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Abstract

Segment Anything Model 2 (SAM 2) has emerged as a pow-
erful tool for video object segmentation and tracking any-
thing. Key components of SAM 2 that drive the impressive
video object segmentation performance include a large mul-
tistage image encoder for frame feature extraction and a
memory mechanism that stores memory contexts from past
frames to help current frame segmentation. The high com-
putation complexity of image encoder and memory module
has limited its applications in real-world tasks, e.g., video
object segmentation on mobile devices. To address this lim-
itation, we propose EfficientTAMs, lightweight end-to-end
track anything models that produce high-quality results with
low latency and small model size. Our idea is based on
adopting lightweight Vision Transformer (ViT) as an image
encoder for video object segmentation, and introducing an
efficient memory module, which reduces the complexity for
both frame feature extraction and memory computation for
current frame segmentation. We take vanilla lightweight
ViTs and efficient memory module to build EfficientTAMs,
and train the models on SA-1B and SA-V datasets for video
object segmentation and track anything tasks. We evaluate
on multiple video segmentation benchmarks including semi-
supervised VOS and promptable video segmentation, and
find that our proposed EfficientTAM with lightweight ViT per-
forms comparably to SAM 2 model (SAM 2-HieraB+) with
~1.6x speedup on A100 and ~2.4x parameter reduction.
On segment anything image tasks, our EfficientTAMs also
perform favorably over original SAM with ~20x speedup
on A100 and ~20x parameter reduction. On mobile de-
vices such as iPhone 15 Pro Max, our EfficientTAM can run
at ~28 FPS for near real-time video object segmentation
with reasonable quality, highlighting the capability of small
models for on-device video object segmentation applications.
Our EfficientTAM code and models are available at here.
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Figure 1. Comparative analysis. FPS/Parameter/Performance com-
parison of EfficientTAM and other models for zero-shot video ob-
ject segmentation on SA-V test. We benchmark FPS of all models
on a single NVIDIA A100. Our EfficientTAM performs compa-
rably to SAM 2 model with ~1.6x speedup and ~2.4x parameter
reduction, and outperforms other models by a large margin with
comparable complexity. Our EfficientTAM-Mobile reduces the
inference time of SAM 2 by ~4.6x and parameter size by ~4.5x.
Comparing to EdgeTAM, our EfficientTAM-Mobile is more ac-
curate while being ~2x efficient on A100 and achieving ~1.8x
speedup on iPhone 15 Pro Max.

1. Introduction

Segment Anything Model 2 (SAM 2) [55] is a founda-
tional model for unified image and video object segmen-
tation, achieving state-of-the-art performance in various
segmentation tasks such as zero-shot image segmenta-
tion [6, 7, 18, 35], semi-supervised video object segmen-
tation [1, 9, 13, 40, 48, 52, 56, 66, 70, 75, 77, 78, 84], inter-
active video segmentation [3, 10, 13, 14, 17, 30, 31, 54, 76],
and other real-world applications [20, 53, 58, 60, 71, 85, 87,
90]. SAM 2 uses a multistage image encoder to extract hier-
archical frame features and introduces a memory module to
cross-attend to both current frame features and stored memo-
ries from observed frames for consistent object segmentation
across frames and interactive tracking in videos.

Despite these advantages, SAM 2 is not efficient for mo-
bile deployment, particularly because the large image en-
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coder (e.g., HieraB+) and memory module are expensive.
The default image encoder of SAM 2, HieraB+ [57], is pa-
rameter inefficient, e.g., ~80M parameters. While SAM 2
provides a tiny version, it has a running time of only ~1
FPS. Additionally, the memory tokens (e.g., a concatena-
tion of spatial memory tokens and object pointer tokens) are
long, e.g., ~30K, which hurts the efficiency of the memory
module with cross-attention.

In this paper, we revisit using a vanilla lightweight
ViT image encoder (e.g., ViT-Tiny/-Small [64]) as Effi-
cientSAMs [73] did to reduce the complexity of SAM 2
while maintaining decent performance. Further, we propose
an efficient cross-attention method for accelerating the mem-
ory module. This is achieved by leveraging the underlying
structure of memory spatial tokens. We observed that the
memory spatial tokens have strong locality and a coarser
representation of memory spatial tokens can be a good proxy
for performing cross-attention. We show that this yields a
good alternative to the original memory module.

