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Abstract

We present a new method for reconstructing the appear-
ance properties of human faces from a lightweight capture
procedure in an unconstrained environment. Our method
recovers the surface geometry, diffuse albedo, specular in-
tensity and specular roughness from a monocular video
containing a simple head rotation in-the-wild. Notably, we
make no simplifying assumptions on the environment light-
ing, and we explicitly take visibility and occlusions into ac-
count. As a result, our method can produce facial appear-
ance maps that approach the fidelity of studio-based multi-
view captures, but with a far easier and cheaper procedure.

1. Introduction

3D facial scanning is a fundamental tool for the creation of
realistic digital humans in several industries like film and
video game entertainment, communication and telepres-
ence, medical applications, and the new trend of AI-driven
digital characters. For decades, practitioners have relied on
high-quality 3D face scans in order to bring people into vir-
tual worlds. Much of the technology evolution has focused
on reconstructing the surface geometry, where initial scan-
ners could create detailed triangle meshes in controlled stu-
dio settings with many cameras and lights, and then more
recent efforts focused on fast and lightweight face recon-
struction from monocular inputs in less-constrained, so-
called “in-the-wild” settings. While the facial geometry is
extremely important, the shape alone is not enough to re-
render the subject in novel environments with photorealis-
tic quality. For this task, we must additionally recover the
appearance properties of the face, which dictate how light
interacts with the skin surface. As such, in today’s high-end
facial scanning pipelines the desired result includes a high-
resolution facial surface mesh with corresponding appear-
ance textures for properties like the diffuse albedo, specu-
lar intensity and specular roughness, which are compatible
with modern skin shaders.

Like facial geometry reconstruction, the field of skin ap-
pearance estimation is also well-studied in controlled stu-
dio environments, where accurate appearance maps can be
reconstructed from large setups that obtain multi-view or
multi-shot images under calibrated lighting [55]. Follow-
ing the geometry trend, current research aims to allow fa-
cial appearance capture in less constrained settings, for ex-
ample outdoors using the sun as a single point light [62].
Unfortunately, these methods often make simplifying as-
sumptions, and thus there still exists a large gap in recon-
struction quality between current in-the-wild methods and
production-ready studio-based capture.

In this work we present a new method for facial appear-
ance capture in the wild, surpassing the level of fidelity of
existing lightweight methods. Our approach requires only
a short video sequence of a simple head rotation, captured
from a single camera in any environment, including indoors
or outdoors, on a sunny day or in shadow. Our approach is
built on traditional inverse rendering optimization, where a
fast differentiable renderer is used to solve for the geometry
and appearance parameters together with the environment
lighting simultaneously. Different from previous methods,
we do not make any assumptions on the lighting condition
(e.g. we do not require a sun in the sky), and as our main
contribution we explicitly take visibility into account, ef-
fectively removing baked-in shading by correctly modeling
self-occlusion in our appearance solver. The result is a de-
tailed geometry mesh with textures for diffuse albedo, spec-
ular intensity and roughness. As we will show, our approach
leads to more faithful recovery of the appearance properties
than existing techniques in the wild. As a particular appli-
cation, our approach allows fast capture of actors on a film
set, with resulting assets that can be used directly in tradi-
tional VFX pipelines. In summary, we make the following
key contributions:
• A new state-of-the-art method for in-the-wild facial ap-

pearance capture that makes no assumption on the scene
lighting condition.

• A novel shading model that explicitly handles visibility
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and self-occlusion for inverse rendering pipelines, achiev-
ing high-quality appearance reconstruction from monoc-
ular input.

2. Related Work

In the following section, we first outline relevant works
around in-the-wild inverse rendering which do not neces-
sarily focus on the human face. Second, we highlight works
which specifically tackle facial appearance capture.

