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Figure 1. We propose a framework for faithful cross-subject mind decoding. Unlike prior approaches that struggle with cross-subject
generalization and accumulate errors in representation prediction, our method ensures more accurate and high-fidelity image reconstruction
from fMRI signals.

Abstract

Decoding stimulus images from fMRI signals has ad-
vanced with pre-trained generative models. However, ex-
isting methods struggle with cross-subject mappings due to
cognitive variability and subject-specific differences. This
challenge arises from sequential errors, where unidirectional
mappings generate partially inaccurate representations that,
when fed into diffusion models, accumulate errors and de-
grade reconstruction fidelity. To address this, we propose
the Bidirectional Autoencoder Intertwining framework for
accurate decoded representation prediction. Our approach
unifies multiple subjects through a Subject Bias Modulation
Module while leveraging bidirectional mapping to better cap-
ture data distributions for precise representation prediction.
To further enhance fidelity when decoding representations
into stimulus images, we introduce a Semantic Refinement
Module to improve semantic representations and a Visual
Coherence Module to mitigate the effects of inaccurate visual
representations. Integrated with ControlNet and Stable Dif-
fusion, our method outperforms state-of-the-art approaches
on benchmark datasets in both qualitative and quantitative
evaluations. Moreover, our framework exhibits strong adapt-
ability to new subjects with minimal training samples.

*Corresponding authors: Yangyang Xu (xuyangyang@hit.edu.cn) and
Yong Du (csyongdu@ouc.edu.cn).

1. Introduction

The human visual cortex processes sensory stimuli and en-
codes them into brain signals, playing a fundamental role
in shaping perceptual experience [11, 13, 37]. Decoding
these brain signals back into the original stimuli has become
a significant focus in neuroscience and computer science,
presenting a challenging inverse problem with potential ap-
plications in brain-computer interfaces (BCIs) and cognitive
science [7]. The functional Magnetic Resonance Imaging
(fMRI), which captures changes in blood oxygenation, is
widely used in BCIs for mind decoding due to its ability to
reflect dynamic brain activity patterns [5, 21, 25, 35, 40].

Early methods for decoding fMRI data map voxel signals
to the feature space of pre-trained Convolutional Neural Net-
works (CNNs) to classify object categories [9]. However,
these methods were limited in reconstructing complex vi-
sual stimuli. To improve the realism of reconstructions,
researchers introduced Generative Adversarial Networks
(GANs) [3, 14, 47–49, 53] and diffusion models [33, 45, 46]
for mind decoding, where fMRI data is typically mapped
to image representations within generative models to guide
image synthesis.

Despite these advances, current approaches are limited
by individual cognitive variability and often rely on subject-
specific models that require separate training for each indi-
vidual [36, 42]. Such subject-specific models generally lack
generalizability across individuals, reducing their scalabil-
ity and applicability. Recently, cross-subject mind decod-
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ing frameworks [28, 36, 42] have attempted to map fMRI
voxels to shared representations across subjects. However,
these frameworks face two sequential sources of error: i)
unidirectional mappings often fail to capture the complex
variability across subjects, producing partially inaccurate
representations, and ii) these inaccurate representations are
subsequently fed into pre-trained diffusion models without
adjustments for errors, leading to compounded inaccuracies
and frequently resulting in reconstructions with low fidelity
and unrealistic details. As shown in Fig. 1, prior works fail
to decode the night street scene.

To achieve high-fidelity mind decoding, we argue that
both sources of inaccurate must be addressed. First, enhanc-
ing the accuracy of image representations during the initial
mapping stage is essential to minimize inaccuracies. Second,
the framework must be resilient to inaccurate in image rep-
resentations during downstream processing to prevent error
propagation and ensure that final reconstructions maintain
high fidelity.

