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Abstract

This work questions a common assumption of OOD detec-
tion, that models with higher in-distribution (ID) accuracy
tend to have better OOD performance. Recent findings show
this assumption doesn’t always hold. A direct observation
is that the later version of torchvision models improves ID
accuracy but suffers from a significant drop in OOD per-
formance. We systematically diagnose torchvision training
recipes and explain this effect by analyzing the maximal
logits of ID and OOD samples. We then propose post-hoc
and training-time solutions to mitigate the OOD decrease
by fixing problematic augmentations in torchvision recipes.
Both solutions enhance OOD detection and maintain strong
ID performance.

1. Introduction

Out-of-distribution (OOD) detection identifies input sam-
ples that differ from the in-distribution (ID) training data.
Detecting such samples avoids overconfident or incorrect
predictions on data outside the training scope. It is impor-
tant for sensitive domains such as healthcare, autonomous
driving, and security. Previous works [25, 38] have shown
that a model’s ID and OOD detection performance are corre-
lated - the higher the ID classification accuracy (on CIFAR,
ImageNet, efc.), the better it is at distinguishing OOD ver-
sus ID samples. It is assumed that a stronger separation of
ID classes will lead to a natural separation of OOD from
ID classes. Improvements may come from the learning
rate schedule or model ensemble, though data augmentation
is the most effective [25]. RandAugment [3], Style Aug-
ment [8], and AugMix [13] are all effective for improving
both ID and OOD performance. These strategies use a com-
bination of techniques, such as image rotation, translation,
or color transformation.

Torchvision is one of the most widely used model
libraries in OOD detection [45]. Curiously, some obser-
vations of torchvision models challenge the conven-
tional understanding of correlation between ID and OOD per-
formance. Specifically, torchvision v2 models have
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Figure 1. OOD and ID performance comparison between

torchvision vl, v2 and AugDelete (ours) models on ImageNet-
1K. AUROC is averaged among near-OOD and far-OOD datasets.
Despite better ID accuracy, v2 models deliver worse OOD perfor-
mance than vl models. AugDelete can improve the OOD perfor-
mance of v2 models while maintaining strong ID accuracy.

worse OOD performance than v1 models, despite better ID
accuracy (see Fig. 1). Similar trends hold across a wide
range of convolutional and transformer network architec-
tures, including ResNet, MobileNet, ResNetXt, WideResNet,
RegNet, SWIN-T, and ViT (See Fig. |, Appendix 8.9).

To understand this unusual phenomenon, we systemati-
cally diagnose torchvision models and find that label-
related augmentation strategies - label smoothing [34] and
mixup [44] are mainly responsible for the poor OOD perfor-
mance of torchvision models. In contrast, other train-
ing augmentations in torchvision models have little
effect on OOD detection. We further analyze the impact
of different augmentations on the logit space and find that
only label smoothing and mixup significantly reduce the
maximal logit values. The reduction of the maximal logit is
more pronounced for in-distribution (ID) samples than out-
of-distribution (OOD) samples, thereby diminishing their
separability. In turn, logit-based and hybrid methods that
rely on the logit values for OOD separation, such as the max-
imal logit score (MLS) [15] or nearest neighbor guidance
score (NNGuide) [29], are compromised.

Our findings are in line with previous observations, albeit
on a different task of failure detection in ID setups [41, 48],
and the impact of mixup on OOD detection [30]. How-
ever, our findings are more comprehensive, as we uncover a



distinction on the impacts of several data-based versus label-
based augmentations on OOD detection. Our work covers
a wide range of data augmentations and training techniques
featured in torchvision models.

To counter the degradation of OOD detection, we propose
two novel methods: Augmentation Deletion (AugDelete), for
fine-tuning pre-trained models, and Augmentation Revision
(AugRevise), for training models from scratch. AugDelete
mitigates the negative effects of data augmentations by re-
moving them from the training recipe and finetuning only
the final layer of the network. In contrast, AugRevise in-
troduces a revised data augmentation method paired with a
corresponding training strategy to enhance OOD detection
while preserving in-distribution generalization.