To evaluate our method, we conduct extensive experi-
ments across video and image segmentation benchmarks,
including MOSE, DAVIS, LVOS, and SA-V for video seg-
mentation, and SA-23 for image segmentation. Our Efficient-
TAM outperforms strong semi-supervised video object seg-
mentation methods such as EdgeTAM, Cutie-base, XMem,
and DEVA while being more efficient. Compared with SAM
2, our EfficientTAM is comparable, e.g., 74.5% vs 74.7%
on SA-V test dataset, with ~ 1.6x speedup. On image seg-
mentation benchmark, SA-23, our EfficientTAM achieves
60.7% accuracy for zero-shot image segmentation compared
t0 59.1% accuracy for SAM and and 61.9% for SAM 2. We
also benchmarked our EfficientTAM model on iPhone 15 Pro
Max, which can achieve near real-time video segmentation
and outperform EdgeTAM with ~1.8x speedup.

Our main contributions can be summarized as follows:

* We explore using lightweight vanilla ViT image encoder,
ViT-Tiny/-Small, for video object segmentation and show
that lightweight ViT encoder can achieve competing per-
formance comparing to SAM 2.

* We propose an efficient memory cross-attention by ex-
ploiting the underlying memory spatial token structure
and demonstrate the favorable performance.

* We deliver EfficientTAMs, lightweight video object seg-
mentation and track anything models with state-of-the-art
quality-efficiency tradeoffs (Fig. 1), which is complemen-
tary to SAM 2 for practical deployment.

2. Related Work

Video Object Segmentation (VOS) is a fundamental task
in computer vision, segments objects of interest from the
background and tracks target objects in a video. In the unsu-
pervised setting [2, 24, 26, 28, 38, 39, 49-51, 63, 68, 74, 83],
VOS models segment salient objects without a reference

mask. In the semi-supervised setting [1, 9, 13, 40, 48,
52, 56, 66, 70, 75, 77, 78, 84], VOS requires tracking
and segmenting objects based on a first-frame mask of
target objects. For interactive video object segmentation
@iVOS) [3, 10, 13, 14, 17, 30, 31, 54, 76], iVOS models
perform object segmentation in videos (masklets) with user
guidance, e.g., clicks, bounding boxes, and scribbles. In
SAM 2 [55], semi-supervised VOS and iVOS have been
extended to promptable visual segmentation (PVS), where
the model can be interactively prompted with different types
of inputs such as clicks, boxes, and masks on any frame in a
video for segmenting and tracking a valid object.

Vision Transformers (ViTs) have achieved huge success
on various vision tasks including image classification [21],
object detection [41], image segmentation [8, 35], video
classification [25], and video object segmentation [22, 76].
The original ViT family scales from the efficient ViT-Tiny
up to ViT-Huge, with a plain, non-hierarchical architecture.
There are also hierarchical vision transformers that com-
bine transformers with convolutions [37], such as Swin [45],
MVIT [25, 42], PViT [69], and Hiera [57]. While being
successful, hierarchical models are usually slower than their
plain ViT counterparts for practical deployment [57].

Efficient Attention. The field has developed methods to re-
duce the quadratic cost of standard self-attention with respect
to input sequence length [65]. Works in this direction include
Linformer [67], Nystromformer [72], and Performer [15].
The approach of [44, 79] leverages the associative prop-
erty of matrix multiplication for efficient attentions in vi-
sion transformers. However, in preliminary experiments we
found that these methods underperformed in a memory cross-
attention module when adapted for efficiency improvement.

Segment Anything Model. SAM [35] is a vision foundation
model that can segment any object in an image using inter-
active prompts such as points and bounding boxes. SAM
has demonstrated remarkable zero-shot transfer performance
and high versatility for many vision tasks including a broad
range of segmentation applications [5-7, 18, 82, 88], in-
painting [80], image restoration [34], image editing [27], im-
age shadow removal [86], medical image segmentation [47],
camouflaged object detection [61], transparent object detec-
tion [29], concept-based explanation [59], semantic com-
munication [62], and object tracking [14, 76]. The strong
ability on image segmentation with flexible prompts moti-
vates the extension of SAM for video object segmentation
and track anything. Track Anything Model (TAM) [76]
combines SAM and XMem [9] for interactive video object
tracking and segmentation with SAM for frame segmen-
tation and XMem for tracking. SAM-Track [14] perform
object tracking and segmentation in videos by combining
SAM [35], DeAOT [77], and Grounding-Dino [43]. The
latest SAM 2 [55] extended SAM for video segmentation
through a hierarchical image encoder for frame embeddings
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and a memory module that conditions current frame embed-
dings on past frames. Motivated by mobile app use-cases
and computationally-constrained applications, one concur-
rent work, EdgeTAM [89], leverages CNN encoder and Per-
ceiver [33] to reduce the computational cost of SAM 2. Our
work focuses on improving the efficiency of SAM 2 for
practical deployment of video object segmentation and track
anything.

3. Preliminaries

Segment Anything. SAM [35] contains a ViT image en-
coder and a prompt-guided mask decoder. The encoder takes
an image and outputs image embeddings. Then the decoder
takes the image embeddings and a prompt, which allows cut-
ting out any object from the background in an image. SAM
is trained on an image dataset of over 1B masks.