To address these challenges, we first propose a Bidirec-
tional Autoencoder Intertwining (BAI) framework, which
learns a bidirectional mapping between fMRI voxels and
semantic/visual representations, capturing complex cross-
subject relationships between these domains. By intertwin-
ing transformations in both directions, it not only improves
fidelity in fMRI-to-image decoding but also enables the syn-
thesis of fMRI-like data from semantic/visual inputs, yield-
ing more reliable representations. However, as shown in
Fig. 1f, decoding the representations predicted by BAI di-
rectly cannot guarantee the fidelity reconstruction, as it ig-
nores the error in second step. To support inaccurate-tolerant
decoding, we introduce the Semantic Refinement Module
(SRM) and Visual Coherence Module (VCM), which mit-
igate the impact of representation errors on image recon-
struction. Specifically, BAI employs two intertwined au-
toencoders for fMRI voxels and representations, achieving
bidirectional mapping by swapping decoders. To reduce
subject-specific biases, we incorporate a Subject Bias Mod-
ulation Module (SBMM) in the fMRI autoencoder, which
applies statistical modulation. The Semantic Refinement
Module refines the predicted semantic embedding, while
the Visual Coherence Module optimally integrates visual
representations to ensure output fidelity [20]. Combined
with ControlNet [51], these modules reduce dependence
on precise representations, preserving both semantic and
visual consistency with the original stimuli. We evaluate
our approach on the Natural Scenes Dataset [1], and results
demonstrate that our framework outperforms state-of-the-art
methods. Furthermore, our framework adapts effectively to
new subjects with minimal additional samples.

In summary, our contributions are threefold:
• We propose a cross-subject mind decoding framework

that learns bidirectional mappings between fMRI voxels

and semantic/visual representations, capturing complex
cross-subject relationships between these domains.

• We design Semantic Refinement and Visual Coherence
modules to enhance reconstruction accuracy and consis-
tency, reducing dependence on exact representations for
high-fidelity mind decoding.

• Extensive experiments demonstrate that our framework
significantly outperforms state-of-the-art methods in cross-
subject mind decoding and adapts effectively to new sub-
jects with minimal additional samples.

2. Related Works
Brain Decoding. Brain decoding aims to reconstruct

stimuli from brain signals [4, 15, 44]. Early studies demon-
strate that coarse visual information could be decoded from
fMRI [6, 12, 41]. With advancements in deep learning,
Tomoyasu et al. [9] map fMRI signals to CNN features.
Recently, pre-trained generative models have shown pow-
erful generative capabilities, and several studies leverage
these models for brain decoding. Furkan et al. [26] and Mi-
lad et al. [24] extract representative features from fMRI and
fine-tuned pre-trained BigGAN[3] for stimuli reconstruc-
tion. MindReader [17] maps fMRI signals to CLIP embed-
dings [29], then decoded stimuli images using conditional
StyleGAN2 [14, 53]. Recent works introduce diffusion mod-
els [33, 46] for mind decoding by mapping fMRI signals
to intermediate representations [5, 21, 35, 40, 43]. While
promising results have been obtained, these approaches
typically require separate model training for different sub-
jects, limiting their broader applicability. Some recent
works [28, 36, 42] have introduced cross-subject frameworks
that unify different subjects within a single model. However,
these approaches often suffer from inaccurate predicted rep-
resentations due to the unidirectional mappings.

Diffusion Models in Brain Decoding. Diffusion mod-
els [30–34, 46] have made significant progress in generat-
ing diverse and realistic images and videos. Many stud-
ies leverage the generative power of diffusion models for
brain decoding. Specifically, versatile diffusion [46] unifies
text-to-image and image-to-text synthesis within a single
framework, and various works [35, 36, 42] employ versatile
diffusion as a visual decoder by mapping fMRI signals into
embeddings. Stable Diffusion (SD)[33] performs denoising
in latent space, enabling high-quality text-to-image synthe-
sis. Takagi et al. [40] map fMRI signals into SD’s latent
representation for stimuli reconstruction but produces blurry
results. MindVis [5] learns discriminative features from
fMRI and projects them into two conditions, controlling
the generation process of SD via a cross-attention mecha-
nism. DREAM [43] decodes semantics, depth, and color
conditions from fMRI and guides the output of SD with T2I-
adapter [23]. However, all these works overlook the impact
of inaccurate representations on reconstruction fidelity. In
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Figure 2. Overview of our framework. It consists of two autoencoders: one for fMRI voxels Vx and another for image representations (S, E,
and C), supporting both reconstruction and bidirectional translation by swapping decoders. The Subject Bias Modulation Module (SBMM)
is integrated into the fMRI encoder EV and decoder DV to eliminate inter-subject variance. Red lines illustrate the translation pipeline from
fMRI voxels to image representations. To enhance reconstruction accuracy from inaccurate representations, we introduce the Semantic
Refinement Module (SRM) and Visual Coherence Module (VCM) within the frozen ControlNet and Stable Diffusion (SD) components,
reducing dependency on precise representations. Finally, the stimulus image Ĩ is reconstructed using the DDIM sampler.

