including
shot scales (examples shown in Fig. 4) and camera movements.
Correspondingly, various models [15, 42, 46, 62, 70] have been
developed for shot type classification.

Regarding shot-wise relationships, a few datasets [5, 10, 56]
have been proposed to explore transitions (i.e. cuts) between
shots, which have also been leveraged in video content
generation [20, 57, 63, 92]. Beyond pairwise shot transitions,
research has also investigated longer temporal contexts with
thread-based editing structures. Notably, Hoai et al. introduced
the Thread-Safe [27] dataset, demonstrating that thread informa-
tion can enhance action recognition. These structures have also
been utilised in video-based face and people clustering [9, 69].

While prior work on film grammar has mainly focused
on classification and generation tasks, we specifically utilise
shot scale and thread structure information to enhance AD
generation in movies and TV series.
Dense video captioning. Dense video captioning is closely
related to AD generation. Early works [32, 33, 39, 74, 76]
in video captioning typically treat event localisation and
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captioning as independent stages, whereas more recent
approaches [12, 18, 34, 38, 51, 58, 61, 77, 80, 85, 96, 97]
integrate these tasks in an end-to-end manner. Video captioning
benchmarks cover a range of domains, including cooking [95],
actions [39], movies [64], TV series [41], and open-domain
settings [11, 14, 26, 49, 66, 83, 84, 88, 93].
Temporal grounding in VLM. To equip conventional VLMs
with temporal grounding capability, some studies [29, 43, 79]
generate additional data with enhanced temporal information for
fine-tuning. A more common approach explicitly incorporates
temporal information into inputs, either by inserting temporal
tokens [13, 17, 21, 22, 28, 30, 59, 73] or embedding time
information within visual tokens [29, 43, 79].

Training-free approaches [60, 81, 94] have also been
explored for temporally grounded understanding. Notably, a
recent work [81] achieves temporal grounding by overlaying
frame numbers as visual prompts. Instead of using uniformly
sampled timestamps, we leverage the natural shot structures
in movies and TV series, adopting them as fundamental units
for training-free temporal referral.

3. Training-free AD generation framework

Given a video clip V={I0,...,IT}, the task of audio description
is to generate a concise narration N describing what happens
around a given AD interval [tA,tB]. In this work, we propose
a two-stage framework that leverages VideoLLMs and LLMs
to predict ADs in a training-free manner.

In Stage I, we employ a VideoLLM that takes a sequence
of frames (from multiple shots) as input and generates a dense
description D, guided by instructions PVideoLLM:

D=VideoLLM(V,[tA,tB],PVideoLLM) (1)

In Stage II, we then prompt an LLM (with instructions
PLLM) to extract key information from the dense Stage I
description and format it into an AD-style narration N :

N =LLM(D,[tA,tB],PLLM) (2)

In this section, we focus on enhancing the visual understand-
ing of the Stage I VideoLLM for edited video material, and
make three innovations: In Sec. 3.1, we incorporate shot-based
temporal context into Stage I visual inputs. In Sec. 3.2, we
leverage the thread structure to enrich cross-shot understanding.
Finally, in Sec. 3.3, we incorporate shot-scale awareness into
Stage I prompt formuation.

3.1. Leveraging shot-based temporal context
Regarding the visual inputs to VideoLLM, prior works [25, 45]
often sample frames {ItA, ...,ItB} that directly correspond
to the AD interval [tA, tB]. However, this approach can be
problematic due to (i) misalignment between the AD interval
and the actual timestamps when the action occurs, and (ii) the
lack of contextual information from adjacent shots. Therefore,
we investigate how incorporating temporal context can enhance
the understanding of the video clip.

Shot 5Shot 4Shot 3
Shot 2Shot 1Shot 1Shot 0

Shot 4Shot 4Shot 4Shot 3Shot 3Shot 3Shot 3Shot 3Shot 2

Current shotsPast shots Future shots

Time

Dense sampling Sparse samplingSparse sampling

Shot 0 Shot 1 Shot 2 Shot 3 Shot 4 Shot 5

AD interval

Figure 2. Shot-based temporal context, where current shots are
defined as those temporally overlapping with the AD interval. Past
shots and future shots provide extended contextual information. Shot
numbers are visually overlaid on the top-left of each frame, and frames
within the AD interval are sampled more densely than context frames.

