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Figure 1. Illustration of the Hierarchical Motion Context Design. We model the motion-dependent appearance variations with both
coarse skeleton condition !P and fine-grained point-wise velocity condition V . !P describes the overall human skeleton motion, which
is derived from the difference between the human poses at adjacent frames. V is the point-wise velocity that indicates finer-grained motion
in local regions. To achieve robust deformation, we propose Spatio-temporal Multi-scale Sampling, which samples the overall motion
trend and inter-frame details via diverse time intervals s for !P and V .

Abstract

The emergence of neural rendering has significantly ad-

vanced the rendering quality of 3D human avatars, with the

recently popular 3DGS technique enabling real-time per-

formance. However, SMPL-driven 3DGS human avatars

still struggle to capture fine appearance details due to the

complex mapping from pose to appearance during fitting. In

this paper, we propose SeqAvatar, which excavates the ex-

plicit 3DGS representation to better model human avatars

based on a hierarchical motion context. Specifically, we

utilize a coarse-to-fine motion conditions that incorporate

both the overall human skeleton and fine-grained vertex

motions for non-rigid deformation. To enhance the robust-

ness of the proposed motion conditions, we adopt a spatio-

temporal multi-scale sampling strategy to hierarchically in-

tegrate more motion clues to model human avatars. Exten-

sive experiments demonstrate that our method significantly

outperforms 3DGS-based approaches and renders human

*This work was done during the author’s internship at Shanghai Artifi-
cial Intelligence Laboratory. † denotes co-corresponding authors.

avatars orders of magnitude faster than the latest NeRF-

based models that incorporate temporal context, all while

delivering performance that is at least comparable or even

superior. Project page: https://zezeaaa.github.
io/projects/SeqAvatar/

1. Introduction
Recent research on digital humans has highlighted the effi-
ciency of 3D Gaussian Splatting (3DGS) [27], demonstrat-
ing its capability for high-quality and real-time rendering.
By defining T-pose human Gaussians in a canonical space
and employing specific warping techniques, we can render
human avatars from diverse perspectives and in any pose.
The canonical Gaussian primitives and warping weights are
then jointly optimized under supervision from video inputs.

Animatable human avatar reconstruction is primarily
hindered by limited modeling of non-rigid warping, forc-
ing a trade-off between rendering quality and animation ca-
pability. Current methods [22, 56] incorporate SMPL(-X)
pose priors [43, 51] to guide motion for each observation
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and rely on Linear Blend Skinning (LBS) for warping. Al-
though these approaches are effective for pose-driven ani-
mation, they often struggle with per-frame non-rigid warp-
ing in scenarios involving complex garments.

We experimentally find that current human pose condi-
tions [22, 56] do not fully capture the complex one-to-many
mapping from pose to appearance, particularly for 3DGS-
based approaches [27]. These methods [56, 68] rely on
the spatial information of a template body in each frame’s
human pose to predict non-rigid deformations. However,
they often overlook local details, such as garment deforma-
tions far from the skeleton, and cannot resolve cases where
the same pose corresponds to different appearances during
complex motions. Furthermore, although previous NeRF-
based [44] method [8] has attempted to model motion se-
quences using human pose residuals, the inherently global
nature of the pose sequence limits the ability to capture finer
motion details. Naive pose sequence modeling does not
fully account for the explicit characteristics of 3DGS.

In this paper, we introduce a hierarchical motion context
condition for 3DGS-based human avatar modeling to ad-
dress the limitations of relying solely on human pose, which
provides only limited global skeletal information. Our ap-
proach improves the ability of 3DGS-based methods to ac-
curately capture the complex relationship between human
pose and appearance in challenging scenarios. Specifically,
we design a coarse-to-fine motion condition that incor-
porates both overall skeletal movements and fine-grained
point-wise motions. Leveraging the explicit nature of Gaus-
sian primitives, this condition seamlessly integrates into
3DGS-based methods, enabling more precise predictions of
complex non-rigid deformations. To further enhance ro-
bustness, we propose a spatio-temporal multi-scale sam-
pling strategy for constructing the motion context with a
larger receptive field. Spatially, we consider the motion
states of neighboring points within the local region of each
Gaussian primitive to obtain more stable motion embed-
dings. Temporally, we capture human motion patterns
across multiple time scales, combining long-term trends
with fine-grained inter-frame motion details. This improves
the model’s generalization to complex human movements.