this paper, we learn bidirectional mappings between fMRI
voxels and semantic/visual representations, enabling more
accurate representation predictions. Additionally, we intro-
duce two modules to reduce dependency on exact represen-
tations, further enhancing fidelity in reconstruction.

Controllable Diffusion Models. To better leverage
the generative capabilities of diffusion models, various
works [19, 45, 50–52, 54] enhance the controllability of
pre-trained diffusion models. ControlNet [51] introduces
zero-initialized layers to control the generation process
under conditions, such as pose, edge, depth, and more.
T2i-adapter [23] incorporates multiple adapters for pre-
trained SD. Uni-ControlNet [52], UniControl [27], and
ControlNet++[22] unify various control conditions within
a single framework, ensuring that output images strictly ad-
here to multiply conditions. LooseControl[2] introduces
rougher conditions to foster greater creative flexibility, while
SmartControl [20] analyzes ControlNet’s control mecha-
nisms and proposes a module that resolves conflicts between
text prompts and multiple control conditions. In our work,
we aim to reconstruct realistic and faithful stimuli images
despite the presence of both inaccurate semantic and visual
conditions.

3. Methodology
Given fMRI voxels Vx ∈ Rd collected from subject x view-
ing a stimulus image I ∈ Rh×w×3, our goal is to develop a
model that reconstructs the visual stimulus image Î from

Vx, independent of the specific subject. We follow the
pipeline [25, 35, 42, 43] that map fMRI voxels to the repre-
sentations of an image, and decode the representations using
a pre-trained diffusion model. Our framework improves the
reconstruction fidelity by improving the precision of mapped
representations in the first stage, and the tolerance to inac-
curate representations in next decoding stage. Inspired by
DREAM [43], we divide a natural image into three represen-
tations: semantic embedding S for high-level information,
edge map E for structure, and color palette C for low-level
appearance. The overview of our method is shown in Fig. 2,
we first introduce a bidirectional mapping between fMRI
voxels and semantic/visual representations, and then intro-
duce two modules that handle inaccurate representations.
Finally, the stimulus image is reconstructed with ControlNet
and SD.

3.1. Bidirectional Autoencoder Intertwining

We first predict three representations from fMRI voxels us-
ing the bidirectional autoencoder intertwining framework,
which supports bidirectional mapping by intertwining trans-
formations in both directions. In contrast to the widely used
unidirectional mapping, bidirectional mapping encourages
the model to capture complex relationships between fMRI
voxels and image representations, resulting in more accurate
predictions. Additionally, it introduces unsupervised cycle
consistency between the two domains, providing additional
supervision [55]. Specifically, our framework consists of
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two autoencoders: one for fMRI voxels and one for image
representations. It supports both translation and reconstruc-
tion between the two domains. The reconstruction pipelines
are represented as Vx ⇒ Ṽx, and {S,E,C} ⇒ {S̃, Ẽ, C̃},
where {̃⋅} denotes the reconstructed results. The trans-
lation pipelines are represented as Vx ⇒ {Ŝ, Ê, Ĉ} and
{S,E,C} ⇒ V̂x, where {̂⋅} denotes the predicted results.

Reconstruction. Given fMRI voxels Vx from subject
x, they are encoded into a latent space shared across dif-
ferent subjects [42] by the fMRI encoder EV . Features in
this shared latent space are subject-invariant, meaning they
can be used not only for voxel reconstruction but also for
translation to image representations. The reconstruction is
performed by decoding the features with the decoder DV (⋅):

Ṽx = DV (EV (Vx)). (1)

Xx

+×
Y

MLPwx

MLPbx

Normlize

Figure 3. Structure of SBMM.