Both AugDelete and AugRevise demonstrate improve-
ments over baselines in OOD detection (see Fig. 1 and
Table 4). While the OOD performance of post-hoc meth-
ods [5, 32, 45] heavily rely on the quality of ID pretrained
networks, AugDelete reduces the dependence by fixing pre-
training issues in a post-hoc manner. AugRevise, as a
training-time fix, enlarges the ID-OOD separation with a
novel virtual separation loss. It improves upon related meth-
ods like MOS [17] and RegMixup [30], and outperforms
state-of-the-art training-based methods regarding OOD de-
tection and ID accuracy. Our contributions are as follows:

We are the first to systematically diagnose pre-trained
torchvision models and relate their poor OOD perfor-
mance to their pre-training process on ID data.

From our analysis, we propose an efficient post-hoc fix,
AugDelete, to fix pretraining issues of torchvision
models without retraining; it improves OOD detection of
various pre-trained CNNs and transformers.

* We also propose a training-time fix, AugRevise, which can
enhance OOD detection while improving in-distribution
performance. AugRevise shows superior OOD results on
challenging Openood v1.5 Benchmarks.

Our work on torchvision models can benefit future
research as these models are widely used in OOD detection

benchmarks [45]. Code is available at https://github.

com/xhp-hust-2018-2011/DiagPMOOD.

2. Related Works

Post-Hoc OOD Detection methods often use pre-trained
models; the main research focus is to define new score func-
tions or post-hoc adjustments to improve detection capa-
bilities. Most methods are derived from output logits[5,
10, 24, 32] and modify the logits by reshaping the feature
activation. Feature-based methods model the behavior of
internal feature representations. For instance, Mahalanobis
distance-based methods [23] calculate the distance of feature
vectors from class-conditional Gaussian distributions, effec-
tively identifying OOD samples by measuring feature space
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uncertainty. In addition to logit-based and feature-based
techniques, recent work like NNGuide [29] combines the
two to derive more robust OOD detection scores.
Training-based OOD Detection methods adjust model
training to improve the model’s ability to distinguish be-
tween ID and OOD samples. One strategy is through explicit
supervision, either from true OOD samples [12] or synthe-
sized virtual ones [17, 30]. Synthesized samples are more
appealing, since real OOD data is typically not available for
training. For example, RegMixup [30] treat mixed-up sam-
ples as virtual outliers, the cross-entropy loss of which serves
as regularizers for strengthening the decision boundary be-
tween ID and OOD data. Other training-based techniques,
like LogitNorm [40] and T2FNorm [31], aim to improve the
separability of feature representations between ID and OOD
samples. After the model training, a compatible post-hoc
score function is still required for OOD detection.
Relationships between ID and OOD data has been widely
explored [18, 25, 38]. [38] found that a good closed-set clas-
sifier can identifying semantically novel classes. Similarly,
[18] observed that ID and OOD accuracy are positively corre-
lated, at least for correctly predicted ID samples. [25] found
that data augmentations including AugMix and RandAug-
ment improve both ID and OOD performance. However,
we diagnose torchvision models and find that label-based
augmentations—label smoothing (LS) and mixup contribute
to the degraded OOD performance of torchvision models
despite improving ID accuracy. Our findings on mixup are
partly similar to [30] but more general because we analyze a
broader range of data augmentations and training techniques
in torchvision pre-training recipes. Besides, we provide an
post-hoc fix, AugDelete, that is more efficient than retraining-
based regmixup in [30]. Beyond OOD detection, [41, 48]
observed LS and Mixup’s negative impacts on ID failure
detection. However, poor failure detection of ID samples
does not indicate poor ID-OOD separation or degraded OOD
performance. In fact, [48] has even noticed a negative cor-
relation between ID failure detection and OOD detection.
Specifically, [48] found that approaches with good OOD per-
formance may shrink the distribution of ID samples, leading
to poor ID failure detection.

3. Preliminaries

3.1. OOD Detection

A commonly used setup for OOD detection is to identify
semantic shifts in image classification [15, 17, 42]. During
training, only in-distribution (ID) data {(x,y) ~ Dip,y €
Yip} are observed, where Vp has C' classes. Samples from
semantically novel classes unseen in training are considered
OOD. During testing, OOD samples {(x,y) ~ Doop,y €
Yoob, Yoop N Vip = (0} are encountered.