Segment Anything 2. The architecture of segment anything
2 (SAM 2) [55] largely follows SAM, which consists of a
hierarchical image encoder, a prompt-guided lightweight
mask decoder, and a new memory mechanism. SAM 2 uses
a hierarchical image encoder, Hiera [57], to produce image
embeddings for each frame. The stride 16 and 32 features
from Stage 3 and 4 are used for the memory module. The
stride 4 and 8 features from Stage 1 and Stage 2 are not used
in the memory module but are fed to upsampling layers in the
mask decoder for generating segmentation masks. For sta-
ble object tracking, SAM 2 employs a memory mechanism
consisting of a lightweight memory encoder, a lightweight
memory bank, and a memory attention module. It stores
information from past frames and uses the memory attention
module to perform cross-attention between the stored mem-
ory in the memory bank and current frame features, thereby
understanding temporal dependencies in video.

The memory attention module consists of a stack of trans-
former blocks. Each block contains self-attention, cross-
attention, and MLP. The first transformer block takes the
image embedding from the current frame as an input. The
core component of each transformer block, cross-attention,
integrates the current frame embedding and the memory
stored in memory bank to produce an embedding with tem-
poral correspondence information. For memory tokens, it
includes two parts, the spatial embedding tokens from mem-
ory encoder and the object-level pointer tokens from mask
decoder. Let us assume the number of spatial tokens is n,
the number of object-level pointer tokens is P, and d,, is
the channel dimension, memory tokens can be formulated as
Mo — Ms c Rnde

b = [Mp e RPxdm

Let L be the number of tokens and d,, be the dimension
of each token for input frame features after self-attention,
X € RE*4a, The input sequence X € RE*% is linearly
projected to input queries Q € RZ*?, and the memory
tokens, M, € R(™+FP)xdm are linearly projected to keys

K € ROVP)IXd and values V' € R(*HP)Xd regpectively,
where d is the embedding dimension of queries, keys, and
values. The scaled dot-product cross attention mechanism
applied on the queries @, keys K, values V' can be formally

written as,
T
C(Q, K, V) = softmax (%ﬁ;) V, (D

where the softmax operation is applied row-wise. A single
head cross attention is used in the memory module. In later
discussion, we also consider keys and values as memory
tokens for simplification.

Efficiency Bottleneck. Despite the advantages of the hierar-
chical image encoder for multiscale frame feature extraction
and cross-attention for integrating current frame features
with stored memory, it poses the challenges for practical
deployment of SAM 2. For example, the smallest SAM 2
model runs only ~1 FPS on iPhone 15 Pro Max. More-
over, the number of tokens in keys and values for perform-
ing cross-attention in the memory module are super long,
e.g., ~30K. It leads to a large computation and memory
cost when performing cross-attention, which becomes the
efficiency bottleneck of the memory module for real-world
deployment.

4. Efficient Video Object Segmentation and
Track Anything

Motivated by the high quality image segmentation perfor-
mance of EfficientSAM, we revisit using lightweight ViT
image encoders such as ViT-Small/ViT-Tiny, for efficient
frame feature extraction. Further, we introduce an efficient
memory module to reduce the computation and memory cost
by proposing an efficient cross-attention operation. Based
on these two designs, we build efficient video object segmen-
tation and track anything model by largely following SAM2.
Fig. 2 illusrates an overview of our proposed EfficientTAM.
Efficient Image Encoder. The image encoder’s role is
to produce feature embeddings for each high-resolution
frame. We use a SAMI [73] pretrained vanilla ViT image
encoder [21, 64] to extract frame features. Differing from
the image encoder of SAM 2, our image encoder provides a
single-scale feature map and no other features in the mask
decoder are added to the upsampling layers during decoding
for segmentation mask generation. We adopt the lightweight
image encoders, ViT-Small and ViT-Tiny, with a 16 x 16
patch size. Following [41], we use 14 x 14 non-overlapping
windowed attention and 4 equally-spaced global attention
blocks to efficiently extract features from high-resolution
frames. Our image encoder outputs a single-scale feature
embedding with a 16x reduced resolution, which takes high-
resolution (e.g., 1024 x 1024) frames as input and transforms
it into a dense embedding of downscaled size 64 x 64.
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Figure 2. EfficientTAM architecture. Our proposed EfficientTAM takes a vanilla lightweight ViT image encoder for frame feature extraction.
An efficient memory cross-attention is proposed to further improve the efficiency of EfficientTAM by leveraging the strong locality of
memory spatial embeddings. Our efficient memory cross-attention contains 3 steps: (a) average pooling on spatial keys and values; (b)
flatten and concatenate with object pointer; (c) perform cross-attention computation using Eq. (5) or Eq. (6), marked in the dotted box.
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Figure 3. An example to show strong locality of the Keys and Values in the cross-attention of the memory module. Keys and Values are a
matrix of size 28700 x 256. Cross-attention is a matrix of size 4096 x 256. For simplicity of visualizing and comparison, we only draw the
top matrix of size 320 x 256. We use a single averaged token to represent other tokens in the homogeneous window with a 2 x 2 size, for
Keys and Values to obtain coarse Keys and Values. At right, we visualize the difference between original cross-attention of Eq. (1) and
efficient cross-attention of Eq. (5); the relative error w.r.t original cross-attention is 0.03 under Frobenius norm.

