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Abstract

Diffusion models (DMs) have demonstrated remarkable
success in real-world image super-resolution (SR), yet their
reliance on time-consuming multi-step sampling largely
hinders their practical applications. While recent efforts
have introduced few- or single-step solutions, existing meth-
ods either inefficiently model the process from noisy input or
fail to fully exploit iterative generative priors, compromis-
ing the fidelity and quality of the reconstructed images. To
address this issue, we propose FlowSR, a novel approach
that reformulates the SR problem as a rectified flow from
low-resolution (LR) to high-resolution (HR) images. Our
method leverages an improved consistency learning strat-
egy to enable high-quality SR in a single step. Specifically,
we refine the original consistency distillation process by in-
corporating HR regularization, ensuring that the learned
SR flow not only enforces self-consistency but also con-
verges precisely to the ground-truth HR target. Further-
more, we introduce a fast-slow scheduling strategy, where
adjacent timesteps for consistency learning are sampled
from two distinct schedulers: a fast scheduler with fewer
timesteps to improve efficiency, and a slow scheduler with
more timesteps to capture fine-grained texture details. Ex-
tensive experiments demonstrate that FlowSR achieves out-
standing performance in both efficiency and image quality.

1. Introduction

Real-world image super-resolution (SR) aims to reconstruct
high-resolution (HR) images from their low-resolution
(LR) counterparts while simultaneously removing unknown
degradations. With the remarkable success of diffusion
models (DMs) [10, 37], SR methods leveraging these
models—particularly those built on powerful text-to-image
(T2I) models like Stable Diffusion (SD) [31]—have demon-
strated outstanding performance [42, 49, 58]. However,
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Figure 1. Our consistency SR flow model achieves high-quality
single-step inference (distilled, 1-step) by distilling from multi-
step higher-quality sampling process (top). We achieve this by
formulating SR as a rectified flow that bridges LR and HR images,
combined with improved consistency learning (bottom).

these diffusion-based SR approaches require an iterative re-
verse sampling process that gradually refines noisy inputs
into HR outputs. Despite advancements such as efficient or-
dinary differential equation (ODE) solvers like DDIM [36],
the slow inference speed remains a bottleneck, limiting their
practicality in real-world applications.

Recently, few-step or single-step SR methods derived
from diffusion models are designed [3, 45, 48, 59, 61]. Sev-
eral studies focus on designing more efficient diffusion pro-
cesses for SR. ResShift [59] speeds up diffusion by shift-
ing the LR–HR residual into the Markov chain and re-
duces sampling to 15 steps, while DoSSR [3] introduces a
diffusion process more compatible with pre-trained DMs.
However, they rely on DDPM [10], which uses a more
curved transition trajectory and starts with a noise-perturbed
LR image that loses crucial information, ultimately lim-
iting performance. In parallel, another line of work tar-
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gets single-step SR by learning the LR–HR mapping di-
rectly. For example, SinSR [45] learns one-step SR predic-
tion by leveraging the teacher’s output from ResShift [59]
and ground-truth HR as target, whereas OSEDiff adapts
pre-trained SD for SR and refines one-step prediction with
the VSD loss [46]. However, these methods fail to fully har-
ness the advantages of iterative generative modeling, which
naturally facilitates high-quality texture synthesis.

In this work, we present FlowSR, which unifies recti-
fied flow with consistency models (CMs) to enable efficient,
single-step image super-resolution. As illustrated in Fig. 1,
we reformulate SR as a rectified flow [21], which estab-
lishes a simple and straight ODE-based mapping between
LR and HR images. By explicitly modeling this trajec-
tory, FlowSR learns fine-grained LR-to-HR transformations
for better SR quality and facilitates fast sampling. Build-
ing upon this formulation, we further leverage consistency
models [38] to enhance single-step inference. Enforcing
consistency across points on the same SR flow trajectory
distills multi-step higher-quality restoration into fewer steps
that reach to the same HR result.

However, the naive consistency distillation (CD) objec-
tive in CMs is suboptimal for SR flow, where the SR task
demands both high quality and high fidelity. While CD
enforces self-consistency across discretization steps, there
is no guarantee that the final distillation target aligns well
with the ground-truth HR. To address this, we propose HR-
regularized consistency learning, which explicitly requires
the model’s predictions to match real HR images. This ad-
ditional constraint mitigates teacher-induced errors in the
distillation target and enhances the reconstruction of fine-
grained details. To further improve efficiency and robust-
ness of the consistency SR flow model, we introduce a fast-
slow time scheduling strategy. Rather than sampling dis-
tillation timestep pairs from the two boundaries of a dis-
cretized interval, we sample adjacent timesteps from dis-
tinct “fast” and “slow” schedulers. The fast scheduler uses
fewer timesteps to facilitate efficient inference, while the
slow scheduler employs more granular steps to maintain
alignment with the SR flow objectives. This mixed sam-
pling introduces large and flexible jumps with mild per-
turbations into the HR regularization steps, allowing for a
broader coverage of SR flow trajectories.