To separate ID and OOD samples, a score function S(x)
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Figure 2. ID Accuracy and OOD AUROC for various training techniques and data augmentations on ImageNet200, using a ResNet18
backbone as per [45]. (a) The impact of data augmentations on OOD detection with MLS score. Label-based augmentations, label smoothing
and mixup, greatly decrease OOD performance of logit-based scores, i.e. MLS. “all d-augs” denotes combining all data augmentations
(RE/TA/LS/mixup). (b) The impact of training techniques on OOD detection using MLS scores. (c¢) Impacts of both data augmentations and
training techniques on OOD detection using KNN scores. Compared to OOD detection using MLS score, these strategies have less impact
(< 1 AUROC) on OOD performance when employing KNN score.

is designed to output higher values for ID samples. Based on
a threshold 7, an OOD indicator 1(a; 7) can be defined as

1(x;7) = {

The score function S(z) is derived from an ID classification
network F'. F can be decomposed as a feature extractor G
sub-network and a linear layer (W € R“*P b c RY):

v=F(x)=W. -G(z)+b, f=G=x), Q)

where f € RP is the feature vector of the penultimate layer.
Typically, network F' is trained with an ID training set using
the standard cross-entropy loss Lo g:

ID
00D

if S(x) > T,

if S(x) < . )

Lop(v,y) = —y' log(o(v)), wv=F(z), 3

where ¢ is the softmax and v € R is the output logit.

Post-hoc OOD detection methods [5, 15, 24] use pre-
trained networks, off-the-shelf to feed directly into the scor-
ing function. They focus on post-hoc adjustment to the
features f and/or designing more effective score functions
S(z). On the other hand, training-based methods train a
novel F' from scratch to improve ID/OOD separation, e.g. by
adding regularizers [30, 40] or data augmentations [3, 14],
though they still require a compatible score function S(x).

Typical score functions are based on the logits v, the fea-
tures f, or a combination of the two. For example, the maxi-
mal logit score (MLS) [15] and energy-based score [24]are
defined respectively as as:

C
) =log(Y_e”V) @)

j=1

Syvrs(x) = max v[j],Sepo(x
j=1,....C

where v[j] denotes the j-th element of the logit prediction.
SEBo is a soft approximation of Sy;rg, and other logit-
based scores such as ASH [5] or FSEBO [9] are also related
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to Sprrs since they modify logits by reshaping feature acti-
vation. A typical feature-based scoring function is the k-th
nearest neighbor distance score (KNN) [33],

= = Fr (&)

where fj~ denotes the feature of the k-th nearest neighbor
in the training set. The nearest neighbor guidance score
(NNGuide) [29] combines both features and logits:

Sknn(x) 2,

SNNGuide(®) = SEpo(x) - Guide(x),

6
Guide(x) = ©

| =

k
Z Sepo(xi-) - cos(G(x-), f),

where x;« denotes the i-th nearest sample in the training set
and cos(+) the cosine similarity function.

3.2. Advanced Recipe of Torchvision v2 Models

torchvision vl and v2 models are similar, though the
latter are trained with additional data augmentations and
data-independent training techniques. The augmentations
can be further categorized into data-based and label-based
augmentation, where the latter also adjusts the label y,
Data-Based Augmentation 1: Random Erasing (RE) [460]
applies random zero masking in the input sample x with
a probability p®". It reduces over-fitting and improve the
generalization of neural networks. Typically, p®” = 0.1.
Data-Based Augmentation 2: Trivial Augment (TA) [27]
is a parameter-free set of image transformations to the input
sample x such as solarize, posterize, brightness adjustment,
etc. During training, TA randomly selects a single augmen-
tation and an augmentation strength from a pre-defined set.
Label-Based Augmentation 1: Label Smoothing (LS) [34]
limits overconfidence by adding a uniform vector to label y:

Lgp(v,y") = —(y"*)" log(a(v)),

ls (7)



where u € R is a uniform vector with all elements equal
to 1, B is the label smoothing strength, and o is the soft-
max function. A larger S denotes smoother learning targets;
typically, 8 = 0.1.