Efficient Memory Module. The memory module leverages
information from previous frames to facilitate consistent
object tracking. Cross-attention is a major efficiency bottle-
neck of the memory module in SAM 2 [55] due to its long
memory token sequence. We now discuss how exploiting the
underlying structure of memory tokens — local smoothness
(strong locality) within spatial memory tokens — can yield
a more efficient cross-attention.

Consider two consecutive memory spatial tokens, k; and
k;11, local smoothness implies that ||k; — k;1][3 < i, for
1=1,...,n— 1, where ck is a positive constant. This sug-
gests that given a sufficient small local window, [, XI5, using
a single token to represent other tokens in the homogeneous
window may provide a coarser representation of the full set
of memory spatial tokens K, as K,. We can construct a
good surrogate of K¢ with the same size, K, from K s by
repeating the single token in each window [,, x [; times.
Under the smoothness assumption, K, will not be far from
K. Empirically, we observed that a coarser representation
of spatial memory tokens is good surrogate of the full spatial
memory tokens. Fig. 3 confirms the coarser representation
of input keys and values are close to the original keys and
values of cross-attention in the memory module.

Utilizing highly correlated neighboring tokens in cross-
attention, we perform average pooling to efficiently com-
pute a coarser representation for keys K and values

V in our model. For input spatial tokens K, =
(K11, .. kins oo s kwt, - oo kwn] where w X h is the res-
olution size, we divide the n = w X h tokens into k = w X h
rectangular pooling regions and compute the average token
of each region. For simplicity, we assume w is d1v151ble by

w and h is divisible by h. Denote [, = =,1;, = 7 . K, and
V, can be computed by averaging each region as,

(i+1)xlyw (G+1)x1p k
L. — g
kij = Z Z Lox1l,’
w h
p=iXly+1q=5Xx1p+1
(i+1)xlyw (G+1)x1p "
e — Pq
Yij = Z Z Ly X 1p 2)
p=iXlyw+1qg=jxlp+1 w
where ¢ = 1,--- ,w,5 = 1,--- ,B. This token-pooling

scheme requires a single scan of the tokens leading to an ef-
ficient coarse token generation. We find that using averaging
pooling with window size, 2 x 2, is sufficient to ensure a
good approximation for spatial memory tokens.

Assume K is a coarser representation of memory spatial
keys, K5, we can construct a good surrogate of K; € Rnxd
with the same size, K; € R"*% from K’s e R®whxd by
stacking each INf,»,z' =1,... ,u?ﬁ, lw X lp times, which can
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be written as,

Ky =1[ki;...ikiskay ook ikggs i kg
— —— S———
Loy X1p, Ly X1p, Lo X1p
Similarly, we stack each v;,7 =1,.. ., QZJ;L ly X lp, times to

construct V, € R™*9 as a good surrogate of values, V, €
R™*4 which can be written as,

Vs = [01;..
N ——

.;Ul;UQ;...;UQ;...;Uw;l;...;'l)w;l]
N——

L X1p L X1 Ly X1p,

Then we concatenate this coarse spatial tokens with ob-
ject pointer tokens, K = [K,;K,| € R(+P)xd and
V = [Vi;V,] € ROHPIXA for a good surrogate of orig-
inal memory tokens, K and Y Foriqueries Qe RELxd and

the coarse memory tokens, K and V, we have,
(7

softmax

Vd

> V = softmax (4) V, 3)

s . -
where A = [Q\%T + In (L, x 1p), Q\Zp ] € RL*(@h+P)

V=[VyV,] € ]R(“?E*P)Xd; We provide a proof of Eq. (3)
in the supplement. Since K and V' are good surrogate of
K and V respectively, we obtain a good surrogate of the

original cross-attention, softmax (Q—f/(;) V in Eq. (1),

T
C(Q,K, V') = softmax <Q§a > v, 4)

With Eq. (3), we have an efficient version of cross-attention,

C(Q, K, V) = softmax(A)V, 6))

There is a constant for balancing the attention score between
coarse spatial tokens and object pointer tokens in Eq. (5),
avoiding reducing the attention to spatial tokens after pool-
ing. We find that adding it to keys for regularizing the atten-
tion between coarse spatial tokens and object pointer tokens
can lead to efficient cross-attention with comparable perfor-
mance.