Structuring temporal context with shots. To obtain more
visual context information, instead of simply extending the
AD interval by fixed timestamps, we explore a more structured
approach that treats shots as the fundamental units.

Specifically, we apply an off-the-shelf shot segmentation
model to partition the entire video clip into individual shots.
For each AD interval, we first identify the shots that (partially)
overlap with it, referred to as “current shots”, as illustrated
in Fig. 2. We then consider at most two “past shots” and two
“future shots” adjacent to current shots as temporal context.
For all shots included, we label them sequentially from past
to future with a number starting from “Shot 0”.
Emphasising the targeted AD interval. To ensure that the
VideoLLM focuses on describing visual content within the AD
interval, we propose two strategies: dynamic frame sampling
and shot number referral.
Dynamic frame sampling. As shown in Fig. 2, to emphasise the
frames of interest, we adopt denser sampling within the AD inter-
val (red region) and sparser sampling for the surrounding context
frames (yellow region). In practice, we specify fixed numbers
of frames to be sampled within and outside the AD interval and
apply uniform sampling according to these constraints.
Shot number referral. To further enhance the attention towards
the current shot content, we label each sampled frame with
its shot number (e.g. “Shot 0”) at the top-left. During the
formulation of the text prompt, instead of prompting the
VideoLLM to “describe what happened in the video clip”, we
ask it to “describe what happened in [Shot 2, Shot 3]” (i.e.
current shots). Through this visual-textual prompting strategy,
we found that the VideoLLM could successfully interpret the
meaning of shot numbers and refer to the correct shots.

3.2. Leveraging thread structure
Movies are generally edited such that viewpoints from two or
more cameras are intertwined in shot threads, as illustrated in
Fig. 3 (top). These interleaved arrangements of shot threads
often imply relationships between objects and characters (e.g.
gaze interactions) and their 3D arrangement. To leverage this
information for Stage I description, we first determine the
thread structure using a separate module, then incorporate it
into the VideoLLM through prompt guidance.
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Figure 3. Thread structure. Top: Example of a thread structure
with interleaving shots. Bottom: A training-free approach for thread
clustering, where shots are pairwise compared using dense feature
matching to construct an adjacency matrix, which is then used to
predict the thread structure.

Thread structure prediction. We develop a training-free
method to predict thread clustering. The problem here is to
determine if two shots correspond to the same viewpoint or
not. Specifically, given two shots (Shot i and a later Shot j),
we compare the last frame of Shot i (Ii

Ti
) with the first frame

of Shot j (Ij
0), extracting their DINOv2 [54] features as fi

Ti

and fj
0 ∈Rh×w×c.

Inspired by [35], we assess frame-wise dense correlations
by computing a cost volume between their feature maps:

Ci,jp,q=m(p,q)◦(f̂i
Ti;p·f̂

j
0;q) (3)

where f̂i
Ti;p

and f̂j
0;q∈Rc are the normalised p-th and q-th spa-

tial elements in the respective feature maps. The binary attention
mask m(p,q) is set to 1 only if the spatial position of the q-th
element is within an n×n neighbourhood of the p-th element.

We then apply a softmax operation along the last dimension
(q) and find the maximum similarity for each p, followed by
averaging over all p-th elements to obtain a matching score
between Shot i and Shot j:

si,j=
1

N

N∑
p

max
q

(
exp(Ci,jp,q/τ)∑N
l exp(Ci,jp,l/τ)

)
(4)

where N denotes the number of feature patches, and τ is the
softmax temperature.

Intuitively, as shown in Fig. 3, this process effectively checks
whether each patch (p) in one shot frame matches with a patch
(q) in the other shot frame at a roughly similar spatial position
(i.e., within an n×n neighbourhood).