Label-Based Augmentation 2: Mixup [44] interpolates
new samples (z™**,y™®) by linearly combining two sam-
ples in both the data and label spaces:

mix

The cross-entropy loss is applied to the mixed samples
(2™ 4™ in a standard fashion:

—(y™"*") " log (o (v"™")),
— F(wmwc)

i (,Umiac

mix) _
, =

mix (9)

v

Mixup creates a smooth transition between different classes
and can improve ID generalization.

Training techniques: Compared to v1 models, v2 mod-
els add data-independent training techniques such as longer
training (LT), adjusted weight decay (AWD), and Exponen-
tial Moving Average (EMA) of parameters [36]. The details
are listed in Appendix 8.3.

4. Diagnosing Torchvision Training Recipes

This section systematically investigates the influence of
torchvision training recipes on OOD detection. It starts
with a case study in Sec. 4.1 to identify the cause of degraded
OOD performance, before explaining the reason through
derivations in Sec. 4.2. Finally, we analyze mixup from the
perspective of virtual sample generation in Sec. 4.3. Our
analysis suggests adding mixup and label smoothing reduces
the distinction between ID and mixed samples in the logit
space. Less separable ID and mixed samples will result in
poor ID/OOD separation because the mixed samples are
closer to OOD samples.

4.1. An Empirical Study on torchvision Models

This paper’s contributions are motivated by a case study
based on the protocols of OpenOOD V1.5 [25]. OpenOOD
V1.5 is currently the largest OOD detection benchmark. The
findings released by the authors are in line with previous
literature showing the correlation between ID and OOD
performance. A curious discrepancy that we noticed is
that state-of-the-art methods for OOD almost all rely on
torchvision v1 models, even though they lag in ID
performance compared to v2 models with the same back-
bones. The improved performance is brought about by the
augmentations and training techniques described in Sec 3.2.

We begin by comparing the performance of the vl
and v2 models using a ResNet50 backbone in ImageNet-
1k [4]. ResNet50-v2 improves accuracy by 4% compared
to ResNet50-v1 but results in a 12% decrease in the OOD
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AUROC (see Fig. 1). Such a change in the OOD AUROC is
significant because it surpasses the improvements that most
post-hoc OOD methods achieve [5, 24]. Similar trends hold
for other vl and v2 models (see Fig. 1).

A key difference between v1 and v2 is the different train-
ing recipes. v2 uses data augmentations (see Sec. 3.2) and
training techniques on top of the simple augmentations (e.g.
random resizing, cropping, and horizon flipping) used by v1.
To pinpoint each strategy’s influence, we train models from
scratch on ImageNet200 [25] with a single strategy each
time. Figure 2 compares the ID vs. OOD accuracy based on
the MLS score and KNN score. More experimental details
and results for CIFAR10/100 [20] are given in Appendix 8.3.

The augmentation effects are split in Fig. 2a. Regard-
ing the OOD performance with MLS score, adding data
augmentations to v1 (all d-augs) results in a critical drop
similar to that brought by v2 models. Among data aug-
mentations, the data-only augmentations i.e., the Random
Erasing (RE) and the Trivial Augment (TA), have minimal
impact on the OOD accuracy. The label-based augmenta-
tions, i.e., label smoothing (LS) and mixup, however, greatly
decrease OOD performance. Combining LS and mixup
(LS+mixup) likely compounds together into the significant
drop in OOD for v2. Unlike data augmentations, training
techniques (AWD/EMA/LT) have little impact on OOD per-
formance in Fig. 2b, suggesting that the OOD performance
degradation in v2 models is likely from data augmentations
rather than training techniques. These negative trends are
most prominent at the logit level, where the MLS scores are
derived, but less pronounced at the feature level in Fig. 2c,
where the KNN score is computed.

4.2. Analysis of Data Augmentations

This section analyzes how different data augmentations influ-
ence OOD detection with the MLS scoring function Sy s
(see equation 4). Prop. 4.1 shows that adding label smooth-
ing and mixup will decrease the maximal logits Sys1s. Then
we link the decrement of Sj;1¢ to degraded OOD perfor-
mance by Prop. 4.2 and experimental verification.