To summarize, our key contributions are as follows:
1) We propose a novel hierarchical motion condition that in-

tegrates coarse-to-fine human motion, combining global
skeletal poses with localized vertex residuals to enhance
non-rigid deformation prediction.

2) We introduce a spatiotemporal multiscale sampling strat-
egy that expands the receptive field of hierarchical motion
context, improving generalization to complex motions.

3) Experiments on the I3D-Human [8], DNA-Rendering [9],
and ZJU-MoCap [53] datasets show the effectiveness of
the proposed SeqAvatar, which is capable of modeling
details of the human body in complex motions.

2. Related Work
Neural Rendering. Neural rendering techniques have
brought significant progress to human reconstruction
and rendering. In particular, Neural Radiance Fields
(NeRF) [44] introduces an implicit scene representation
that models color and density using multilayer percep-
trons, delivering photorealistic rendering results. More re-
cently, point-based 3D Gaussian Splatting [27] utilizes 3D
Gaussians to represent scenes explicitly, achieving real-time
high-quality rendering. Building upon NeRF and 3DGS,
subsequent works have advanced neural rendering across
various dimensions, e.g., enhancing visual fidelity [1, 2],
improving sparse-view reconstruction quality [10, 52, 63,
71, 80], enabling pose-free optimization [37, 58, 61, 67],
modeling dynamic scenes [13, 34, 49, 55, 69, 74], and ac-
celerating training and inference [4, 12, 18, 39, 46, 60].
These developments also benefit human avatar modeling,
which demands high-quality and efficient rendering.
SMPL(-X)-Based Neural Human Modeling. The
SMPL(-X) family [43, 51] provides a parametric represen-
tation of the human body by decomposing it into pose-
related and shape-related components using 3D mesh scans
and principal component analysis (PCA). Its pose blend

shapes enables body deformation through joint-wise pose
blending, offering an efficient and compact way for an-
imation. SMPL(-X) has thus become a cornerstone in
human body modeling and animation, with many meth-
ods [11, 59] estimating its parameters directly from 2D
inputs. Recent neural human reconstruction methods in-
tegrate SMPL(-X) with implicit representations such as
NeRF [44] and 3DGS [27] to enable animatable avatars
with high rendering quality. Different from purely 2D im-
age animation methods [48, 62, 65, 73], these methods typ-
ically register the input data to a canonical T-pose space
and use linear blend skinning (LBS) to transform 3D points
into observation space based on SMPL(-X) poses. NeRF-
based approaches [5–8, 14, 17, 19, 20, 30, 53, 64, 68, 75]
focus on monocular or multi-view reconstruction. More
recently, 3DGS-based methods [21–23, 25, 26, 29, 31–
33, 36, 40, 41, 45, 47, 56, 76, 78, 79, 81] have gained
popularity due to their real-time rendering and high fidelity.
Some works [8, 23] further incorporate pose sequences as
temporal context, but they suffer from slow rendering and
lack fine details of motion caused by simply integrating
coarse human pose embedding with NeRF.
Human Rendering with Temporal Embeddings The ear-
liest modeling of dynamic radiance field [3, 13, 15, 16, 24,
34, 35, 42, 50, 57, 70] can be traced back to temporal em-
beddings in general scenes, where each frame’s observation
is obtained by constructing a canonical space and a time-
conditioned deformation field. Motivated by these, a stream
of research [38, 72] focuses on pure rendering quality, em-
ploying temporal embeddings instead of human pose to en-
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code each frame of human videos. Although these methods
achieve high-quality, temporally continuous rendering, they
struggle with the lack of geometric constraints from human
pose, making parameterized animation unfeasible.