To train our consistency SR flow model, we first fine-
tune a pre-trained SD model to align with the SR flow ob-
jective, followed by consistency SR flow distillation. Ad-
ditionally, we incorporate a GAN [7] loss and an image
quality alignment loss, with the latter promoting desirable
text-described attributes in the restored images, thereby im-
proving the SR quality.

As illustrated in Fig. 1, our model leverages the pro-
posed consistency SR flow distillation to transfer the qual-
ity improvement typically achieved with multiple sampling

steps into a single step. Experiments on real-world datasets
demonstrate the superiority of FlowSR. Our core contribu-
tion lie in a new paradigm to solve the one-step SR problem.
First, we explore efficient flow modeling for SR and identify
potential challenges when incorporating consistency mod-
els. Second, we introduce several techniques, including HR
regularization in consistency learning and a fast-slow time
scheduling to enhance one-step SR performance.

2. Related Work
2.1. Image Super-Resolution
Real-world image super-resolution (SR) aims to reconstruct
high-resolution (HR) images from low-resolution (LR) in-
puts, tackling complex and unknown degradations like
noise, blur, and compression artifacts. Since Dong et al.
[5], numerous deep learning-based methods have been pro-
posed to address the SR problem from different perspec-
tives, including network design [18], model training [15],
and degradation simulation [28, 44, 62]. Recently, diffu-
sion models [10, 37] have achieved remarkable success in
image generation [30, 31], which inspires their application
to SR and demonstrate significant advancements [32, 42].

Diffusion Model-Based SR Conditioned on the LR im-
age, diffusion model-based SR iteratively denoises towards
the target HR image. The LR condition can be leveraged
either by input concatenation [32] or via adapters [26, 63].
StableSR [42] based on Stable Diffusion [31], uses a train-
able time-aware encoder to incorporates LR. Subsequent
improvements are achieved through enhanced LR condi-
tioning in DiffBIR [19], semantics-aware prompts in SeeSR
[49], reference image generation in CoSeR [39], and scaled-
up training in SUPIR [58]. However, these DM-based SR
approaches, starting from noise, suffer from low inference
speed, typically requiring 50-200 sampling steps. In con-
trast, ResShift [59] constructs an efficient diffusion model
by shifting the residual between HR and LR. Denoising
from the noised LR reduces the sampling steps to 15 but
it still suffers from limited restoration quality.

Single-Step / Few-Step Image SR Fast diffusion model-
based SR methods require only one or a few sampling steps
during inference, typically achieved through knowledge
distillation [23] or adversarial training [15, 50]. SinSR [45]
derives a deterministic sampling process for ResShift and
reduces its number of sampling steps to one using dis-
tillation. OSEDiff [48] applies variational score distilla-
tion [46, 57] to enhance one-step restoration quality by min-
imizing the KL-divergence between the distribution of its
generated outputs and that of the pre-trained T2I model.
AddSR [51] achieves 4-step inference by tailoring adver-
sarial diffusion distillation [34] for SR. Similarly, other re-
cent methods, accelerate the inference by using distillation
[6, 8, 27] or GAN [2, 16, 60, 61]. On the other hand, more
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Figure 2. Overview of the training process. The consistency SR flow distills multi-step, high-quality SR capability into single-step
inference, while HR regularization ensures the model converges to the high-resolution target. Times t, t′ are sampled alternately from fast
and slow schedulers. Note that the flow loss Lflow and the consistency loss Lhrcd are computed for different samples within each batch.

efficient SR diffusion processes are constructed using do-
main shift [3] or flow matching [35], which allow few-step
sampling. Yet, they still suffer from inefficient modeling
designs and suboptimal performance.