Finally, we construct an adjacency matrix based on the
predicted scores si,j for all possible pairs of Shot i and Shot

Extreme 
close-up shot (0)

Close-up shot (1) Medium shot (2) Full shot (3) Long shot (4)
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Figure 4. Shot scales. Top: Examples of five different shot scales. Bot-
tom: Stage I factor composition based on shot scale classification. The
scales of the current shots in the clip are predicted and averaged. The
resulting effective shot scale then guides the formulation of the Stage I
prompt, incorporating additional factors such as facial expressions, etc.

j. By thresholding the adjacency matrix (threshold ϵ) and
identifying the largest connected components, we cluster the
set of shots into multiple threads.
Thread structure injection. Once the thread information is
obtained, we inject it into the text prompt PVideoLLM for the
Stage I VideoLLM. In practice, we conduct this information
injection only to clips that exhibit thread structures (i.e.
Nthread <Nshot). For each given thread [Shot i,...,Shot j], we
formulate the prompt as: “[Shot i, ...,Shot j] share the same
camera setup”.This statement implies that the cameras in these
shots maintain consistent angles and scales.

Rather than simply providing this information, we further
engage the VideoLLM by asking it to explain why the given
thread structure is correct. This effectively corresponds to a
Chain-of-Thought (CoT) process, enhancing its understanding
of these repetitive thread structures.

3.3. Leveraging shot scale information
In movies and TV series, shot scales are often carefully
designed during filming or post-editing to implicitly convey
information to the audience. Our objective is to use the shot
scale to choose what should be included in the Stage I prompts.
Shot scale classification. We first build a shot scale classifica-
tion network by fine-tuning a pre-trained DINOv2 [54] model.
For all current shots, we classify their shot scales {Si} into one
of five classes, represented by values 0–4, as shown in Fig. 4
(top). We then compute their average to obtain the effective
shot scale Seff.
Stage I factor composition. We then leverage the predicted shot
scale to determine the factors to include in Stage I instructions.
We first consider three fixed factors that form the basis of ADs,
namely characters, actions, and interactions. The additional
factor can be determined through applying a set of thresholds
to Seff, as detailed in Fig. 4 (bottom). For example, for close-up
shots (Seff ≤ 1.5), we would ask the VideoLLM to addition-
ally describe the “facial expression”, whereas for long shots
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Figure 5. Action score. Left: Hierarchical prediction parsing. Given a predicted paragraph or sentence, it is first divided into a set of sentences
(light blue) and action phrases (dark blue). Each action phrase is further processed to obtain its verb lemma (light orange). Middle: Scoring based
on semantic similarity. Sentence embeddings for the GT action sentence and the set of predicted sentences and phrases are extracted, with the
maximum cosine similarity defined as the similarity score. Right: Scoring based on verb matching. The predicted verb lemma is compared with
the GT lemma and multiplied by the corresponding semantic-based similarity. The highest resultant score is defined as the verb score.

(Seff≥3.5), a description on the “environment” will be included.

4. Action score
In this section, we introduce a new metric, termed “action score”,
which focuses on whether a specific ground truth (GT) action
is captured within a predicted Stage I description paragraph
or a Stage II AD output. For instance, for the GT action “He
dials the phone”, we want the metric to measure the action
of “dial the phone”, but not be sensitive to character names
and other predicted content. Therefore, this metric is designed
to possess two key properties: (i) it is character-free, meaning
that the presence of character names has minimal impact on
the evaluation, and (ii) it is recall-oriented, without penalising
additional action information in the prediction.
Preprocessing of GT actions. For each GT AD, we extract the
character-free GT actions by (i) replacing character names with
pronouns, and (ii) splitting the AD into subsentences, each con-
taining one action (verb). For example, given a GT AD “Chan-
dler dials the phone, then hurriedly hangs up.”, the extracted GT
actions are “He dials the phone.” and “He hurriedly hangs up.”
Hierarchical parsing of predictions. To process the predicted
paragraph during evaluation, we first decompose it into individ-
ual sentences (light blue), as shown in the left column of Fig. 5.
For each predicted sentence, we then perform rule-based
dependency parsing to obtain action phrases (deep blue). Then,
all extracted sentences and action phrases are collected to form
a prediction set. Additionally, for each action phrase, we extract
the corresponding verb lemma (i.e. the root form of verbs).
Action score computation. The action score features a combina-
tion of semantic-based and verb-matching-based components, as
illustrated in the middle and right columns of Fig. 5, respectively.
Semantic-based evaluation. For each GT action sentence,
we assess its semantic similarity with the set of predicted
sentences and phrases. Specifically, we employ a general
text embedding (GTE) model to compute sentence-level
embeddings for the GT action sentence eGT and each element
in the predicted set {epred;i}. By computing cosine similarities
and taking the maximum value, the similarity score is defined
as ssim=maxi(ssim;i)=maxi[(eGT ·epred;i)/(|eGT||epred;i|)].
Verb-matching-based evaluation. In addition to semantic