Inverse rendering in the wild. Inverse rendering is the
process of decomposing the scene into 3D shape, material
and illumination by simulating the rendering process and
comparing the results against captured images. It has been
a popular research topic with the recent advances in novel
view synthesis using neural implicit representations [46, 47,
61], 3D Gaussian splatting [36], mesh-based differentiable
renderers (rasterizers [37] and path tracers [30, 40]) and us-
ing diffusion models as prior [21, 41, 43, 65]. While some
existing techniques target a very challenging scenario where
the lighting can differ across different images [8, 9, 20], we
restrict our discussion here to methods that assume a static
unknown environment lighting. PhySG [70] utilizes spher-
ical Gaussians to approximately and efficiently evaluate the
rendering equation in closed form. Munkberg et al. [48]
propose an efficient end-to-end framework for joint learning
of topology, triangle meshes and materials, achieving much
faster training and inference compared to previous NeRF-
based factorization methods [7, 59, 72]. They also introduce
a differentiable formulation of the split-sum approximation
of environment lighting to efficiently recover all-frequency
lighting. Follow-up work [29] shows that material and light-
ing decomposition can be further improved with a more re-
alistic shading model, incorporating ray tracing and Monte
Carlo integration. Recently, 3D Gaussian Splatting tech-
niques were used in conjunction with physical-based ren-
dering to allow for scene relighting [5, 23, 42, 64, 74].

Facial appearance capture. Traditional face capture stu-
dios often employ a multi-view setup with controlled and
calibrated lighting conditions to reconstruct the skin appear-
ance [14, 25, 26, 55]. Similar setups were used for facial
appearance decomposition with neural and gaussian prim-
itives [56, 57, 66, 67, 69]. Lighter alternative setups were
also explored by Lattas et al. [39] and Choi et al. [13] but
they still require the subject to be seating in a dedicated
space. Recently, the research community has investigated
more lightweight setups which are easily accessible to ev-
eryone. However, most of these techniques still pose some
constraints on the capture environment. CoRA [28] recon-
structs relightable 3D face assets from a single co-located
smartphone flashlight sequence captured in a dim room.
Similarly, Azinović et al. [1] additionally attach polariza-
tion foils and capture two such sequences with perpendic-

ular polarization orientation to separate skin surface and
subsurface reflectance. Using a co-located light and cam-
era setup, these methods assume the position of the dom-
inant light source is known and no shadowing term needs
to be modeled. Instead of using a smartphone flashlight,
SunStage [62] takes a selfie video rotating under the sun
as input and uses the varying angles between the sun and
the face as guidance. Cast shadows from the sun are mod-
eled by shadow mapping. It also jointly optimizes the sun’s
position together with face geometry and appearance. All
these methods assume the specular reflection (and the shad-
owing) of the face comes from a single dominant point or
directional light source in the capture environment, and the
ambient light contributes only to a low-frequency diffuse
term. Another line of work [15–18, 27, 38, 51] aims to re-
construct shape and reflectance properties from a single por-
trait image, often relying heavily on statistical shape and ap-
pearance priors [6, 24, 58] which limits its expressiveness.
Our work instead focuses on accurate personalized recon-
struction. Rainer et al. [54] use tiny shading networks to
disentangle shading from explicit reflectance maps but as-
sume a known high-quality geometry and smooth lighting.
NeuFace [73] represents the face with a neural SDF and pro-
poses to learn appearance factorization under unknown low
frequency light with a novel neural BRDF basis. However,
it requires multi-view input similar to those from a light
stage setup. Closest to ours, FLARE [4] builds relightable
head avatars from monocular videos. It adopts the split-sum
approximation [32, 48] for relighting and a neural version
of it during training. This rendering model ignores the self-
occlusion and bakes part of the shading into the albedos.
In contrast, we propose a modified formulation of the split-
sum approximation which explicitly handles light visibility
and combine it with ray tracing, leading to higher quality
shape and appearance reconstruction.

3. Monocular Appearance Capture

We now describe our method for facial appearance capture
given a monocular head rotation sequence. We assume the
expression of the subject does not change throughout the se-
quence. As a pre-processing step, we run monocular track-
ing based on landmarks [11] and a photometric loss [53] to
obtain an initial canonical mesh from a 3DMM fit. We also
estimate a fixed camera pose, per-frame rigid head poses
and neck rotation. For more details about the pre-processing
step please see the supplemental PDF. The output of our in-
verse rendering system will be a 3D asset of the subject con-
taining a high-quality mesh, and diffuse albedo, specular in-
tensity and roughness as 2D texture maps. In the following,
we first describe our geometry optimization formulation in
Section 3.1, our novel occlusion-aware shading model in
Section 3.2, and then optimization details in Section 3.3.
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3.1. Geometry Optimization