2.2. Consistency Models
Consistency Models (CMs) [38] learn to map any point on
the ODE trajectory to its origin, which enable single-step
generation and allow trade-offs between quality and com-
putation through multi-step sampling. CMs can be imple-
mented for modern T2I models in latent space [24]. Con-
sistency Trajectory Models (CTMs) [14] mitigate the multi-
step sampling issues in CMs by learning an any-to-any map-
ping from initial points to final points on the ODE trajec-
tory. The Phased Consistency Model [40] partitions the en-
tire ODE trajectory into multiple sub-trajectory phases and
ensures consistency within each phase, while PeRFlow [52]
straightens the sub-trajectories using the Reflow [22] opera-
tion. Additionally, Consistency Flow Matching [53] further
enforces velocity field consistency.

3. Preliminaries
3.1. Rectified Flow
Rectified flow [21] is an ODE-based generative model that
constructs a simple, straight trajectory to transform sam-
ples between two distributions: π0 (e.g., data) and π1 (e.g.,
noise). Rectified flow defines a linear interpolation path be-
tween observed samples X0 ∼ π0 and X1 ∼ π1 as: Xt =
tX1+(1−t)X0 with time t ∈ [0, 1]. The core idea is to learn
a velocity field vθ(Xt, t), parameterized by a neural net-
work with weights θ, that matches the derivative of this tra-
jectory. This is achieved by optimizing the following objec-
tive: min

θ

∫ 1

0
EX0∼π0,X1∼π1

[∥vθ(Xt, t)− (X1 −X0)∥2]dt,
which encourages the learned velocity field to align with

the direction of the straight path X1 − X0. Once trained,
samples from π1 can be transformed into π0 by solving the
ODE: dXt = vθ(Xt, t)dt, X1 ∼ π1. A key advantage of
rectified flow lies in its straight trajectories. By design, the
optimal velocity field corresponds to a constant-speed flow
between X0 and X1, enabling efficient and stable sampling
with only a few ODE steps.

3.2. Consistency Models

Consistency models [38] are a class of generative models
that enable high-quality sample generation with few compu-
tational steps. These models learn to map any point (Xt, t)
along a probability flow ODE trajectory directly to its ori-
gin Xϵ, where ϵ is a fixed small positive number denoting
the trajectory’s start. This capability is formalized through
the self-consistency property: for any pair of points (Xt, t)
and (Xt′ , t

′) on the same ODE trajectory, the model fθ(·, t)
is trained to satisfy: fθ(Xt, t) = fθ(X

′
t, t

′) = Xϵ for all
t, t′ ∈ [ϵ, 1]. To ensure consistency during training, the
boundary condition fθ(Xϵ, ϵ) = Xϵ is enforced. Consis-
tency models eliminate trajectory drift by mapping all inter-
mediate states to a consistent origin, avoiding errors from it-
erative denoising steps. This enables them to generate high-
fidelity samples even with large step sizes, such as directly
mapping from t = 1 to the origin in a single step.

4. Methodology

We leverage the generative capability of rectified flow for
high-quality SR and explore consistency models to enable
fast inference with fewer sampling steps (i.e., one step),
without compromising quality. We define a rectified flow,
termed SR flow, for image super-resolution in Sec. 4.1. We
then introduce the improved consistency SR flow learning
method in Sec. 4.2 and detail the training in Sec. 4.3.
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4.1. Rectified Flow for SR
SR Flow We consider Rectified Flow naturally aligns
with image super-resolution, where high-resolution (HR)
images XHR ∼ π0 and their low-resolution (LR) coun-
terparts XLR ∼ π1. We define the forward process as a
straight path via a linear interpolation between them:

Xt = (1− t)XHR + tXLR, (1)

here time t ∈ [0, 1] with t = 0 corresponding to XHR ∈
EH×W×3 and t = 1 corresponding to XLR ∈ EH×W×3,
where XLR is upscaled to match the spatial dimensions of
XHR. The learning objective of the SR neural network vθ is
to regress the conditional vector fields [20, 21] by following
the direction XLR −XHR:

Et,Xt∥vθ(Xt, t)− (XLR −XHR)∥22. (2)

Intuitively, this SR flow establishes a smooth transition
between HR and LR. During training, the SR flow model vθ
implicitly learns to invert degradations (e.g., blur, noise) and
recover high-frequency details through intermediate refine-
ments such as edge sharpening and texture synthesis. At in-
ference, HR images are reconstructed via reverse sampling
along the learned trajectory. Starting from XLR, we solve
the reverse ODE using numerical methods like Euler solver:
Xt′ = Xt + ∆t · vθ(Xt, t) from t = 1 to t = 0. Notably,
unlike diffusion-based SR methods that corrupt LR inputs
with noise [3, 35, 59], our transition process directly starts
from LR, which preserves most of the structural information
in the LR image, enabling stable and efficient sampling.
Faster Inference with SR Flow A key advantage of SR
flow is its flexibility in sampling steps. It supports faster in-
ference by reducing the number of sampling steps, requiring
as few as a single step that directly maps the LR image to its
corresponding HR output: X̂HR = XLR − 1 · vθ(XLR, 1).
This is more easily achievable than the noise-to-image map-
ping or initializing from noisy inputs in ResShift [59],
thanks to the strong correlation between LR and HR im-
ages. Additionally, SR flow also supports any number of
sampling steps and produces better visual quality when us-
ing iterative multi-step sampling, as illustrated in Fig. 1.