C(Q,K,V) = softmax (Q\j{;> v, 6)

where K = [K, + In (I, x I), K] € R(@+P)xd Fig 3
illustrates our proposed efficient memory cross-attention.

It is feasible to achieve a good surrogate of the original
cross-attention because spatial memory embeddings have
strong locality. Our efficient cross-attention is close to the
original cross-attention, visualized in Fig. 3.

5. Experiments

5.1. Experimental Setting

Pretraining. The SA-1B dataset consists of 11M diverse,
high resolution images with 1.1B high-quality segmenta-
tion masks. Similar to [55], we pretrain our EfficientTAM
without memory components on SA-1B dataset [35] for 90k
steps. Our ViT image encoder is initialized from pre-trained
ViTs [73] . We use the AdamW optimizer [46] with a mo-
mentum, (81 = 0.9, B2 = 0.999), a global batch size of
256, and a initial learning rate of 4e — 4. The learning rate
is decayed by a reciprocal square root learning rate sched-
ule [81] with 1k iterations linear warmup and 5k iterations
linear cooldown. We set weight decay to 0.1. We do not
apply drop path [36] for our image encoder. Layer-wise de-
cay [16] is set to 0.8. We apply horizontal flip augmentation
and resize the input image resolution to 1024 x 1024. The
maximum number of masks per image is 64. Our models are
pre-trained on 256 A100 GPUs with 80GB GPU memory
with a linear combination of focal and dice loss for mask
prediction (e.g., a ratio of 20:1). Bfloat16 is used during the
training.

Full Training Datasets. Following [55], we train our
EfficientTAMs including memory components on SA-V
dataset [55] and a 10% subset of SA-1B [35]. SA-V is
a large-scale and diverse video segmentation dataset, includ-
ing 51K videos captured across 47 countries and 600K mask
annotations covering whole objects and parts. SA-V video
resolution ranges from 240p to 4K and duration ranges from
4 seconds to 138 seconds. Unlike SAM 2, we do not use
other open-source datasets or internal datasets during our
training for a fair comparison with baselines.

Full Training Implementation Details. Similar to [55],
we train our EfficientTAM for 300k steps after pretrain-
ing. We use the AdamW optimizer [46] with a momentum,
(81 = 0.9, B2 = 0.999), a batch size of 256, and a initial
learning rate of 6e — 5 for image encoder and 3e — 4 for
other components of the model. The learning rate is decayed
by a cosine schedule with 15k iterations linear warmup. We
set weight decay to 0.1. We do not apply drop path [36]
for our image encoder. Layer-wise decay [16] is set to 0.8.
We apply horizontal flip image augmentation and resize the
input image resolution to 1024 x 1024. For video, we ap-
ply horizontal flip augmentation, affine transformation with
degree 25 and shear 20, color jittering with brightness 0.1,
contrast 0.03, saturation 0.03, gray scale augmentation with
a probability of 0.05. The maximum number of masks is 64
per image and 3 per frame for video. Our models are trained
on 256 A100-80G GPUs with a linear combination of focal
and dice losses for mask prediction, mean-absolution-error
loss for IoU prediction, and cross-entropy loss for object pre-
diction. The ratio for the linear combination loss is 20:1:1:1.
Bfloat16 is used for training.
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Downstream Tasks/Datasets/Models. Tasks and Datasets.
We consider zero-shot video tasks including promptable
video segmentation and semi-supervised video object seg-
mentation, and zero-shot image tasks to demonstrate the
competing capabilities of EfficientTAM on image and video
segmentation. For zero-shot image tasks, we evaluate Effi-
cientTAM on 37 datasets including 23 datasets of SA-23 [35]
and 14 video datasets introduced in [55]. For zero-shot
video tasks, we evaluate our EfficientTAM on 9 densely
annotated datasets for promptable video segmentation. We
use 17 video datasets to evaluate zero-shot accuracy un-
der interactive semi-supervised VOS setting using different
prompts. For the standard semi-supervised VOS setting
where a ground-truth mask on the first frame is provided,
MOSE [19], DAVIS2017 [52], LVOS [32], SA-V [55], and
YTVOS [75] are used to measure the VOS accuracy. These
datasets cover different resolutions, frame rates, and chal-
lenging scenarios like motion blur and low-light conditions.
We refer readers to [35, 55] for the details of these datasets.
Models. We use our EfficientTAM for zero-shot image and
video tasks.