Balancing the updates to both geometry and textures in in-
verse rendering can be a challenging task. More specifi-
cally, the optimization might overfit too quickly on the tex-
tural components before learning the correct geometry. This
is often the case when Laplacian shape regularization is ap-
plied to enforce geometric smoothness, making the geom-
etry update too slow. Related work such as FLARE [4]
addresses this issue by using a two-stage approach. First,
a detailed geometry and only blurry textures are learned,
and then, the shape is fixed and textures are learned after
re-initialization in the second stage. Our method, however,
optimizes geometry and textures at the same time. To do so,
we adopt a preconditioning framework similar to Nicolet et
al. [50], which biases gradient steps towards smooth solu-
tions. The vertex positions v in each iteration are updated
by

v → v ↑ ω(I+ εgeoL)
2 ϑL
ϑv

, (1)

where v ↓ RN→3 collects mesh vertex positions along
rows, ω is the learning rate, I is an identity matrix, L is
the uniform Laplacian, and L is our loss function described
in Section 3.3. The hyper-parameter εgeo > 0 balances be-
tween the original objective of matching the input images
and a smooth mesh. We set εgeo = 19 in all our experi-
ments. This way, we can apply a large learning rate for the
geometry optimization while keeping the mesh smooth and
self-intersection free.

3.2. Occlusion-Aware Shading Model

Following the rendering equation [31], we compute the out-
going radiance L(ϖo) at location x from direction ϖo by:

L(ϖo) =

∫

!
f(x,ϖi,ϖo)Li(ϖi)(ϖi · n)dϖi. (2)

We decompose the BRDF f(x,ϖi,ϖo) into the sum of a
diffuse term fd and a specular term fs. We use the simple
Lambertian model for the diffuse term:

fd(x) =
ϱ(x)

ς
, (3)

where ϱ is the diffuse albedo. We use a specular BRDF
similar to Kelemen and Szirmay-Kalos [35], which has
been shown to be well suited for rendering human skin [49,
Chapter 14]:

fs(x,ϖi,ϖo) =
DGF

4(ϖi · n)(ϖo · n)
, (4)

where D, G, and F are functions representing the Beck-
mann normal distribution, geometric attenuation and Fres-
nel terms, respectively.

Accounting for self-occlusion. We consider direct illu-
mination where Li(ϖi) comes only from the light sources.
Spherical Harmonics [12, 44] or Spherical Gaussians [68]
are popular representations used by prior methods [70, 73]
but they can only model low- to medium-frequency light-
ing. We therefore follow other work, e.g. FLARE [4], and
use a differentiable split-sum approximation [33, 45, 48],
which allows to capture all-frequency lighting. Unfortu-
nately this approach ignores self-shadowing, and so we pro-
pose a novel visibility-modulated split-sum approximation
to account for self-shadowing, which we describe in the fol-
lowing.

We start by introducing the split-sum formulation from
Karis [32] which approximates Eq. 2 as

L(ϖo) ↔∫

!
f(x,ϖi,ϖo)(ϖi · n)dϖi

∫

!
Li(ϖi)D(h)(ϖi · n)dϖi.

(5)
The first term is the integral of the BRDF under a solid

white environment map, i.e. Li(ϖi) = 1, ↗ϖi. It only de-
pends on cos φ = ϖi · n and the roughness r. There-
fore, it can be precomputed and stored as a 2D look-up
texture. The second integral is a pre-filtered environment
map, where D is the normal distribution function of the
BRDF and h = ωi+ωo

↑ωi+ωo↑2
is the half vector. This term

can also be precomputed as a mipmap by convolving the
environment map with D at different roughness values. At
rendering time, the outgoing radiance can then be efficient
computed using only two texture lookups. Note that when
evaluating Eq. 5, the contribution of the prefiltered envi-
ronment map is only dependent on the reflected view di-
rection ϖr and the roughness r. This is not physically ac-
curate as the contribution should be reduced if the light
is (partially) blocked from the upper hemisphere at a spe-
cific point. To account for self-occlusion, we must mod-
ulate Li(ϖi) differently at different locations based on the
light visibility V (x,ϖi), i.e., making the second integral in
Eq. 5

∫
! Li(ϖi)V (x,ϖi)D(h)(ϖi · n)dϖi. This new inte-

gral cannot be precomputed anymore since it’s different for
different x. However, we notice that when r ↘ 1, the new
integral is 0 unless ϖi is close to ϖr. Therefore, we can
approximate it as

∫

!
Li(ϖi)V (x,ϖi)D(h)(ϖi · n)dϖi

↔Ṽ (x,ϖr)

∫

!
Li(ϖi)D(h)(ϖi · n)dϖi.