matching, we credit predictions that contain the same verbs as
those in GT actions. Practically, we compare the predicted verb
lemmas with GT verb lemma and compute binary matching
scores {mj}. These matching scores are further weighted by the
corresponding similarity scores {ssim,j} through element-wise
multiplication. Finally, we take the maximum of the regulated
scores to compute the verb score, i.e. sverb=maxj(ssim;j◦mj).

To obtain the final action score, we combine the scores from
both sources using a weighted average saction = αsim ◦ ssim +
αverb◦sverb, with αsim and αverb denoting the weighted factors.

5. Experiments
This section begins with datasets and metrics for AD generation
in Sec. 5.1, followed by implementation details in Sec. 5.2.
Results on film grammar predictions are presented in Secs. 5.3
and 5.4, while Sec. 5.5 analyses human alignment with action
scores. AD generation results are detailed in Secs. 5.6 to 5.8.

5.1. AD generation datasets and metrics
We evaluate our framework on AD generation datasets for
both movies (CMD-AD [25], MAD-Eval [23]) and TV series
(TV-AD [82]). In more detail, CMD-AD is constructed by
aligning ground truth ADs with the Condensed Movie Dataset
(CMD) [7], comprising 101k ADs (94k for training and 7k for
testing) from 1.4k movies. MAD-Eval consists of 6.5k ADs
sampled from 10 movies within LSMDC [64]. On the other
hand, TV-AD features 34k AD annotations from 13 TV series,
with its test set sourced from TVQA [40], consisting of 3k ADs.

For AD evaluation, we follow the prior works [19, 25]
to assess general prediction quality using CIDEr [71], Re-
call@k/N [24], and LLM-AD-Eval [25]. We also consider
character recognition accuracy using CRITIC [25] and character-
free action evaluation using action scores (described in Sec. 4).

5.2. Implementation details
In this section, we provide key implementation details for
AD generation and action score computation. For additional
information on film grammar predictions and other details,
please refer to the Supp. Mat.
Shot detection. To segment the video clip into shots, we use
PySceneDetect [3] with the “Adaptive Detection” method,
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Feature Frame setup Precision Recall AP WCP

CLIP-L14 CLS Side 0.691 0.635 0.705 0.922
DINOv2-L14 CLS Side 0.759 0.683 0.788 0.933
DINOv2-g14 CLS Side 0.761 0.675 0.786 0.936

DINOv2-g14 spatial Mid 0.808 0.717 0.822 0.953
DINOv2-g14 spatial All 0.870 0.795 0.896 0.964

DINOv2-g14 spatial Side 0.878 0.799 0.902 0.965

Table 1. Thread structure prediction on Thread-Safe. “Side” refers
to comparisons between the temporally nearest frames in two shots;
“Mid” refers to comparisons between the middle frames of each shot;
“All” refers to comparisons between all frame pairs from the two shots.

Metric Input Accuracy Macro-F1

ViViT [6] RGB 0.747 0.751
SGNet [62] RGB + Flow 0.875 −
Lu et al. [46] RGB + mask 0.892 −
Li et al. [42] RGB 0.895 0.897

Ours RGB 0.897 0.899

Table 2. Shot scale classification on MovieShots.

which compares the ratio of pixel changes with the neighbour-
ing frames. On average, each shot spans 3.5s, 3.3s, 3.8s in
CMD-AD, TV-AD, and MAD-Eval, respectively.
AD generation setting. During dynamic frame sampling, we
select a total of 32 frames, with 16 frames uniformly sampled
within and outside the AD interval, respectively. For character
recognition, we adopt the same visual-textual prompting
method proposed by [82], which applies coloured circles
around faces for visual character indication. For simplicity, the
visualisations in this paper do not display these circle labels.