To obtain subject-invariant
features, we reduce subjec-
tive bias in Vx by introduc-
ing a Subject Bias Modulation
Module (SBMM) within the
fMRI encoder for each sub-
ject. As shown in Fig. 3, the
SBMM consists of multiple
Multi-Layer Perceptrons (MLPs) that modulate the mean
and variance of each subject’s fMRI features. Let Xx de-
notes the input feature of the SBMM. The SBMM uses two
MLPs to predict the statistical characteristics of each subject,
which are then used to modulate the normalized input. The
operation in SBMM can be represented as:

Y =MLPW
x (Xx)(

Xx − µ(Xx)
σ(Xx)

) +MLPB
x (Xx), (2)

where Y denotes the output of the SBMM,MLPW
x (⋅) repre-

sents the MLP for modulating the variance of the input, and
MLPB

x (⋅) is the MLP for mean modulation. This module
effectively reduces subject-specific bias. With this module,
the framework can be efficiently adapted to new subjects
by training only the SBMM for the novel subject. More
discussion about this module can be seen in Sec. 4.4.

The decoder DV (⋅) has a mirrored structure to the en-
coder and is also integrated with SBMM, enabling it to
decode subject-invariant features back into subject-specific
fMRI voxels. We define an L2 distance between the input
and reconstructed fMRI voxels for reconstruction:

LRec
V = ∥Ṽx − Vx∥2. (3)

Similarly, the autoencoder for representations receives the
three representations simultaneously. Each representation is
processed with a specific encoding head, and the resulting
features are concatenated. The concatenated feature is then
decoded into reconstructed representations using distinct

decoding heads. Note that SBMM is not applied in this
autoencoder, as the representations are subject-invariant. The
reconstruction pipeline for representations is represented as:

S̃, Ẽ, C̃ = DR(ER(S,E,C)), (4)

where ER(⋅), DR(⋅) denote the encoder and decoder for
representations respectively, and S̃,Ẽ,C̃ denote the recon-
structed representations respectively. This autoencoder is
trained with reconstruction loss of three representations:

LRec
E = BCE(Ẽ,E), LRec

C = ∥C̃ −C∥2, (5)

LRec
S = 1 − cos(S̃, S) + ∥S̃ − S∥2, (6)

where LRec
E , LRec

C , and LRec
S denote the reconstruction loss

for edge map, color palette, and semantic embedding re-
spectively. cos(⋅, ⋅) calculates the cosine similarity of two
inputs, and BCE(⋅, ⋅) is the binary cross-entropy loss.

Bidirectional Mapping. The BAI framework supports
flexible bidirectional translation by simply swapping the de-
coders. As illustrated by the red lines in Fig. 2, the translation
from fMRI voxels to representations is performed by learn-
ing an MLP, MLPV⇒R(⋅), that maps the encoded fMRI
features to representation features, which are then decoded
using DR:

Ŝ, Ê, Ĉ = DR(MLPV⇒R(EV (Vx))). (7)

On the other hand, we can also mimic the human visual
system by mapping the representations to the correspond-
ing fMRI voxels using another MLP,MLPR⇒V (⋅), which
maps representations features to the fMRI feature:

V̂x = DV (MLPR⇒V (ER(S,E,C))). (8)

The translation pipeline is trained using fMRI-representation
pairs. Similar to the reconstruction pipeline, the translation
losses for fMRI voxels and the three representations are
denoted as LTr

V , LTr
S , LTr

E , and LTr
C , respectively.