(6)

Here, Ṽ (x,ϖr) is the view-dependent visibility. The sim-
plest choice of Ṽ (x,ϖr) is to only evaluate the light vis-
ibility at ϖr, i.e., Ṽ (x,ϖr) := V (x,ϖr). Intuitively, this
means the outgoing radiance is 0 if the reflected view di-
rection is occluded. Note that this approximation is exact
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Figure 1. A selection of facial appearance reconstruction and decomposition results for different subjects in different environments, both
indoors and outdoors, with sunny and cloudy sky.

for perfect specular reflection (i.e. mirrors). To add some
softness in the visibility term (instead of considering it as
a binary function), we approximate it by Monte Carlo inte-
gration,

Ṽ (x,ϖr) :=
1

K

K∑

k=1

V (x,ϖk)

D(n,ϖk,ϖr, r)
, (7)

where the samples are drawn following the normal distri-
bution of the BRDF. This bears some resemblance to the
appearance models of Saito et al. [56]. However, they pa-
rameterize the view-dependent specular visibility term us-
ing a neural network as they work with a large amount of
studio data where the lighting is controlled and calibrated.
Note however, Eq. 6 introduces large errors for rough sur-
faces (i.e., when r ↘ 1 does not hold). We therefore use it
only for the specular component, and implemented ray trac-

ing with multiple importance sampling [60] for the diffuse
component using the OptiX [52] engine.

3.3. Optimization Details

Our reconstruction loss consists of an L1 data term Limg
and some regularization terms. We employ an L1 mask loss
Lmask between the mask obtained from MODNet [34] and
the predicted binary mask. Although we use a parameter-
ization similar to Nicolet et al. [50], we find it helpful to
still employ a Laplacian regularizer to stabilize the geom-
etry optimization such that we do not need to set different
εgeo for different datasets. This regularizer encourages the
Laplacian of the optimized mesh to stay close to the Lapla-
cian of the initial 3DMM fit

LLap =
∥∥L(v ↑ vinit)

∥∥2
2
. (8)
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We apply a white light regularization Llight on the environ-
ment map as in [48] and the roughness texture is regularized
to be smooth via a total variation loss Lrough. We noticed in
our experiments that part of the specular signal tends to be
baked into the diffuse albedo. We thus apply a weak regu-
larization to encourage the diffuse render Idiffuse to be small
if possible, as

Ldiffuse =
∥∥Idiffuse

∥∥2
2
. (9)

The final loss is then

L :=Limg + εmaskLmask + εLapLLap+

εlightLlight + εroughLrough + εdiffuseLdiffuse.
(10)

4. Experiments

We now show several results of our appearance capture
method, evaluate its performance compared to previous
work, and offer several ablation studies to validate our de-
sign choices. Please refer to our supplemental material for
additional results.

4.1. Appearance and Geometry Reconstruction

We begin by highlighting the versatility of our approach by
showing several appearance capture results of different sub-
jects in different environments in Fig. 1. Each row of the
figure illustrates one of the input images, the corresponding
render using our recovered appearance properties, and then
a breakdown of the reconstructed appearance maps (diffuse
albedo, specular intensity, specular roughness) and geome-
try. Our method can be applied indoors or outdoors, with
sunny or cloudy skies. We show how the recovered geom-
etry and appearance maps can be used to render the subject
in a new environment by relighting them. Fig. 2 shows two
subjects relit in two different environments (see Fig. 1 for
the original environment). Please refer to the supplemental
video for more results.

Figure 2. Relighting results of multiple frames on two different
subjects in two different environments. The environment is shown
top left of each row. See Fig. 1 for the original environment.

4.2. Comparisons

We compare our results to related methods for facial ap-
pearance capture in the wild: FLARE [4], NextFace [15],
and SunStage [62].