Baselines and Evaluation Metrics. Baselines. For the stan-
dard semi-supervised VOS task, where the first-frame mask
is provided, we compare the performance of our Efficient-
TAM with SAM 2 [55], EdgeTAM [89], Cutie-base [13],
DEVA [12], XMem [9], etc. For the zero-shot promptable
video segmentation task and the interactive semi-supervised
video object segmentation task using different prompts, we
compare our method with SAM2 [55], SAM+XMem++ [55],
and SAM+Cutie [55]. For zero-shot image segmenta-
tion task, we compare with SAM [35] and SAM2 [55].
Note that we use the opensource version of SAM 2 (with-
out training on MOSE/LVOS/YTVOS) for comparison.
Evaluation Metrics. We evaluate our method and all base-
lines using the accuracy metrics of the combined 7 (region
similarity)&F (contour accuracy), G(averaged 7 &F defined
in [23]) for zero-shot video segmentation tasks; mIoU (mean
intersection over union) for zero-shot image segmentation
tasks. For efficiency metrics, we compare the number of
model parameters or inference throughput on GPU (e.g,
A100) and latency on mobile devices (e.g., iPhone 15 Pro
Max). We follow SAM 2 [55] to report metrics. When
providing main results on MOSE, LVOS, and YTVOS, we
submit to their benchmarking servers to evaluate on MOSE
val, LVOS val, and YTVOS2019 val for final performance.
For ablation studies, we evaluate on a MOSE development
set, MOSE dev with 200 randomly-sampled videos from the
MOSE training split [55].

5.2. Main Results

Standard Semi-Supervised Video Object Segmentation.

Semi-supervised video object segmentation is the process
of object segmentation and tracking in a video based on
a ground-truth mask on the first frame. We follow SAM

2 [55] and report accuracy of our methods on this standard
semi-supervised video object segmentation task. We also
report latency on a single A100 GPU with a batch size of 1.
We evaluate EfficientTAMs with different image encoders,
ViT-Tiny and ViT-Small, and memory modules, original
memory block and efficient memory block with a 2 x 2
window pooling for a trade-off between efficiency and ac-
curacy. EfficientTAM-S/-Ti denotes EfficientTAM using a
ViT-Small/-Tiny image encoder and the original memory
block, and EfficientTAM-S/2 denotes EfficientTAM with
a ViT-Small image encoder and efficiency memory block
with a 2 x 2 window pooling. EfficientTAM-Mobile de-
notes EfficientTAM-Ti/2 trained on resolution, 512 x 512,
for near real-time on-device track anything. Tab. | com-
pares our EfficientTAM with VOS baselines including SAM
2 [55], Cutie-base [13], and XMem [9]. On SA-V test,
our EfficientTAM-S achieves 74.5 J&JF, outperforming
Cutie-base, Cutie-base+, and XMem by 12.2, 12.9, and 14.4,
respectively. On long-term video object segmentation bench-
mark, LVOS, we can also see that Our EfficientTAM-S out-
performs Cutie-base and XMem by a large margin. Notice
that our EfficientTAM-S only underperforms SAM 2 by < 2
J&F or G across 5 video benchmarks with ~1.6x speedup
and ~2.4x fewer parameters. Further, EfficientTAM with
efficient memory attention performs slightly worse than the
one with original memory attention, but with much speedup,
especially on mobile devices, >2x reduced latency on iPhone
15. For example, EfficientSAM-S achieves 74.5 J &F on
SA-V test with 1010.8 ms running time per frame on iPhone
15. EfficientSAM-S/2 with efficient cross-memory attention
obtain 74.0 J&F with only 450 ms. For on-device track
anything, our Efficient TAM-Mobile runs at ~28 FPS for near
real-time video object segmentation, ~1.8x speedup over
EdgeTAM on iPhone 15 Pro Max while being more accu-
rate than EdgeTAM across video benchmarks. For example,
EfficientTAM-Mobile achieves 68.6 J & F on SA-V test, 1.5
J &F improvement over EdgeTAM. We also find that the
energy consumption of EfficientTAM-Mobile is quite small.
The battery of iPhone 15 Pro Max with ~50 kJ (50 x 10 mJ)
of energy, can perform efficient track anything for around
105 frames. These results show the extraordinary benefits of
EfficientTAMs for semi-supervised video object segmenta-
tion and validate the advantages of our methods for practical
deployment.