Moreover, our bidirectional mapping framework intro-
duces cycle consistency through cyclic mapping. Specifi-
cally, we map the real representations to fMRI voxels using
Eq. 8, and then reconstruct the representations back from
the mapped voxels using Eq. 7: {S,E,C} ⇒ V̂x, V̂x ⇒
{ ˆ̂S, ˆ̂E, ˆ̂C},, where {̂̂⋅} denotes the cyclic reconstructed re-
sults. The cycle consistency loss for the three representations
is computed by minimizing the distance between the input
and cyclically reconstructed representations:

LCyc
K = ∥K − ˆ̂K∥22, K ∈ {S,E,C,V }. (9)

Similarly, we can achieve cycle reconstruction for fMRI
voxels with Vx ⇒ {Ŝ, Ê, Ĉ},{Ŝ, Ê, Ĉ} ⇒ ˆ̂Vx. The BAI
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Figure 4. “Direct Decod.” denotes the decodes the predicted rep-
resentations using diffusion models directly, which loses realism
and fidelity. While using our decoded results are more faithful with
stimulus GT.

framework is trained with the combined losses:

L = λ1LRec
S + LRec

E + LRec
C + LRec

V
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Reconstruction

+λ2LTr
S + LTr

E + LTr
C + LTr

V
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Translation

+λ3LCyc
S + LCyc

E + LCyc
C + LCyc

V
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Cycle-Consistency

,

(10)
where λs denote the balance factors, and we set λ1 = 1, λ2

= 1, and λ3 = 0.5 empirically.

3.2. Reconstruction from Inaccurate Representa-
tions

The BAI maps fMRI voxels to image representations. A
common solution for mind decoding involves using Con-
trolNet [51] or T2I-adapter [23], which controls the output
using these representations [43]. In this case, let Fi denote
the feature of the i-th layer of the decoder DUNet in the diffu-
sion model’s UNet, and the control process is performed by
adding the representation features directly to Fi:

Fi+1 = DUNet
i (Fi + Êi + Ĉi, Ŝ), (11)

where Êi and Ĉi represent edge and color features obtained
from Ê and Ĉ, respectively.

However, this operation requires extremely precise rep-
resentations for accurate reconstruction, and the predicted
representations often do not meet the strict requirements.
As shown in Fig. 4c, decoding the predicted representations
using diffusion models directly suffers from low fidelity due
to inaccuracies. To mitigate this, we introduce two modules:
the Semantic Refinement Module (SRM) and the Visual Co-
herence Module (VCM), which respectively handle errors in
semantic and visual representations.

The Semantic Refinement Module (SRM) refines impre-
cise semantic representations. It is a transformer-based struc-
ture (see in Fig. 5a), trained by minimizing the distance
between its output and the ground truth semantic embed-
dings:

LSRM = 1 − cos(SRM(S̃), S) + ∥SRM(S̃) − S∥2, (12)

…

Self
Attn

Cross
 Attn

…

Ŝ MLP

(a) Semantic Refinement Module

+VCM

Ci

αe

αic

⊙

⊙

iEî

^

(b) Visual Coherence Module

Figure 5. Detailed structure of our SRM and VCM.

while this module use the similarly losses in training of BAI,
this module tolerates imprecise semantic representations,
thereby improving the fidelity during decoding stage.

We introduce VCM that harmonizes the imprecise visual
representation features to original diffusion features. As
indicated by [20], the weights of different features control
the influence of visual conditions to the output image, our
VCM is designed for predicting the weights that cohere dif-
ferent features. The structure of VCM is shown in Fig. 5b,
it takes the concatenation of three features as input and pro-
duces two weights αe and αc with the same spatial size of
representations:

αe
i , α

c
i = VCM(concat(Fi, Êi, Ĉi)), (13)

where concat(⋅) is the concatenate operation. The control-
ling process can be rewritten as:

Fi+1 = DUNet
i (Fi + αe

i ⊙ Êi + αc
i ⊙ Ĉi, Ŝ), (14)

and the VCM is trained with:

LVCM = ∥ϵ − ϵθ(zt, t,SRM(S̃), C̃, Ẽ)∥22. (15)

Finally, the stimuli image Ĩ can be reconstructed faithfully
from imprecise representations with DDIM sampler [38].