Fig. 3 shows a qualitative comparison of our method to
FLARE on two different subjects. While the combined fi-
nal render is similar between FLARE and our method, it
is clear that FLARE fails to separate the diffuse and spec-
ular components, baking most of the specular signal in
the diffuse map resulting in a nearly zero specular render
(Fig. 3, 3rd column). In contrast, our shading model is
completely physically-based and correctly separates the dif-
fuse and specular components. The normals reconstructed
by FLARE portray a lot of spatial noise and the geometry
contains self-intersections, unlike ours (4th column). The
diffuse albedo from FLARE contains more baked-in diffuse
shading than our result (5th column). As a result, FLARE
performs worse when relighting the subject under a novel
environment map than our approach (columns 6, 7 and 8).

We also perform qualitative comparisons to NextFace
and SunStage in Fig. 4. NextFace relies on a statistical
prior, leading to inaccurate shapes and blurry appearance
for different subjects (Fig. 4, rows 1 and 4). It produces very
similar shapes for the two subjects shown in Fig. 4, while
our geometry preserves the identity and likeness of the sub-
jects. SunStage assumes a single point light in the scene,
and the shadows and specular components come only from
this point light. This leads to poor diffuse and specular sep-
aration and incorrect shadows in generic environments like
the examples shown here (Fig. 4, rows 2 and 5). In the first
subject, we see orange artifacts on the forehead of the dif-
fuse albedo in the SunStage result (row 2). In the second
subject, the specular component is completely missing (row
5). The shape and textures from SunStage also have lower
resolution than ours. The final row of Fig. 4 illustrates the
appearance details for zoomed-in regions shown by the red
and blue squares, indicating that our method produces the
most accurate details.

As a quantitative comparison, we show reconstruction
errors of to NextFace, SunStage and FLARE compared to
ours in Table 1. For fairness, we compute errors only on
skin regions and average over all subjects in the dataset. Our
method prevails in all metrics. The metrics are computed in
linear RGB space and averaged over all tested subjects.

4.3. Evaluations

Effects of light visibility. We first evaluate the effects of
accounting for self-occlusion by comparing the relit ren-
ders of our method with the original split-sum approxima-
tion (denoted as Ours (w/o vis)) in Fig. 5. We can see that
when self-occlusion is not accounted for, shadows under the
capture lighting got baked into the albedo (column 1 with
zoomed-in patches focusing around the nose), leading to
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Figure 3. Qualitative comparisons with FLARE [4]. We show one training frame on the left, with separated diffuse, specular, normals and
diffuse albedo renders. On the right we show a relit example using the reconstructed appearance. FLARE fails to separate the diffuse and
specular signals, produces noisy normals, and bakes shading into the diffuse albedo, all leading to poor results under relighting.

PSNR → MAE ↑ SSIM [63] → LPIPS [71] ↑

NextFace [15] 25.30 10.63 0.78 0.31
SunStage [62] 29.47 5.28 0.88 0.14
FLARE [4] 30.40 2.01 0.94 0.15
Ours (w/o vis) 34.55 1.79 0.96 0.10

Ours 38.09 1.18 0.97 0.10

Table 1. Reconstruction errors computed over the skin region av-
eraged for all the subjects.

wrong shadows when relit (row 1, column 2, 3). The specu-
lar component also exhibits unrealistic sharp highlight (row
1, column 2, 4). Moreover, when the major light source
is behind the subject, the baseline renders show artifacts in
the form of strong specular highlights on the side of the nose
and under the chin (row 3, column 2, 4) since self-occlusion
is not properly handled. In contrast, our proposed model
correctly removes baked-in shading and produces more re-
alistic relit renders (row 2, 4). We also quantitatively evalu-
ated the performance gain of accounting for self-occlusion
in terms of reconstruction errors in Table 1.

Evaluation on synthetic data. To better evaluate the
quality of the reconstructed mesh and textures against
ground truth, we created a synthetic dataset with a monoc-
ular head rotation sequence similar to the real data. The

ground truth mesh and albedo are from a studio appearance
capture method [55] (Fig. 6 column 1). We use a natu-
ral outdoor environment map on a cloudy day as lighting.
Please refer to the supplementary document for more de-
tails on the synthetic dataset. We show reconstructed diffuse
albedo and geometry of our method with and without light
visbility accounted for in columns 2 and 3 of Fig. 6, and the
error maps compared with the ground truth are shown in the
last two columns. We can see that our method produces a
more accurate reconstruction of the diffuse albedo while the
baseline result contains a lot of baked-in shading. In terms
of shape reconstruction, the two perform similarly. How-
ever, the baseline method does not handle shadows well,
leading to slightly worse shape recovery in regions where
self-occlusion plays an important role, e.g., the lips.