Promptable Video Segmentation. Similar to SAM 2 [55],
we evaluate promptable video segmentation using two set-
tings, offline evaluation and online evaluation. For offline
evaluation, we make multiple passes through a video to
annotate frames w.r.t. the largest model error. For online
evaluation, we make a single pass through the video to anno-
tate frames. 3 clicks per frame are used for the evaluations on
9 densely annotated video datasets including EndoVis, ESD,
LVOSv2, LV-VIS, UVO, VOST, PUMaVOS, Virtual KITTI
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Method J&F g FPS | Latency (ms)
MOSE DAVIS LVOS SA-V | YTVOS | Parameters A100 iPhonel5
val 2017 val val test 2019 val ™M)
STCN [11] 52.5 85.4 - 57.3 82.7 54 62.8 -
RDE [40] 46.8 84.2 - 48.4 81.9 64 88.8 -
XMem [9] 59.6 86.0 - 60.1 85.6 62 61.2 -
DEVA [12] 66.0 87.0 55.9 53.8 85.4 69 65.2 -
Cutie-base [13] 69.9 87.9 66.0 61.6 87.0 35 65 -
Cutie-base+ [13] 71.7 88.1 - 62.3 87.5 35 57.2 -
SAM 2 [55] 72.8 88.9 76.2 74.7 87.9 81 64.8 1513.2
EfficientTAM-Ti/2 (ours) 68.4 88.4 66.1 70.8 87.1 18 156.2 261.4
EfficientTAM-Ti (ours) 69.3 89.1 69.6 70.7 86.7 18 117.7 840.5
Efficient TAM-S/2 (ours) 70.8 88.6 72.1 74.0 87.2 34 124.5 450
EfficientTAM-S (ours) 71.4 89.2 73.4 74.5 87.2 34 100.4 1010.8

Table 1. Standard semi-supervised video object segmentation results across video object segmentation benchmarks. Note that EfficientTAMs

are trained on SA-1B and SA-V datasets.
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Figure 4. Promptable video segmentation results across 9 video segmentation datasets under interactive offline (left) and online (right)

evaluation settings with 3-click. The average J &F over 1, ..., 8 interacted frames is reported.

Method I-click 3-click 5-click bounding box ground-truth mask Model SA-23 All SA-23 Image SA-23 Video 14 new Video

SAM+XMem++ | 569 684 706 67.6 727 SAM (ViT-B) 559(80.9) 57.4(813) 540(804)  545(82.6)

SAM+Cutie 567 701 722 69.4 74.1 SAM (ViT-H) 58.1(81.3)  60.8(82.1)  54.5(80.3)  59.1(83.4)

SAM 2 643 732 754 72.9 77.6 HQ-SAM (ViT-B) 53.9(72.1)  563(739)  50.7(69.9)  54.5(75.0)

EfficientTAM-S/2 | 60.5 72.8 75.4 71.2 76.8 HQ-SAM (ViT-H) 59.1(79.8)  61.8(80.5) 55.7(78.9) 58.9 (81.6)

EfficientTAM-S 63 74.1 75.7 73.2 77.8 SAM 2 61.9(83.6) 632(83.8)  60.3(833)  69.9(85.9)

B B B 3 3 B EfficientTAM-Ti/2 (ours)  58.6 (82.5)  59.6(82.8)  57.4(82.1)  63.4(84.9)

Table 2. Interactive semi-supervised video object segmentation EfficientTAM-Ti (ours) ~ 58.2(82.6)  59.5(82.9)  56.5(82.1)  62.7(85.0)

results with different prompts. We report averaged 7 & F zero-shot EfficientTAM-S/2 (ours)  60.5(82.9) ~ 61.6(83.2) ~ 59.1(824)  67.8(854)

EfficientTAM-S (ours)  60.7 (83.0) 61.7(83.3)  59.5(82.6)  67.7(85.4)

accuracy across 17 video datasets for each type of prompt.

2, and VIPSeg. Average J&JF accuracy over 1,...,8 in-
teracted frames is reported. Fig. 4 shows the comparison
between our method and strong baselines including SAM
2, SAM + XMem++, and SAM + Cutie. EfficientTAM
outperforms SAM + XMem++ and SAM + Cutie for both
evaluation settings. EfficientTAM also reduces the gap be-
tween SAM 2 for offline and online settings. Specifically,
with 8 annotated frames with 3-click, EfficientTAM-S and
EfficientTAM-S/2 achieve ~ 82 [J &F in average for offline
evaluation setting and ~ 81 J&JF in average for online
evaluation, outperforming SAM + XMem++, and SAM +
Cutie by >3 J&F and reducing the gap of SAM 2. This
set of experiments further validate the effectiveness of our
EfficientTAM on promptable video segmentation.

Interactive Semi-Supervised Video Object Segmenta-
tion. We also evaluate our method on the interactive semi-
supervised video object segmentation task with click, box, or

Table 3. Segment anything results on SA-23 benchmark [35] and
14 new video benchmark [55]. The average 1-click (5-click) mloU
is reported.

mask prompts provided only on the first frame by following
SAM 2. In Tab. 2, we report the average J&JF accuracy
over 17 video datasets for each type of prompt. We observe
that EfficientTAM outperforms SAM + XMem++, and SAM
+ Cutie with different input prompts. We also notice the
reduced gap between EfficientTAM and SAM 2. With 1
click, our EfficientTAM-S obtain 63 J&JF accuracy, with
a 6 J&F gain over SAM + XMem++ and SAM + Cutie
and a slight loss, 1.3 J&F comparing to SAM 2. In sum-
mary, EfficientTAM performs favorably on the interactive
semi-supervised VOS task using different prompts.