4.2. Consistency SR Flow
We enhance single-step super-resolution in SR flow models
by distilling multi-step sampling capability (e.g., four steps)
into one via consistency learning (Fig. 1). To ensure accu-
rate HR reconstruction, we incorporate the HR target ex-
plicitly into consistency learning. Additionally, a fast-slow
time sampling schedule is introduced to improve efficiency
and robustness. Fig. 2 shows the overall training process.
Consistency Distillation in SR Flow We start with con-
sistency distillation (CD) to distill the capability of a (pre-
trained) teacher SR flow model vϕ(X, t), enabling high-
quality SR in fewer inference steps. Given timesteps t and
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Figure 3. Illustration of HR-regularized consistency learning. Ap-
proximation errors may cause the distillation target X̂θ−

t→0 to de-
viate from the true high-quality HR target. HR regularization cor-
rects this by enforcing HR alignment under mild perturbations.

t′ = t +∆t (where ∆t > 0), we first sample Xt′ from the
forward degradation process (Eq. (1)). The teacher model
then estimates X̂ϕ

t from its degraded counterpart Xt′ :

X̂ϕ
t = Xt′ −∆t · vϕ(Xt′ , t

′), (3)

where Euler solver is used. The consistency function
fθ(Xt, t) for deriving the origin is defined by:

fθ(Xt, t) = Xt − t · vθ(Xt, t), (4)

which maps any degraded input Xt at timestep t to the
HR image domain. The consistency distillation in SR flow
learns a vector field vθ by minimizing the distance between
the prediction of the network X̂θ

t′→0 = fθ(Xt′ , t
′) and the

distillation target X̂θ−

t→0 = fθ−(X̂ϕ
t , t):

Lcd = E[d(fθ(Xt′ , t
′), fθ−(X̂ϕ

t , t))], (5)

where d(·, ·) is a distance metric, and θ− denotes the target
model parameters (e.g., exponential moving average (EMA)
of θ). This distillation loss enables the newly trained model,
fθ, to generate high-quality samples in a single step.
HR-Regularized Consistency Learning Although the
original CD objective theoretically ensures that all trajec-
tory points map to the same origin, it does not explicitly
restrict alignment between the generated samples and the
corresponding HR targets. This is because velocity field
approximation errors from the teacher model vϕ and the
target model vθ− can propagate into the distillation target
fθ−(X̂ϕ

t , t), as shown in Fig. 3.
To address this, we introduce an extra HR regulariza-

tion into Eq. (5), which directly enforces the student’s
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predictions X̂θ
t→0 = fθ(X̂

ϕ
t , t) (thus distillation target

fθ−(X̂ϕ
t , t)) to match the ground-truth HR images X0:

Lhrcd = E[d(fθ(Xt′ , t
′), fθ−(X̂ϕ

t , t))+d(fθ(X̂
ϕ
t , t), X0)].

(6)
By training with real HR targets, consistency learning

reduces reliance on the imperfect teacher and target model.
This dual consistency objective ensures that fθ maintains
both trajectory consistency and fidelity to HR data. Note
that the input (X̂ϕ

t , t) can be viewed as a perturbed ver-
sion of sampled (Xt, t) from the forward process in Eq. (1),
as visualized in Fig. 3. This perturbation resembles signal
noise and distribution shifts, thereby improving the robust-
ness of the trained model.

Fast-Slow Time Scheduling To further improve the ef-
ficiency and robustness of consistency learning, we pro-
pose sampling pairs of timesteps, t and t′, from two dis-
tinct time schedulers: a “fast” scheduler with relatively few
timesteps (e.g., 4) and a “slow” scheduler with more gran-
ular timesteps (e.g., 1000). The slow scheduler, a standard
practice for diffusion or flow models, provides fine-grained
learning signals to keep intermediate velocity field predic-
tions well-aligned with the SR flow objectives (Eq. (2)). In
contrast, the fast scheduler emphasizes larger jumps along
the trajectory, reflecting more desired one-step inference.