Proposition 4.1. Let i* denote the index of the maximal
logit, Av[i*] denote the increment of the maximal logit after
one-step gradient descent, Lo g, LZCS i and LT are defined
as equation 3,7, and 9. We have

OLLE
ov

_ OLcgk

Av[i*] — e

Av™9[i*] o (

)[i*] =0, (10)

where “aug” can be LS or mixup, and “[j|” denotes take
the j-th element of a vector.

Remark: Proposition 4.1 suggests that label smoothing and
mixup tend to decrease the gradient updation to the maximal
logits during each step, thus decreasing Spsrs. Detailed
proof can be found in Appendix Sec. 9. Figure 3a (left)
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Figure 3. (a) Relative decrease (see Prop. 4.2) of the maximal logit Sasrs with different data augmentations. Label smoothing and mixup
will reduce Sasr,s more on ID than OOD samples. (b) AUROC between ID/OOD and mixed samples with different mixup coefficients A.
With the increasing A, the mixed samples will be more inseparable from OOD samples, while more separable from ID samples.

visualizes the decrement of Sp;r¢ of ID and OOD after
data augmentations in ImageNet200. It can be observed that
LS and Mixup will reduce Sy;1s, while RE and TA do not
significantly influence Sy s.

Decreased maximal logits do not directly lead to a reduc-
tion in OOD performance. A trivial case is that the OOD
performance remains the same if all logits decrease by a
constant value. To understand the connection between the
reduction in the maximal logits and the degradation in OOD
performance, we derive Prop. 4.2.

Proposition 4.2. Let s; (s,) denote the maximal logits of 1D
(OOD) samples, s;"? (s4*9) denote that of ID (OOD) sam-

au
g So— Sau

ples after augmentations, and r; = (ro = =
denote the relative decrement of s;"9 ( s““g ). Suppose s; > 0
,if 1 > r; > r,, we have:

8i—8;

dP = Prob(s; > s,) — Prob(s;"? > s2"9) >0, (11)

and § P monotonically increases w.r.t %, where “Prob(e)”
denotes the probability of event e.

Remark: i) Prob(s; > s,) is the probabilistic form of AU-
ROC [7, 11], larger value of which indicates better OOD
performance. ii) Proposition 4.2 suggests that larger logit
decrement in ID than OOD (r; > r,) will cause poor OOD
performance (lower Prob(s;"? > s¢“9)). This is the case
of LS/Mixup shown in Fig. 3a. iii) LS/mixup have larger
ri — 1o and 7, than RE/TA, suggesting a larger 5= f(’ in
LS/mixup. According to Prop. 4.2, the decrement of 00D
performance § P will be more pronounced in mixup/LS, in
accordance with the observation in Fig. 2a.

4.3. Analysis of Mixup as Sample Generation

Different from label smoothing, mixup creates virtual sam-
ples from ID data. We compare the maximal logit of mixed
samples to that of ID and OOD samples in Figure 3b. We find
that: 7) With the increasing A, the AUROC becomes lower
between mixed and OOD samples while higher between
mixed and ID samples, meaning that the mixed samples will
be inseparable from OOD samples. This suggests that the
mixed samples can also serve as virtual OOD samples. 1)
After adding mixup to the basic recipe v1, the AUROC of
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mixed and OOD samples will decrease for each ), indicating
that adding mixup decreases the separability between ID
and mixed samples. As mixed samples get closer to OOD
samples, less separable ID and mixed samples will likely
cause less separability between ID and OOD.

Summary of Section 4: i) In torchvision training
recipes, label-based data augmentations (LS/mixup) reduce
the distinction between ID and OOD in logits during gradi-
ent updation. The negative influence will also be propagated
into the feature space, though much smaller than on logits. ii)
In contrast, data-based augmentations (RE/TA) and training
techniques (AWD/EMA/LT) have relatively small impact on
both logit and feature spaces (see Fig. 2).

5. Method

Based on the analysis of torchvision models, we de-
vise two methods for fixing impaired logits. The first, aug-
mentation deletion (Sec. 5.1), fixes the impaired logits by
finetuning the last fully connected layer without problem-
atic data augmentations. The second, augmentation revision
(Sec. 5.2), revises the problematic data augmentations in the
torchvision v2 recipe for training models from scratch.