Regarding the base models, we use Qwen2-VL-7B [75]
as the VideoLLM in Stage I and LLaMA3-8B [48] as the
LLM in Stage II. This setup is used as the default unless stated
otherwise. Additionally, we explore the framework with the
proprietary GPT-4o [53] model for both stages.
Action score evaluation setting. For action score computation,
we set the weight factors as αsim = 0.8 and αverb = 0.2. When
aggregating the action score results, we first average over
multiple GT actions within each GT AD, and then perform
global averaging across all AD samples. Moreover, in practice,
we find that most action scores are clustered within the range
of 0.25−0.75. To improve clarity, we apply further rescaling
f(x)=(x−0.25)×2 as post-processing. For evaluations in this
paper, unless otherwise specified, we use the action score to
assess the Stage II AD outputs.

5.3. Thread structure prediction
We evaluate thread structure prediction on Thread-Safe [27],
which consists of approximately 4.7k video clips collected from
15 TV series. Each video clip contains a multi-shot scene with
corresponding thread clusters manually annotated.

For evaluation, we first construct an adjacency matrix
from the GT clusters and extract binary GT labels ŝi,j from
the off-diagonal entries, where each label indicates whether
a given pair of shots belong to the same cluster. We then
compute the Average Precision (AP) between the predicted

Metric Paragraph Sentence

Pearson Spearman Pearson Spearman

CIDEr [71] 0.205 0.264 0.412 0.528
ROUGE-L [44] 0.305 0.280 0.526 0.512
SPICE [4] 0.022 0.048 0.031 0.012
BERTScore [91] 0.377 0.393 0.508 0.507
LLM-based (GPT-4o [53]) 0.742 0.678 0.797 0.807

Action Score (w/o verb matching) 0.735 0.728 0.765 0.790
Action Score (w verb matching) 0.749 0.729 0.806 0.820

Table 3. Comparison of action score with other metrics. The listed
metrics measure the similarity between predicted paragraphs/sentences
and ground truth actions. The reported values indicate the correlation
(i.e. alignment) between these metrics and human-annotated scores.

relationships {si,j} and the ground truth {ŝi,j}, as well as
report the precision and recall values. Additionally, we directly
compare the predicted clusters with ground truth clusters by
reporting the weighted clustering purity (WCP) [69].

Tab. 1 verifies the choice of DINOv2-g14 [54] as the feature
extractor for frame pair comparison. Compared to abstract
CLS tokens, dense spatial matching achieves higher AP in
frame pair relationship prediction and higher WCP in thread
clustering. Additionally, we observe that using the temporally
closest frames from two shots (“Side”) leads to a noticeable
performance improvement. This can be attributed to the
continuous story flow across shots within the same thread.

5.4. Shot scale classification
Following prior work on shot scale classification [42, 46], we
use the MovieShots [62] dataset, which consists of 46k shots
(train:val:test = 7:1:2) collected from over 7k movie trailers.
We follow its definition of shot scales, categorising shots into
five classes ranging from extreme close-up to long shots, as
illustrated in Fig. 4 (top). To evaluate the model performance,
we report classification accuracy and Macro-F1 [42] scores on
the MovieShots test set.

Since previous state-of-the-art methods on shot scale
classification are not open-sourced, we develop a new network
by fine-tuning DINOv2 [54], achieving superior performance
over prior approaches that rely on additional optical flow or
SAM-based mask inputs, as demonstrated in Tab. 2.

5.5. Human alignment with action scores
Action scores aim to evaluate whether a GT action is captured
within a predicted description, making them recall-oriented.
Such descriptions can be in the form of paragraphs (Stage I de-
scriptions) or single sentences (Stage II ADs). To assess whether
action scores align with human judgments, we create a dataset
containing pairs of predicted descriptions and GT actions. For
each GT action, human annotators manually annotate the qual-
ity of predictions into {0,1,2,3} based on the relevance towards
GT action ranging from “unrelated” (0) to “exact matching” (3).
Comparison with other metrics. Next, we use the human-
annotated scores as a reference to compare different metrics
in terms of human agreement (measured by correlations), as
reported in Tab. 3. Additionally, we consider an LLM-based
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Exp.
Temporal
context

Frame
sampling Shot label

CMD-AD TV-AD

CIDEr CRITIC Action CIDEr CRITIC Action

A − − − 22.4 45.7 27.0 26.0 42.2 22.3
B 1 shot Dyn. Shot num. 24.7 46.8 27.8 28.9 41.6 23.1