During training, we randomly select one scheduler (fast
or slow) to first sample t + ∆t, then sample t in its adja-
cent region from the other scheduler, and compute (X̂ϕ

t , t)
accordingly using Eq. (3), as illustrated in Fig. 3. This pro-
cedure allows flexible and larger jumps ∆t through the fast
sampler and relaxes the requirement for accurately estimat-
ing of Xt from Xt+∆t by running one discretization step
of a numerical ODE solver [38]. We hypothesize that in-
troducing mild perturbations and diversity to X̂ϕ

t , deviating
it from the sampled point Xt, enhances the SR model’s ro-
bustness and mitigates distribution shifts, particularly when
combined with HR regularization.

4.3. Training Consistency SR Flow
SR Flow in Image Space We use Stable Diffusion [31] as
the backbone for our SR model, comprising a VAE to map
images X into latent representations x, along with a UNet
θ adapted for velocity field learning. While the conditional
flow matching loss in Eq. (2) can be formulated in latent
space, our early experiments observed that such a latent-
space objective does not consistently maintain a favorable
balance between fidelity and visual quality over varying
numbers of inference steps (e.g., from one to four).

In practice, we find that loss in the image space is more
effective. Specifically, during SR flow training, we first pre-
dict the velocity prediction vθ(xt, t) in the latent space and
compute the HR latent representation x̂HR = fθ(xt, t) (see
Eq. (4)). Next, we decode x̂HR into the SR image X̂HR

using the VAE’s decoder. Last, we compare X̂HR to the
ground-truth HR image XHR using an l2 loss and a percep-
tual (LPIPS [64]) loss:

Lflow = ∥X̂HR −XHR∥22 + λp LPIPS(X̂HR, XHR), (7)

where λp = 2 is set to weight the LPIPS term.

Adversarial Loss We incorporate an adversarial GAN
objective to further enhance SR quality, particularly for tex-
ture synthesis. Specifically, a discriminator D is trained to
distinguish between real HR images and those restored by
our model. We use the pre-trained diffusion model as a
feature extractor in the latent space and attach several ad-
ditional discriminator heads, following [33, 40, 56]. The
hinge loss is adopted for training:

Ladv = E
[
max(0, 1−D(xHR)) + max(0, 1 +D(x̂HR))

]
.

(8)
Note that the input to D is the noised latent with diffusion
time t (omitted here for simplicity). The SR model is then
trained to minimize this adversarial objective.

Image Quality Alignment Loss To further align the SR
outputs with desirable image quality attributes (e.g., high-
resolution, sharp, detailed), we propose an image qual-
ity alignment loss based on a text-image contrastive loss.
Specifically, we use large vision-language models to gen-
erate a positive quality caption cpos (e.g., “image quality
is good, with clear details and vibrant colors”) from the
HR image and a negative quality caption cneg (e.g., ”image
quality is poor, blurry, and noisy”) from its LR counterpart.
We then encode these captions using the text encoder ET of
CLIP [29], while the SR result X̂ is encoded via CLIP’s im-
age encoder EI (ViT-L/14 is used). Image quality alignment
loss encourages X̂ to be close to cpos and far from cneg:

Liqa = −log
exp(sim(X̂, cpos))

exp(sim(X̂, cpos)) + exp(sim(X̂, cneg))
,

(9)
where sim(X, c) = cos(EI(X), ET (c)). Intuitively, this
loss implicitly guides the network to improve perceptual
fidelity and clarity by bridging the gap between human-
perceived “good” and “bad” image attributes.

Putting Things Together We first pre-train the SR flow
model using the basic conditional flow loss in Eq. (7). Then
we continue with the consistency SR flow training by fine-
tuning it. The overall loss function is defined as:

L = Lflow + λcdLhrcd + λadvLadv + λiqaLiqa, (10)

where λcd, λadv , and λiqa are hyperparameters.
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Table 1. Quantitative comparison with state-of-the-art DM-based SR methods on RealSR [1] and DRealSR [47]. The best and second-best
results are highlighted in bold and underlined.