5.1. AugDelete for Pretrained Models

Empirically, the impact of label smoothing and mixup is the
greatest on the output logits. The effects gradually diminish
with back-propagation into the feature layers. The results of
figure 2a show less impact on OOD detection when adopting
a feature-based score Sk v rather than a logit-based score
Swarrs. These empirical results suggest that a simple way to
fix the logits v is to fine-tune the last fully connected layer
W, b without label smoothing and mixup.

To make finetuning efficient, we extract the features f
in a single forward pass and then train W,b. Alg. | and
Figure 4 show the pipeline of this simple approach termed
as AugDelete. AugDelete improves the logit-based OOD
detectors with minimal training cost and maintains the ID
accuracy since the feature extractor G is fixed.

By retraining the last layer, AugDelete improves
torchvision v2 models in terms of OOD detection.
However, its OOD performance is simply comparable to
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Algorithm 1: AugDelete

Algorithm 2: AugRevise

Input: ID training set {x;, y; }, pre-trained network
with G,W.,b
Output: Finetuned linear layer W,b

Extract features f; with G as equation 2
while Training not end do

Sample a batch of (f;, y;)

Compute L¢ g as equation 3

Perform gradient descent to update W, b
end while
return W, b

AR O A e

vl models (see ResNet or RegNet in Fig. 1) as the features
themselves are left untouched. Next, we aim to surpass the
v1 models in both ID and OOD by revising the v2 training
recipe when training models from scratch.

5.2. AugRevise for Models Trained from Scratch

Following the analysis from Sec. 4, we make the following
design decisions. We keep the data-based augmentations
(Random Erasure and Trivial Augment) while removing
label smoothing; the former does not harm OOD detection
while the latter does. Finally, we adjust the mixup scheme
to ensure that ID samples are sufficiently separable from
the mixed samples. Ideally, Sy;1s of ID samples should be
larger than mixed samples. The closer A is to 0.5, the greater
the gap in Sjs1s between ID and mixed samples.

To improve mixup for OOD detection, [30] propose
regmixup, which treats mixup loss as an OOD regularizer as

y) +

However, we find that regmixup cannot ensure that ID sam-
ples are separable from that of mixed samples, as shown in
Figure 3b. As mixed samples are close to OOD samples,

rcn%i:r — LCE(Uy Lg'LEz (,U'rninc7 ymzz) (12)
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Input: ID training set {x;, y; }, initialized network
with G,W.b
Output: Trained Network G,W ,b

: while Training not end do
Sample a batch of (x;, y;)
Perform mixup to get (", i)
Perform other data augmentations to x;
Compute logits v;,v m” as equation 3, 8, 9
Compute LIYe as equation 13~14

: Perform gradlent descent to update G, W, b
8: end while

9: Call AugDelete to update linear layer W, b
10: return G,W.,b

1
2
3:
4.
5
6
7

poor separation between ID and mixed samples will degrade
ID/OOD separation. To ensure a clear separation between
mixed and ID samples, we propose a virtual separation loss:

Lys(v,v™) = —(1 — Py)log(1 — P,) — Pylog(P,),
P - S el ~ maz(\,1-N)
v Zil evlil 4 evmieli]’ o maz(X\,1—X)+1’
(13)

L,s optimize the LogSumExp(LSE) approximation of
Swrrs since this approximation provides dense gradients.
It ensures the ratios between the maximal logits of ID and
Site - 1

Smu_up it

J\lLS
Smu_up

mixed samples ( ) equals

maT()\ 1-X)"
ensures that Sy, of ID samples is larger than that of OOD
SMLS
to 0.5, ensuring the increasing distinction between mixed

and ID samples. Overall, the final revised mixup adopts the

increases as A becomes closer

samples. Moreover,
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This augmentation revision approach is termed as AugRe-
vise, the pipeline of which is shown in Alg. 2 and Figure 4.
Note that AugRevise still requires AugDelete after training
the whole network to mitigate the influence of data augmen-
tation in the fully connected layers.