C 2 shots Dyn. − 24.5 46.6 27.4 27.8 42.3 22.3
D 2 shots Dyn. Frame box 24.8 46.4 27.4 25.0 41.8 22.8

E 2 shots Uni. Shot num. 24.1 47.5 26.2 26.5 42.2 22.0
F 2 shots Dyn. Shot num. 25.1 47.5 27.8 28.9 42.1 23.0

Table 4. Leveraging shot-based temporal context. Key changes
relative to the default setting (Exp. F) are highlighted in light blue.
“Temporal context” indicates the number of context (past & future)
shots. “Shot num.” refers to overlaying the shot number at the top-left
of each current shot frame, while “frame box” represents highlighting
the boundary of each current shot frame with a red box.

Thread
structure

CMD-AD subset TV-AD subset

CIDEr CRITIC Action CIDEr CRITIC Action

✗ 29.9 47.5 27.4 28.8 42.0 22.6

✓ 30.7 ↑0.8 48.9 ↑1.4 27.7 ↑0.3 30.7 ↑1.9 42.7 ↑0.7 22.9 ↑0.3

Table 5. Thread structure injection. Thread structure information is
injected only into subsets predicted to exhibit thread structures (∼30%
in CMD-AD and ∼60% in TV-AD).

metric to predict scores, following the same scoring criteria
as human annotations. In general, the action score achieves
the best correlations with human annotations. Note, it is also
more efficient than LLM-based metrics, with 0.15s compared
to 6s per prediction evaluation. For more details regarding this
human agreement study, please refer to the Supp. Mat.

5.6. AD generation – evaluation of components

Shot-based temporal context. We investigate different setups
for leveraging temporal context in AD generation, as shown
in Tab. 4, leading to the following observations: (i) Expanding
the temporal context range noticeably boosts the performance,
with gains saturating around “2 shots” (Exp. A, B, and F);
(ii) “Shot number referral” is the most effective strategy for
outlining the current shot. (Exp. C, D, and F); (iii) Dynamically
sampling the current shots at a higher frame rate boosts AD
generation (Exp. E and F). The latter two improvements can be
attributed to more efficient focus on the visual content around
the targeted AD interval.
Thread structure injection. After extending the context infor-
mation with neighbouring shots, we further enhance the Vide-
oLLM’s understanding by incorporating thread structures. Note
that this guidance is applied only to video sequences exhibiting
thread structures. As shown in Tab. 5, this additional information
improves AD generation performance across both datasets.
Scale-dependent Stage I factors. Tab. 6 explores the impact
of different Stage I factors on final AD performance. Using
shot scales as guidance for Stage I factor formulation (i.e.
scale-dependent) not only outperforms configurations with
single fixed factors but also surpasses the case where all factors
are included in Stage I. This could be attributed to that the scale-
dependent description contains more relevant and less redundant
information, enabling more efficient AD extraction in Stage II.

Stage I factors
CMD-AD TV-AD

CIDEr CRITIC Action CIDEr CRITIC Action

Base 25.4 47.4 27.7 29.2 42.0 23.0
Base + Face (AutoAD-Zero) 25.2 46.8 27.8 30.0 42.3 22.5
Base + Obj. 26.1 45.8 27.9 30.4 42.9 22.8
Base + Env. 25.2 46.7 27.4 29.8 40.7 22.2
Base + Face + Obj. + Env. 26.0 47.2 27.4 30.1 42.7 22.9

Scale-dependent (Ours) 26.3 47.8 28.4 31.1 42.2 23.9

Table 6. Factors included in Stage I description. Base: character
+ action + interaction; Face: facial expression; Env.: environment; Obj.:
object. “Scale-dependent” refers to our approach, which leverages shot
scale predictions to determine the relevant factors for each clip.

5.7. AD generation – comparison with SotA
Tab. 7 provides a comprehensive summary of AD generation per-
formance on CMD-AD and TV-AD, comparing across training-
free methods with and without proprietary models, as well as
models fine-tuned on human-annotated ADs. Notably, with
the same base model setup (Qwen2-VL-7B + LLaMA3-8B),
our training-free framework significantly outperforms AutoAD-
Zero, primarily due to the usage of temporal context and film
grammar information. By incorporating the more powerful
GPT-4o models, our performance scales up further, surpassing
even existing fine-tuned models. Additionally, we also report
our performance on the MAD-Eval benchmark in Supp. Mat.
Qualitative visualisations. Fig. 6 presents several qualitative
examples, where the top two cases illustrate how temporal
context information aids in identifying key objects.