Datasets Methods #Steps PSNR ↑ SSIM ↑ LPIPS ↓ DISTS ↓ FID ↓ NIQE ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
StableSR [42] 200 24.70 0.7085 0.3018 0.2288 128.51 5.91 65.78 0.6221 0.6178
DiffBIR [19] 50 24.75 0.6567 0.3636 0.2312 128.99 5.53 64.98 0.6246 0.6463
SeeSR [49] 50 25.18 0.7216 0.3009 0.2223 125.55 5.41 69.77 0.6442 0.6612
PASD [55] 20 25.21 0.6798 0.3380 0.2260 124.29 5.41 68.75 0.6487 0.6620

ResShift [59] 15 26.31 0.7421 0.3460 0.2498 141.71 7.26 58.43 0.5285 0.5444
SinSR [45] 1 26.28 0.7347 0.3188 0.2353 135.93 6.29 60.80 0.5385 0.6122

OSEDiff [48] 1 25.15 0.7341 0.2921 0.2128 123.49 5.65 69.09 0.6326 0.6693
DoSSR [3] 1 25.67 0.7387 0.3356 0.2741 153.25 11.19 62.69 0.5243 0.6259

RealSR

FlowSR 1 25.54 0.7434 0.2728 0.2013 112.60 5.28 69.22 0.6486 0.6701

StableSR [42] 200 28.03 0.7536 0.3284 0.2269 148.98 6.52 58.51 0.5601 0.6356
DiffBIR [19] 50 26.71 0.6571 0.4557 0.2748 166.79 6.31 61.07 0.5930 0.6395
SeeSR [49] 50 28.17 0.7691 0.3189 0.2315 147.39 6.40 64.93 0.6042 0.6804
PASD [55] 20 27.36 0.7073 0.3760 0.2531 156.13 5.55 64.87 0.6169 0.6808

ResShift [59] 15 28.46 0.7673 0.4006 0.2656 172.26 8.12 50.60 0.4586 0.5342
SinSR [45] 1 28.36 0.7515 0.3665 0.2485 170.57 6.99 55.33 0.4884 0.6383

OSEDiff [48] 1 27.92 0.7835 0.2968 0.2165 135.30 6.49 64.65 0.5899 0.6963
DoSSR [3] 1 28.55 0.7991 0.3353 0.2801 166.19 12.25 56.72 0.4623 0.5739

DRealSR

FlowSR 1 28.50 0.7859 0.2975 0.2115 130.30 6.13 65.46 0.6172 0.7074

5. Experiments
5.1. Experimental Settings
Implementation Details Our model is based on the pre-
trained SD 2.1-base [31]. During training, we fine-tune only
the U-Net using a LoRA [11] rank of 32. The learning rate
is set to 2e-5, with a training patch size of 512 × 512 and
a batch size of 16. The training process consists of two
stages: we firstly train the SR flow model for 10k iterations,
followed by consistency learning for an additional 20k iter-
ations. The loss weights λcd, λadv, λiqa are set to 0.1, 0.05,
and 0.1, respectively.

Data We train our model using LSDIR [17] and the first
10K face images from FFHQ [12]. The LR-HR training
pairs are synthesized using the degradation pipeline of Real-
ESRGAN [44]. To generate image quality captions for HR
and LR images, we use Qwen2-VL [43]. We adopt the real-
world test set of StableSR [42] for evaluation and compari-
son. The test sets include RealSR [1] and DRealSR [47].

Compared Methods We compare our method against
several state-of-the-art diffusion-based SR approaches, in-
cluding multi-step StableSR [42], DiffBIR [19], SeeSR
[49], PASD [55], ResShift [59], and one-step SinSR [45],
OSEDiff [48], and DoSSR [3].

Evaluation Metrics We evaluate our model using both
reference-based and no-reference metrics. For fidelity,
we report PSNR and SSIM (on the Y channel in YCbCr
space), and for perceptual quality, we use LPIPS [64] and
DISTS [4]. FID [9] is reported to compare the distribu-
tion of restored images with the ground truth. For no-
reference evaluation, we use NIQE [25], MUSIQ [13],
MANIQA [54], and CLIPIQA [41].

5.2. Comparison with State-of-the-Art Methods
Quantitative Comparisons Table 1 shows that our ap-
proach achieves superior or at least competitive perfor-
mance compared to recent state-of-the-art methods. Com-
pared with multi-step diffusion-based methods such as
SeeSR [49] and PASD [55], our FlowSR obtains equivalent
or better no-reference metrics, such as MUSIQ, MANIQA,
and CLIPIQA, and surpasses these methods in fidelity-
based scores, e.g. PSNR and LPIPS, while reducing infer-
ence to a single step. Compared to efficient diffusion-based
SR methods such as ResShift [59], our method demon-
strates a clear advantage. Against the strong DDPM-based
one-step competitor OSEDiff [48], FlowSR achieves supe-
rior performance across nearly all metrics. Overall, these
results demonstrate that our flow-based SR method effec-
tively balances fidelity and perceived quality while showing
superiority over compared methods.