4. Experiments
4.1. Experimental Settings
Dataset. We follow previous works [8, 28, 40, 42, 43] that
conduct experiments on the largest mind decoding dataset,
the Natural Scenes Dataset (NSD)[1]. NSD comprises 7-
Tesla fMRI scans collected from eight subjects as they
viewed thousands of stimulus images from the MS-COCO
dataset[18]. Following prior studies [8, 40, 42], we use data
from four subjects (Subj01, Subj02, Subj05, and Subj07)
in our experiments. Each subject’s training set consists of
8,859 fMRI-stimuli-caption pairs, while the test set includes
982 images viewed by all four subjects. The Regions of
Interest (ROIs) in fMRI signals vary in size across subjects.
To standardize these variations, we adopt the adaptive max
pooling function used in MindBridge [42], which resizes the
ROI representations to a fixed dimension of 8,192. We obtain
semantic embeddings by encoding the image captions with
the CLIP text encoder [29]. Additionally, edge maps are ex-
tracted from stimulus images using PidiNet [39]. To obtain
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Table 1. Qualitative comparisons with related works on NSD dataset. All metrics are calculated as the average across 4 subjects.

Method Cross
Subject?

Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

MindReader [17] - - - - 78.2% - - -
Takagi et al. [40] - - 83.0% 83.0% 76.0% 77.0% – –

BrainDiffuser [25] .254 .356 94.2% 96.2% 87.2% 91.5% .775 .423
MindEye1 [35] .309 .323 94.7% 97.8% 93.8% 94.1% .645 .367

Gu et al. [8] .150 .325 - - - - .862 .465
MindVis [5] .080 .220 72.1% 83.2% 78.8% 76.2% .854 .491

DREAM [43] .288 .338 95.0% 97.5% 94.8% 95.2% .638 .413
MindBridge [42] .151 .263 87.7% 95.5% 92.4% 94.7% .712 .418
MindEye2 [36]† .207 .350 91.6% 96.4% 89.4% 83.6% .728 .423

NeuroPictor [10] .229 .375 96% 98.4% 94.5% 93.3% .639 .350
UMBRAE [44] .283 .341 95.5% 97.0% 91.7% 93.5% .700 .393

Psychometry [28] .297 .340 96.4% 98.6% 95.8% 96.8% .628 .345
Ours .318 .356 97.3% 98.8% 96.7% 97.5% .639 .345

† The result reported in original paper [36] is trained on 8 subjects, we re-train their model on 4 subjects using the official code for fair comparison.

color palettes, we follow the approach in T2I-Adapter [23],
applying a 64× downsampling and subsequent upsampling
to the original resolution.

Evaluation Metrics. Following existing works [25, 35,
36, 42], we use 8 evaluation metrics for the quantitative
comparison from low and high levels. The low-level metrics
include PixCorr, SSIM, AlexNet(2), and AlexNet(5), and
the high-level metrics include Inception, CLIP, EffNet-B,
and SwAV. For a detailed introduction to the metrics, please
refer to the supplementary materials.

4.2. Implementation Details
We implement the proposed framework in PyTorch with
Nvidia GeForce A100. The BAI framework is trained using
the AdamW optimizer [16] with a learning rate of 1e-4.
The batch size is set to 192 and we train for 1,000 epochs.
The SRM and VCM require inaccurate representations for
training, but the training set of NSD fits well with the trained
BAI model, and their predicted representations contain fewer
errors. To obtain the imprecise representations, we first
generate 10,000 images using SD with random prompts
generated using a Large Language Model (LLM), and then
extract their representations as described in Sec. 4.1. We then
reconstruct these representations with BAI’s reconstruction
pipelines, obtaining pseudo-imprecise representation-image
pairs for training two modules. They are trained together
with the AdamW optimizer [16] and a learning rate of 1e-4.
We use Stable Diffusion V1.5 as our text-guided diffusion
model, setting the inference steps in the DDIM sampler to
20. Two ControlNets are pre-trained on edge maps and color
palettes respectively. For the structural details of the BAI,
SRM, and VCM, please refer to the supplementary materials.