Ours vs raytracing for specular. While a ray-tracer han-
dles visibility inherently, we find that our modified split-
sum approximation behaves more stably in our inverse ren-
dering setting when we need to solve for shape, textures,
lighting at the same time from merely monocular input. Ray
tracing produces flickery specular images (Fig. 7 row 2)
where part of the skin abruptly changes from very bright
to very dark while the head is rotating. We also notice
high frequency artifacts, e.g. sharp boundary between bright
and dark pixels, in the ray traced render, as denoted by the
red arrows. In contrast, our model gives visually smoother
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Figure 4. Qualitative comparisons with NextFace [15] and SunStage [62] on two different subjects. The first column is the resulting render
overlaid on one input image, and the remaining columns indicate the recovered appearance maps. NextFace produces inaccurate shapes
and blurry appearance, where SunStage produces poor shadows and incorrect diffuse/specular separation. Our method produces the most
accurate results, also indicated by the zoom region in the final row.

specular renders (Fig. 7, row 3). Please refer to the supple-
mental videos for an animated visualization.

Optimizing vertex positions vs blendweights. We
choose to optimize vertex positions directly instead of pa-
rameterizing the shape using blendweights of a 3DMM as in
NextFace [15]. We show in Fig. 8 that our model achieves
the least reconstruction error in the central part of the face
compared to the initial mesh or the one optimized through a
3DMM in the same inverse rendering setting. Even though

the silhouette of the side face is never shown in the train-
ing data, our method recovers the correct shape of the nose
from shading. The ground truth reference mesh is a 3D fa-
cial scan from a multi-view face scanner [3].

Regularize diffuse component. Last, we apply a weak
regularization to encourage the diffuse render to be small
which prevents too much specular from being baked into
the diffuse component, as we show in Fig. 9. This gives us
better separation of the diffuse and specular signals.
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Figure 5. Relighting evaluation of our method with and without
accounting for self-occlusion. We also visualize the corresponding
diffuse albedo, diffuse render and specular render.

Figure 6. Comparing our method with and without accounting for
light visibility on a synthetic dataset. The mesh errors are dis-
played with a scale of 0mm 5mm and the albedo
error with a scale of -0.1 0.1.

5. Limitations

We assume the head poses (and neck rotations) are provided
as input to our method. Inaccuracies in the head pose esti-
mation impair the reconstruction quality of our method sub-
stantially (see failure cases in the supplemental). Although
we make no assumptions on the lighting condition, we can-
not recover the appearance if part of the face is in extreme
shadows in all frames. Our current face template geometry
does not model eyes, however switching to a different tem-
plate model would allow to reconstruct eyes better. Also,

Figure 7. Comparing the specular renders from our method and a
ray-tracer across frames in the same head rotation sequence.

Figure 8. Our geometry optimization pipeline recovers the correct
nose shape from shading, achieving the better reconstruction qual-
ity compared to 3DMM fit. The mesh errors are displayed with a
scale of 0mm 5mm.

Figure 9. Diffuse and specular component without and with the
regularization term Ldiffuse.

correct skin tone recovery is not guaranteed due to the am-
biguity between the illumination and appearance.

6. Conclusion

We propose a new lightweight facial appearance capture
method, surpassing the quality of existing lightweight
approaches. It works truly in the wild, making no assump-
tion on the environment illumination. Our novel shading
model explicitly accounts for self-occlusion, leading to
faithful recovery of the shape and appearance properties
from a monocular video containing a simple head rotation.
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[26] Paulo Gotardo, Jérémy Riviere, Derek Bradley, Abhijeet
Ghosh, and Thabo Beeler. Practical dynamic facial ap-
pearance modeling and acquisition. ACM Transactions on
Graphics (ToG), 37(6):1–13, 2018. 2

[27] Yuxuan Han, Zhibo Wang, and Feng Xu. Learning a 3d mor-
phable face reflectance model from low-cost data. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8598–8608, 2023. 2

[28] Yuxuan Han, Junfeng Lyu, and Feng Xu. High-quality facial
geometry and appearance capture at home. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 697–707, 2024. 2, 3

[29] Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg.
Shape, Light, and Material Decomposition from Im-
ages using Monte Carlo Rendering and Denoising.
arXiv:2206.03380, 2022. 2
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