Qualitative Comparisons Fig. 4 shows visual compar-
isons of two real-world examples. Multi-step DM-based
methods, such as DiffBIR and PASD, often generate rich
but inaccurate textures, while one-step methods like SinSR
and OSEDiff tend to produce blurry or less detailed results.
In contrast, our method generates faithful SR results, ef-
fectively recovering structures such as the stone breakwater
and the textures of the cloth.

5.3. Ablation Studies
Effects of SR Flow We first study the flow formulation
for image super-resolution. Our SR flow is a straight path
between π0 = XHR and π1 = XLR. We consider alterna-
tive formulations starting from noise, where π1 = N (0, 1),
as used in pre-trained T2I models, or starting from noised
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LR Image

HR StableSR (200) DiffBIR (50) SeeSR (50) PASD (20)

ResShift (15) SinSR (1) FlowSR (1)OSEDiff (1) DoSSR (1)

LR Image

HR StableSR (200) DiffBIR (50) SeeSR (50) PASD (20)

ResShift (15) SinSR (1) FlowSR (1)OSEDiff (1) DoSSR (1)

Figure 4. Visual comparisons of different SR methods on real-world examples. The number of sampling steps are indicated in parentheses.
Please zoom in for a better view.

LR Image Noise→HR (4) noised LR→HR (4) SR Flow (4)

Zoomed LR Noise→HR (1) noised LR→HR (1) SR Flow (1)

Figure 5. Ablation of SR flow. Our SR flow model produces more
accurate SR results with improved structure with more steps.

LR, where π1 = XLR + µϵ, with ϵ ∼ N (0, 1), as pro-
posed in ResShift [59]. For these alternatives, we concate-
nate Xt with XLR as the input to provide the LR condition.
The trained models are evaluated on the RealSR [1] and
DRealSR [47] datasets, as shown in Table 2. We observe
that with more inference steps, the image quality (MUSIQ)
generally improves, while the fidelity (PSNR) slightly de-
creases. Fig. 5 presents the visual comparisons, where our
SR flow model produces more accurate predictions, with
further structure and overall quality enhancement as addi-

Table 2. Ablation of SR flow. SR flow mapping LR to HR out-
performs alternative flow formulations that start from noise or
ResShift [59]-style noised LR on RealSR and DRealSR.

#Steps Method RealSR DRealSR

PSNR ↑ MUSIQ ↑ PSNR ↑ MUSIQ ↑

4
Noise→HR 23.83 66.01 26.75 62.76
noised LR→HR 24.47 65.15 27.74 61.76
SR Flow (ours) 25.00 68.09 27.98 65.05

1
Noise→HR 24.82 65.17 28.07 59.34
noised LR→HR 24.67 65.25 28.03 60.64
SR Flow (ours) 25.51 67.40 28.65 62.53

tional sampling steps (i.e., 4 steps) are applied. Notably,
these results demonstrate that the model trained using our
SR flow clearly outperforms other transition variants in both
single-step and multi-step inference settings.

Effects of consistency learning Next, we fine-tune the
pre-trained SR flow model using the consistency objective
described in Sec. 4.2. As shown in Table 3, enforcing self-
consistency Lcd across neighboring time steps stabilizes in-
termediate representations and often reduces LPIPS. How-
ever, when the teacher’s predictions deviate from the true
HR manifold, these errors may propagate to the student
model, leading to diminished IQA scores. We address this
by introducing the HR regularization term in Eq. (6), which
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LR Image SR Flow w/ Lcd w/ Lhrcd

Figure 6. Ablation of consistency learning. Our HR-regularized
consistency learning effectively reduces distortions in SR outputs
while producing high-quality and sharper results (zoom in).

Table 3. Ablation of consistency learning. Fine-tuned SR flow
models with consistency objectives are evaluated on DRealSR.