In the bottom-left example, prior methods fail to associate
characters, leading to the omission of the man (Alonzo). In
contrast, our method recognises the thread structure (i.e. [Shot
0, Shot 2], [Shot 1, Shot 3]), which guides the correct prediction
of the man’s gaze direction towards the lying woman.

The bottom-right example highlights the effectiveness of
scale-dependent Stage I factor formulation. AutoAD-Zero,
designed to query characters, actions, interactions, and facial
expressions, sometimes overlooks environmental details. Our
method, in contrast, correctly identifies the shot as a long shot
and instructs the VideoLLM to incorporate environmental
context, resulting in more accurate scene descriptions. For more
visualisations, please refer to the Supp. Mat. and Supp. Videos.

5.8. Assisted AD generation
The subjective nature of AD sets a practical limit on metric
scores, lower than the theoretical maximum, because human
annotators often provide different but valid descriptions.
Therefore, beyond enforcing generating a single AD sentence,
we also consider employing our framework as an assistant to
produce multiple candidate AD sentences.

To standardise such a protocol, we consider five candidate
ADs generated by an assistant and employ an expert to select
the best one. To effectively benchmark performance against
existing GT ADs, we define the “expert” as an automatic
selection mechanism that chooses the candidate with the highest
average CIDEr and action score.
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Method VLM LLM
Training

-free
Propriet.
model

CMD-AD TV-AD

CIDEr CRITIC Action R@1/5 LLM-AD-Eval CIDEr CRITIC Action R@1/5 LLM-AD-Eval

AutoAD-II [24] CLIP-B32 GPT-2 ✗ ✗ 13.5 8.2 − 26.1 2.08 | − − − − − −
AutoAD-III [25] EVA-CLIP LLaMA2-7B ✗ ✗ 25.0 32.7 31.5 31.2 2.89 |2.01 26.1 28.8 26.4 30.1 2.78 |1.99
DistinctAD [19] CLIPAD-B16 LLaMA3-8B ✗ ✗ 22.7 − − 33.0 2.88 |2.03 27.4 − − 32.1 2.89 |2.00
Video-LLaMA [90] Video-LLaMA-7B − ✓ ✗ 4.8 0.0 − 22.0 1.89 | − − − − − −
VideoBLIP [87] VideoBLIP − ✓ ✗ 5.2 0.0 − 23.6 1.91 | − − − − − −
AutoAD-Zero [82] VideoLLaMA2-7B LLaMA3-8B ✓ ✗ 17.7 43.7 25.5 26.9 2.83 |1.96 22.6 39.4 21.7 27.4 2.94 |2.00
AutoAD-Zero [82] Qwen2-VL-7B LLaMA3-8B ✓ ✗ 21.9 44.3 26.9 30.8 3.00 |2.20 26.4 41.6 22.1 30.4 3.05 |2.27
Ours Qwen2-VL-7B LLaMA3-8B ✓ ✗ 26.3 47.8 28.4 33.0 3.15 |2.42 31.1 42.2 23.9 33.1 3.09 |2.35
AutoAD-Zero [82] GPT-4o GPT-4o ✓ ✓ 22.4 45.1 30.7 32.9 3.08 |2.49 30.9 44.4 26.8 34.7 3.12 |2.57
Ours GPT-4o GPT-4o ✓ ✓ 26.1 49.1 32.5 36.5 3.17 |2.66 34.2 46.5 27.4 36.6 3.12 |2.59

Table 7. Quantitative comparison on CMD-AD and TV-AD. For training-free methods, “VLM” and “LLM” refer to the models used in separate
stages, while for fine-tuned models, they denote the pre-trained components within an end-to-end model.

Shot 0 Shot 2Shot 1

Harry walks away, followed by another.
Harry holds knife, stabs the kneeling man.

Langdon grabs the gun and shoots the man.
Harry stabs the professor in the back of his neck.