4.3. Comparison on Mind decoding
We present the quantitative comparisons with the state-of-
the-art methods in Tab. 1. We can see that our method

outperforms most of works on both low-level and high-level
metrics. Especially, our method achieves higher values on
PixCorr and SSIM metrics, which indicates that our decoded
images are more similar to the stimulus images in struc-
ture and appearance. By predicting semantic knowledge
through bidirectional mapping and refining it with SRM, our
framework effectively decodes semantic information. As a
result, our method receives the highest CLIP value among
all methods. Moreover, our single cross-subject framework
outperforms subject-specific frameworks on all metrics. By
learning the bidirectional mapping with SBMM, our frame-
work learns robust representation features that are agnostic
to different subjects.

The qualitative comparison with other works can be seen
in Fig. 1 and Fig. 6. We can observe that Takagi et al.’s
method cannot reconstruct plausible images. By learning
mappings to the versatile diffusion representation space [46],
other methods reconstruct realistic images but fail to achieve
semantic and visual consistency with the stimulus images.
For example, none of them successfully reconstruct “Pizza”
in the 1st sample of Fig. 6, and they also fail to reconstruct

“Cat” in the 2nd sample. In contrast, our method captures the
semantic information from fMRI voxels and reconstructs it
correctly. Furthermore, our method also successfully cap-
tures the layouts of “Bathroom”, which is contributed by
our edge representation prediction, capturing the structural
information hidden in the fMRI voxels. Finally, our method
successfully reconstructs the stimulus image color patterns,
such as the color of the “Bird”, “Train”, and “Horse”,
while none of the other methods recover the color of the

“Train” successfully. This demonstrates the effectiveness of
our color palette prediction. Unlike those versatile diffusion-
based methods that map the fMRI voxels to CLIP visual
embeddings, we disentangle the structure and appearance
into edge and color palettes, together with SRM and VCM,
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Takagi et al. [40] BrainDiffuser [25] MindEye1 [35] MindBridge [42] MindEye2 [36] Neuropictor [10] Ours Stimulus

Figure 6. Qualitative comparison with competitors on mind decoding. Our reconstructed images are consistency with the stimulus images on
semantic, structure, and appearance.

achieving a more faithful reconstruction.

4.4. Adaptation on New Subject

Our framework can be easily adapted to new subjects with
few novel samples, which is valuable for real practice for
reducing the number of fMRI-stimuli pairs. To simulate the
scenarios of limited data, we follow MindBridge [42] that
first trains the framework on three subjects (Subj01, 02, and
05), and adapts to the new subject (Subj07). Particularly,
we only train the SBMM for the new subject while keeping
the parameters in the other parameters fixed. We set 500,
and 1,500 novel samples to adaptation. We also train a
model from a sketch on a new subject with limited data. The
adaptation results can be seen in Tab. 2. We can see that with
the increasing number of data samples, our method boosts its
performance both for the adapted version and training from
the sketch version. Our adapted results outperform the model
trained from sketch, which demonstrates the effectiveness of
our framework on new subject adaptation. Additionally, our

framework outperforms MindBridge in most metrics. The
framework learns subject-irrelevant mappings between fMRI
and representation spaces with SBMM, making it robust and
flexible to new subjects.

4.5. Ablation Studies

In this section, we conduct ablation experiments to analyze
our framework. We first analyze the effectiveness of our
bidirectional mapping by proposing a Unidirectional Map-
ping (UM) from fMRI voxels to representations. In this
variant, we remove the decoder of fMRI Ev, the encoder of
representations Dv, and the MLPMLPR⇒V (⋅) that maps
the representation features to the fMRI features. This variant
is trained exclusively using translation losses LTr

V , LTr
S , and

LTr
E . To evaluate the effectiveness of SBMM on cross-subject

decoding, we propose the variant w/o SBMM, by removing
this module. Moreover, to demonstrate the influence of inac-
curate representation predictions, we introduce the variant
Direct Addition, by removing the SRM and VCM. In this
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Table 2. Qualitative comparisons on new subject adaptation under various data limitation scenarios.

Method # Samples Adap-
tation?