#Steps Method PSNR ↑ LPIPS ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑

4
SR Flow 27.98 0.2763 65.05 0.6296 0.6681
w/ Lcd 28.64 0.2654 61.82 0.6042 0.6180
w/ Lhrcd 28.44 0.2799 65.71 0.6374 0.6709

1

SR Flow 28.65 0.2821 62.53 0.5895 0.6545
w/ Lcd 28.59 0.2609 61.69 0.5949 0.6391
w/ Lhr 28.85 0.2805 62.46 0.5871 0.6589
w/ Lhrcd 28.62 0.2830 64.77 0.6156 0.6748

directly aligns student predictions fθ(X̂
ϕ
t , t) with real HR

images, mitigating the teacher’s approximation errors. This
extra ground-truth constraint helps the model recover fine
textural details, which boosts IQA metrics (e.g., MUSIQ
and MANIQA) while preserves perceptual fidelity. Consis-
tency learning enhances the robustness of flow-based infer-
ence by distilling multi-step capabilities into a single step,
allowing for faster sampling without sacrificing quality. Ad-
ditionally, HR regularization alone (w/ Lhr) provides min-
imal IQA gains. This highlights the importance of con-
sistency learning and its synergy with HR regularization
for acceleration in SR flow. Fig. 6 presents visual com-
parisons, showing that consistency learning helps resolve
distorted textures in the baseline SR flow model. Notably,
HR-regularized consistency learning generates more realis-
tic and sharper results compared to its baseline.

Analysis of Fast-Slow Time Sampling We evaluate the
effectiveness of fast-slow time sampling by comparing it
to the N -interval scheduler [38] and by varying the num-
ber of fast-scheduler timesteps, while fixing the slow sched-
uler fixed at 1000 timesteps. When the fast scheduler uses
only one timestep, we set t + ∆t = 1 and then sample
t from the slow scheduler (see Eq. (3)). As shown in Ta-
ble 4, increasing ∆t (thus reducing the number of intervals)
within a reasonable range improves IQA metrics. A plau-
sible explanation is that the slightly larger perturbations in-
troduced at intermediate predictions X̂ϕ

t from Xt encour-
age the model to be more robust to distribution shifts; see
Fig. 3. This, in turn, reduces variance in its estimates of

LR Image w/o Lhrcd w/o Ladv w/o Liqa Ours

Figure 7. Ablation of training loss.

Table 4. Ablation of fast-slow time sampling. We compare
our fast-slow sampling approach with the N -interval method on
DRealSR. The number of N and fast-scheduler timesteps are in-
dicated in parentheses.

Method PSNR ↑ LPIPS ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
N -Interval (50) 28.61 0.2807 62.48 0.5914 0.6599
N -Interval (18) 28.74 0.2792 62.90 0.5972 0.6605
N -Interval (4) 28.66 0.2818 63.03 0.5972 0.6617
Slow Only (1000) 28.78 0.2801 62.72 0.5916 0.6586
Fast-Slow (8) 28.54 0.2760 64.01 0.6098 0.6634
Fast-Slow (4) 28.62 0.2830 64.77 0.6156 0.6748
Fast-Slow (1) 28.79 0.2835 63.01 0.5948 0.6605

Table 5. Ablation of training loss on DRealSR.

Method PSNR ↑ LPIPS ↓ MUSIQ ↑ MANIQA ↑ CLIPIQA ↑
w/o Lhrcd 28.52 0.3013 64.42 0.6061 0.6954
w/o Ladv 28.45 0.2961 65.29 0.6154 0.7099
w/o Liqa 28.64 0.2958 64.83 0.6111 0.7012
Ours 28.50 0.2975 65.46 0.6172 0.7074

the ODE trajectory’s starting point, i.e., HR, resulting in
sharper restorations. Moreover, compared to the N -interval
strategy or slow-only scheduling, our fast-slow scheduler
further boosts IQA metrics while maintaining comparable
fidelity. This is because the slow scheduler ensures fine-
grained SR flow estimation, whereas the fast scheduler en-
ables efficient sampling. Based on these findings, we set the
fast scheduler to 4 timesteps throughout our experiments.

Influence of loss function In addition to flow and consis-
tency learning, we incorporate a GAN loss and an image
quality alignment loss to further enhance SR performance,
as detailed in Eq. (10). As demonstrated in Table 5 and
Fig. 7, these losses all improve no-reference metrics and vi-
sual quality. The ablation highlights that eliminating any of
these losses results in reduced SR quality, with consistency
learning contributing a substantial improvement.

6. Conclusion

This paper presents FlowSR, a new approach for efficient
one-step image super-resolution. FlowSR reformulates SR
as a rectified flow, leveraging the strengths of iterative gen-
erative modeling. To enable high-quality single-step infer-
ence, we incorporate consistency learning and devise HR
regularization to address its distillation target drifting is-
sue. Additionally, a fast-slow time scheduling strategy is
designed to enhance the efficiency and robustness of the
consistency SR flow model. FlowSR contributes to the ad-
vancement of efficient real-world SR applications.
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