6. Experiments
6.1. Ablation Studies

We do ablation studies on ImageNet200 to verify critical ele-
ments of AugDelete and AugRevise on OOD Detection. By
default, the maximal logit score Sy, s is chosen as the OOD
score function. More ablations are provided in Appendix
Sec. 8.

AugDelete for Different Data Augmentation. Figure 5
shows the OOD detection results before and after applying
AugDelete under various data augmentations. AugDelete
improves models with label smoothing and mixup by a
large margin. AugDelete can also slightly improve the
OOD Detection performance of RE and TA. However, with
AugDelete, models trained with label smoothing and mixup
are still worse than the vl model. Because AugDelete keeps
the pretrained features, the negative impact of label smooth-
ing and mixup cannot be mitigated.

Fixing Mixup for OOD Detection. Mixup is fixed in Au-
gRevise with L, loss to increase the separability between
ID and mixed samples. Table | shows the quantitative results
of fixing mixup. Regmixup improves the vanilla mixup but
cannot outperform the vl model in OOD detection. Adopt-
ing mixup in AugRevise can outperform the vl model in
both ID classification and OOD detection. To explain the su-
perior OOD performance of mixup-AugRevise to regmixup,
we visualize the separability between ID, OOD, and mixed
samples in Figure. 3b. Mixup-AugRevise delivers higher
auroc between ID and mixed samples, while lower auroc
between mixed and OOD samples. It suggests better sepa-
ration between ID and OOD samples and mixed samples as
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Figure 6. OOD performance of AugDelete with a fraction of train-
ing samples. 0% means do not apply AugDelete . With a small
percentage (10%) of the training samples, AugDelete already deliv-
ers a significant improvement.

better virtual OOD samples, thus improving the separation
between ID and OOD samples.

AugDelete vs. AugRevise Table 2 shows that AugRe-
vise outperforms AugDelete and vanilla vl models in both
the ID classification and OOD detection. However, adding
label smoothing in AugRevise will decrease the OOD perfor-
mance of OOD detection, suggesting that label smoothing
should be removed in AugRevise.

6.2. AugDelete for Pretrained ImageNet-1k Models

OOD detection with Pretrained Network Architectures.
Figure | visualizes the ID accuracy and OOD performance
with and without AugDeletefor different pre-trained network
architectures. AugDelete improves the OOD detection of
both CNNs and transformers while maintaining ID accu-
racy. Models with better ID accuracy show higher or at least
comparable AUROC after applying AugDelete.

AugDelete with Various Percentages of Training Samples
As AugDelete only finetunes the last layer, it is effective with
only a fraction of the training samples. Fig. 6 shows that
AugDelete , with only 10% of the training samples, already
delivers a significant improvement. The OOD performance
saturated with 20% ~ 30% training samples, suggesting that
the entire improvement of AugDelete can be achieved with
only a small fraction of training samples.

AugDelete for various OOD score functions. Table 3
shows the results of applying AugDelete with various score
functions S(x) on torchvision v2 pretrained models.
AugDelete improves ResNet50-v2 in all S(x) by a large mar-
gin, except KNN scores. AugDelete performs comparably to
ResNet50-v1 with logit-based S(z) in terms of OOD detec-
tion, while having much better ID accuracy than ResNet50-
v1. However, AugDelete shows worse OOD detection per-
formance than ResNet50-v1 when adopting feature-based
S(x), KNN or NNGuide. This is because AugDel does not
fix the impaired features of ResNet50-v2.

6.3. AugRevise for Training-Time Enhancement

We train models from scratch with AugRevise on Ima-
geNet200/1k and CIFAR100 datasets. Following the same



- . AUROC FPR@95 ID ACC Training Recipe AUROC  FPR@95 1D ACC
Training Recipe Loss 4 ! 4 T + T
vl Lcg 87.00 46.90 86.37 Vl* 87.00 46.90 86.37
. iz v2 82.78 62.47 86.74
v1+mixup L&y 84.00 57.81 86.87 N
- iz v2*+AugDelete 85.57 51.87 86.68
v1+regmixup CE 86.97 48.03 87.58 :
l4mi AucRevi [ romiz 87.72 42.09 3728 AugRevise 87.88 41.72 87.67
VI TMuXup-AUSRevIse  “ck : : : AugRevise+LS 87.17 43.87 87.33

Table 1. Fixing mixup on ImageNet200. Fixing mixup with AugRevise

can improve both ID and OOD performance of the vl model.