Shot 0 Shot 1 Shot 2

Alonzo's eyebrows twitch as he watches her.

Angela lies peacefully on the couch.
Alonzo looks at Angela lying on a couch.

She sits up and looks around.

Shot 0 Shot 1 Shot 2 Shot 3

Nothing happens in this static scene.
The scene shows a swing set and picnic table.

The camera pans out to show the farmhouse.

A set of swings and a climbing frame stand in a rural backyard, 
along with a picnic table and a brick barbecue.

Shot 0 Shot 0 Shot 1

Penny holds and examines the ring.
Penny takes the money.

She hands him a piece of paper.
She takes several bills.

AutoAD-Zero
Ours

AutoAD-III
Ground truth

AutoAD-Zero
Ours

AutoAD-III
Ground truth

AutoAD-Zero
Ours

AutoAD-III
Ground truth

AutoAD-Zero
Ours

AutoAD-III
Ground truth

Figure 6. Qualitative visualisations. Current shots (corresponding to AD intervals) are outlined by red boxes for illustration purposes only. For
simplicity, not all context shots are shown. Training-free methods adopt Qwen2-VL + LLaMA3. Examples are taken from The Big Bang Theory
(S2E14) (top left), Inferno (2016) (top right), The Asphalt Jungle (1950) (bottom left), and Signs (2002) (bottom right). The top-left example
demonstrates the benefits of shot-based temporal context, where the objects (i.e. bills) in Penny’s hands are not clearly visible within the AD interval
(Shot 1), leading to ambiguous or incorrect predictions by AutoAD-Zero. In contrast, our method successfully identifies the objects from the
context shot (Shot 2). The top-right example describing the action of Harry Sims similarly verifies the effectiveness of incorporating context shots.

Method Candidate
sampling

CMD-AD TV-AD

CIDEr CRITIC Action CIDEr CRITIC Action

Ours Single AD (Ref.) 26.3 47.8 28.4 31.1 42.2 23.9

Ours
Indep. output

(p=0.90;τp =0.6) 33.3 49.6 32.5 41.2 44.3 28.6

Ours
Indep. output

(p=0.95;τp =1.5) 37.0 50.3 35.1 45.5 46.4 31.5

AutoAD-Zero [82] Joint output 31.6 46.4 33.8 43.2 46.8 30.1
Ours Joint output 38.4 49.2 35.7 51.3 47.3 31.8

Table 8. Assisted AD generation results. All methods adopt Qwen2-
VL + LLaMA3-8B as base models. The first row provides single AD
generation results as references (labelled in gray), the rest rows report
the performance of one selected AD out of five candidates. “Indep. out-
put” denotes five random independent Stage II runs, with p as the hyper-
parameter for top-p (nucleus) sampling and τp as the sampling temper-
ature. “Joint output” generates five ADs simultaneously in a single run.

To develop an AD generation assistant, we fix the Stage I
dense descriptions and explore generating multiple candidates
in Stage II. This can be achieved by either running Stage II
independently five times (termed the “independent output”
setup) or generating five AD outputs simultaneously within
a single run (termed the “joint output” setup). As observed
in Tab. 8, the assistant-based setup significantly improves
upon the single AD performance, highlighting the potential

of training-free methods in effectively capturing the desired
content for AD generation. Within the “independent output”
setup, increasing the randomness of sampling (i.e. higher p
and τp) enhances the quality of the selected AD, owing to
greater candidate diversity. Meanwhile, the “joint output” setup
achieves superior performance, which could be attributed to
reduced information redundancy across the simultaneously
generated ADs. For additional visualisations, discussions, and
detailed text prompts, please refer to the Supp. Mat.

6. Discussion – summary and limitations
We have demonstrated the benefit of shot-based context and
film grammar awareness in AD generation – our training-free
two-stage framework achieves state-of-the-art performance
among all training-free counterparts, even surpassing fine-tuned
models on multiple benchmarks.

The current framework has two main limitations: (i) the
performance depends on the base VideoLLM, which may
occasionally hallucinate details inconsistent with the visual
content; and (ii) story-level context is not incorporated into the
AD generation process. These limitations could potentially be
addressed in future work by improving visual grounding and
extending the visual and textual context to include the plot.
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