Low-Level High-Level
PixCorr ↑ SSIM ↑ AlexNet(2) ↑ AlexNet(5) ↑ Incep ↑ CLIP ↑ EffNet-B ↓ SwAV ↓

MindBridge 500 .079 .171 73.5% 83.3% 74.4% 80.1% .894 .587
MindBridge 500 .112 .229 79.6% 85.0% 82.3% 86.7% .840 .521

Ours 500 .083 .213 74.2% 85.2% 76.2% 84.3% .855 .572
Ours 500 .145 .234 82.1% 88.1% 85.4% 89.1% .821 .503

MindBridge 1,500 .107 .206 79.4% 90.0% 82.4% 87.2% .844 .523
MindBridge 1,500 .140 .250 84.6% 92.6% 85.8% 91.0% .796 .485

Ours 1,500 .134 .242 82.1% 91.2% 83.4% 88.9% .822 .513
Ours 1,500 .152 .267 85.2% 92.3% 86.1% 92.1% .814 .491

Table 3. Qualitative comparisons with variants on NSD dataset. All metrics are calculated as the average across 4 subjects.

Method Cross
Subject?

Low-Level High-Level
PixCorr ↑ SSIM ↑AlexNet(2) ↑AlexNet(5) ↑ Incep ↑CLIP ↑ EffNet-B ↓ SwAV ↓

UM .281 .301 92.0% 93.4% 93.0% 90.3% .719 .436
w/o SBMM .266 .274 83.7% 91.9% 89.6% 87.2% .751 .460

Direct Addition .228 .259 83.1% 89.8% 87.2% 89.8% .765 .477
Direct Addition + SRM .252 .281 89.7% 94.2% 94.2% 95.7% .671 .374
Direct Addition + VCM .298 .287 94.4% 96.0% 92.1% 91.7% .714 .391

Our-SS .321 .341 97.5% 98.9% 96.5% 97.1% .637 .355
Our .318 .356 97.3% 98.8% 96.7% 97.5% .639 .345

variant, we feed the predicted representations to ControlNet
directly and fuse the two conditional features by simple addi-
tion using Eq. 11. To demonstrate the effectiveness of each
module, we also propose variants Direct Addition + SRM
and Direct Addition + VCM, by adding a specific module on
Direct Addition. Finally, we train subject-specific models of
our framework (Ours-SS) for each subject.

The quantitative comparison of various variants can be
seen in Tab. 3. We can see that variant UM performs worse
than the final framework, as UM learns the unidirectional
mapping from fMRI voxels to representations, leading to
inaccurate predicted representations. Although our SRM and
VCM modules further reduce the need for accurate represen-
tations, images reconstructed by UM still suffer from low
fidelity. The variant w/o SBMM performs much worse than
our final framework, which demonstrates its effectiveness
on cross-subject mind decoding. Without this module, the
framework cannot learn informative representations from
multiple subjects due to individual differences. Variant Di-
rect Addition gets the worst on all metrics, which evidences
the necessity of tolerating inaccurate representations in the
second decoding stage. As discussed in Sec. 3.2, it requires
accurate representations for fidelity reconstruction, and any
inaccurate representations will mislead the reconstruction
process. In contrast, our two proposed modules, SRM and
VCM, improve the quality of the reconstruction from seman-
tic and visual perspectives. Adding SRM to Direct Addition
increases semantic-related performances, such as the CLIP
score. Compared to Direct Addition, variant Direct Addition
+ VCM improves the low-level metrics effectively. Finally,
our cross-subject variant achieves similar performance to

the Ours-SS, demonstrating the effectiveness of our frame-
work in capturing subject-irrelevant representations. The
qualitative comparison of various variants can be seen in the
supplementary.

5. Conclusion

In this paper, we introduce a cross-subject mind decoding
framework that reconstructs stimulus images from fMRI
voxels. We leverage the bidirectional mappings between
fMRI voxels and semantic/visual representations. Combined
with the subject bias modulation module, our method ef-
fectively captures complex relationships between these two
domains across different subjects. To further improve the
fidelity of decoded images, we propose semantic refinement
and visual coherence modules. These modules reduce the
dependency on highly precise image representations in the
decoding stage. Extensive evaluations of the NSD dataset
demonstrate that our framework outperforms prior methods
in mind decoding and can be easily adapted to new subjects
with minimal additional data.
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