Table 2. Comparison on ImageNet200. AugRevise outperforms
other models. v2* is trained for 100 epochs as other models.

ResNet50-v1 ResNet50-v2 ResNet50-v2 + AugDelete
Method AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC
t 1 T T { T T - T
MLS [15] 83.02 53.02 76.18 72.84 84.75 80.92 83.08 63.11 80.31
ASH [5] 83.97 49.62 76.18 53.53 90.59 80.92 81.70 65.11 80.31
KNN [33] 80.64 52.50 76.18 79.91 55.09 80.92 79.91 55.09 80.31
NNGuide [29] 86.68 44.81 76.18 65.77 72.07 80.92 77.54 58.22 80.31

Table 3. AugDelete for various OOD score functions on ImageNet-1k.

CIFAR100 ImageNet200 ImageNet-1k

Method AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC | AUROC FPR@95 ID ACC

t 1 ) T { T T + T
v1+MLS [15] 80.36 56.09 77.26 87.00 46.90 86.37 83.02 53.02 76.18
v1+FSEBO [9] 79.97 57.24 77.26 86.75 48.87 86.37 86.82 45.14 76.18
vI+KNN [33] 81.29 57.44 77.26 86.54 44.70 86.37 80.64 52.50 76.18
v1+NNGuide [29] 80.84 57.51 77.26 87.83 46.90 86.37 86.68 44.81 76.18
LogitNorm+MSP [40] 80.00 58.25 76.34 87.85 40.28 86.04 83.08 49.94 76.45
NPOS+KNN [35] 80.32 57.24 — 86.94 41.93 — — — —
MOS+MOS [17] 80.29 56.67 76.98 75.15 61.58 85.60 77.80 64.47 72.81
AugMix+MSP [14] 78.27 57.33 76.45 87.09 44.20 87.01 82.08 55.70 77.63
RegMixup+MSP [30] 79.94 56.81 79.32 87.47 49.62 87.25 81.68 57.12 76.68
AugRevise +MLS 83.69 50.86 82.10 87.88 41.72 87.67 84.77 49.06 77.70
AugRevise +MSP 82.50 52.12 82.10 87.89 41.65 87.67 84.78 49.06 77.70
AugRevise +KNN 83.88 53.46 82.10 87.00 41.66 87.67 82.56 49.25 77.70
AugRevise +NNGuide 84.51 49.52 82.10 89.31 37.56 87.67 87.17 43.64 77.70

Table 4. Comparison with SOTA methods on CIFAR100 and ImageNet200/1k. AugRevise improves both logit-based and feature-based

methods and delivers SOTA results.

settings as OpenoodV 1.5, all the AugRevise models are
trained for 100 epochs with a learning rate starting at 0.1.
ResNet18 is adopted for CIFAR100 and ImageNet200, while
ResNet50 is for ImageNet200. We choose logit-based
(MLYS), feature-based (KNN), and logit and a combination
of both (NNGuide) OOD score functions for AugRevise.
Table 4 compares AugRevise with state-of-the-art (SOTA)
methods in Openood V1.5 Benchmark. AugRevise improves
both logit-based and feature-based methods since it improves
both features and logits. AugRevise also improves ID accu-
racy and outperforms comparing methods. Overall, AugRe-
vise delivers SOTA results in both ID and OOD.
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7. Conclusion

In this paper, we systematically diagnose torchvision
models in OOD detection and find that label-based data
augmentations, label smoothing (LS) and mixup, contribute
to the degraded OOD performance of torchvision models
with enhanced ID accuracy. Through careful analysis, we
find that LS and mixup reduce ID-OOD separation in the
logit space, thus hurting OOD detection. To mitigate the
negative impact, we proposed AugDelete for post-hoc fix
and AugRevise for training-time fix. Both approaches
can improve OOD detection performance of logit-based
and hybrid methods while maintaining strong ID accuracy.
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