Segment Anything on Images. We now evaluate our model
for the segment anything task on images. In Tab. 3, we report
1-click and 5-click mIoU accuracy on both SA-23 bench-
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SAM 2 [55]

EfficientTAM

SAM 2 [55] e

Figure 5. Visualization results on video segmentation and tracking with SAM 2, and our EfficientTAM model. We sampled a subset of
frames for visualization. The segmented objects with occlusion, e.g., the person, are colored in green.

mark, plus the new benchmark introduced in SAM 2 [55]
with 14 video datasets from video domain. We compare
our EfficientTAMs with SAM (ViT-H) and HQ-SAM (ViT-
H). Our EfficientTAM-S obtains a 2.6 mloU improvement
over SAM (ViT-H) and 1.6 mIoU improvement over HQ-
SAM (ViT-H) on 1-click accuracy. For 5-click, we observe
consistent improvement over SAM (ViT-H) and HQ-SAM
(ViT-H). We also notice a significant improvement on the
video benchmarks of SA-23 and the one with 14 new videos.
This indicates our EfficientTAMs are strong for both image
and video segmentation.

Qualitative Evaluation. Fig. 5 shows two video exam-
ples. We compare EfficientTAM and SAM 2 with a mask
in the first frame prompted. We find that our EfficientTAM
can generate high-quality masklet for the target object as
SAM 2. More challenging examples with small objects and
occlusions can be seen in the supplement. These results sug-
gest that our EfficientTAMSs have similar abilities to SAM 2,
while EfficientTAM is more efficient.

5.3. Ablation Studies

Impact of the object pointer tokens. We study the effect
of the object pointer tokens when performing cross-attention
in the memory module. We ablate the cross-attention with
or without the object pointer tokens. We find that object
pointers significantly improve the performance on SA-V
test dataset, 74.5 vs 72.1 J &F, consistent with SAM 2 [55].
This demonstrates that object pointer tokens need to be cross-
attended with spatial tokens from the memory bank.
Structure of memory tokens. We ablate the impact of
memory tokens for efficient cross-attention in the memory
module. In our efficient cross-attention, we leverage the
locality of memory spatial tokens for a coarser representa-
tion, and we concatenate the coarser embedding with object
pointer tokens. We observe that naively pooling the entire
memory tokens instead of only the spatial tokens yields a
large performance drop, 2.3 J&F on SA-V test.
Generalization of token locality. We perform zero-shot
video segmentation evaluation on Corsican Fire, Virtual
KITTI 2, and EndoVis 2018 benchmarks with highly dy-
namic or non-local object movements. We observe that

leveraging token locality within a 2 x 2 window in efficient
cross-attention yields a minor performance drop with ~ 0.4%
J&F. These results demonstrate the generalization ability
to highly dynamic or non-local object movements scenario.
Impact of window size. We perform window size ablation
for our efficient memory cross-attention. We experiment
with window sizes 2 x 2 and 4 x 4. We find increasing the
window from 2 x 2 to 4 x 4 for efficient cross-attention
will lead to ~ 1 J&F accuracy drop with marginal speed
improvement. We also note that a 4 x 4 window size will
introduce a larger performance drops on benchmarks such
as Virtual KITTI 2, which suggests that performing an av-
eraging pooling over a large window size on videos with
non-local object movements may lose much details. There-
fore, our experimental results suggest that a window size of
2 x 2 achieves a trade-off between accuracy and efficiency.
Linear cross-attention. We explore adapting one representa-
tive efficient attention method such as linear attention [4, 79]
by leveraging the associative property of matrix multiplica-
tion. We find that it leads to significant performance drop,
> 10 J &F accuracy on SA-V test, comparing to our pro-
posed efficient cross-attention. Therefore, leveraging the
underlying token structure for efficient cross-attention is
more effective.

Efficient cross-attention. We compare efficient cross-
attention, Eq. (5) and Eq. (6). We observe that Eq. (5) and
Eq. (6) achieve comparable performance across video seg-
mentation benchmarks, e.g., ~ 74 J&JF on SA-V test.

6. Conclusions

We revisited using vanilla lightweight ViT image encoders
and proposed an efficient memory module by leveraging the
locality of spatial memory embeddings, for building efficient
video object segmentation and track anything models,
EfficientTAMs. EfficientTAMs demonstrate competing
image and video segmentation capabilities while being
more efficient and deployable on mobile devices. Extensive
experiments on semi-supervised video object segmentation,
promptable video segmentation, and the segment anything
tasks consistently validate the advantages of our Efficient-
TAM. Our preliminary work suggests that EfficientTAM has
many potential applications for on-device tracking anything.
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