3. Preliminary
SMPL(-X) Series [43, 51] adopt a parameterized frame-
work to represent human bodies across diverse shapes and
poses. For each frame, the human mesh is derived by de-
forming a canonical template mesh based on shape and pose
parameters. Specifically, a 3D point x on the canonical
mesh is warped to the corresponding point on the deformed
mesh in the observation space, following

LBS(x,Bk,ωk(x)) =
K∑

k=1

ωk(x)Bkx, (1)

where K is the total bone number and Bk is the transfor-
mation matrix for each bone. Specifically, Bk consists of a
rotation and translation matrix Rk and bk. Here, Rk rep-
resents the global rotation of each joint, influenced by the
local joint rotations r, while bk denotes each joint’s trans-
lation, determined by the joint positions j and the human
shape parameters ε. The linear blending weight ωk depends
on x and is regressed from comprehensive human meshes.
3D Gaussian Splatting [27] utilizes a set of point-based
Gaussian primitives to explicitly represent scenes, enabling
real-time and high-quality rendering. Each Gaussian primi-
tive is defined by its center position x → R3 and covariance
matrix ! → R3→3. To ensure positive semi-definiteness and
simplify optimization, the covariance matrix ! is decom-
posed into a rotation matrix R and a scaling matrix S:

! = RSSTRT , (2)

where R and S are derived by a scaling vector s → R3 and
a quaternion vector r → R4 in practice. Additionally, each
Gaussian primitive is also assigned a color feature sh → Rk

represented by spherical harmonics (SH) and an opacity ϑ
for rendering. During the rendering process, a splatting
technique [27] is used to project each Gaussian primitive
onto the 2D image space with a viewing transform W and
the Jacobian J of the projective transformation’s affine ap-
proximation. The transformed covariance !↑ in the cam-
era’s coordinates is

!↑ = JW!WTJT . (3)

After projection, the pixel color C is computed by blend-
ing N ordered Gaussian primitives overlapping at the pixel:

C =
∑

i↓N

ciϑ
↑
i

i↔1∏

j=1

(1↑ ϑ↑
j), (4)

where ci is computed from SH feature sh and ϑ↑
i is the prod-

uct of ϑi and probability density of i-th 2D Gaussian.
For optimization, a photometric loss is defined by a com-

bination of L1 and SSIM [66] losses:

Lphoto = ϖL1(Î , I) + (1↑ ϖ)(1↑ SSIM(Î , I)), (5)

where Î and I denote the rendered and ground-truth images,
and ϖ controls the balance between the two terms.

4. Method
Fig. 2 shows the framework of our method. We use the
explicit point-based 3DGS as the representation of the hu-
man body. Given a collection of input cameras and im-
ages, we optimize a set of Gaussian primitives {Gi}i=n

i=1 to
fit the body’s shape and appearance. Each Gaussian prim-
itive Gi includes the center position x, scaling vector s,
rotation quaternion vector r, color feature sh and opacity
ϑ, where x is initialized from the SMPL template vertices
{Ti}i=N

i=1 . During the optimization process, we first apply a
coarse-to-fine motion context to capture more accurate and
fine-grained details (Sec. 4.1). To mitigate overfitting, we
propose Spatio-Temporal Multi-Scale Sampling to obtain
more robust point-wise Gaussian motion, which serves as
the embedding for non-rigid deformation (Sec.4.2). Next,
we adopt Linear Blend Skinning (LBS) to map canonical
Gaussian primitives G to observation space and render im-
ages via differentiable splitting (Sec.4.3).

4.1. Non-Rigid Deformation with Coarse-to-fine
Motion Context

Coarse Skeleton Motion. As illustrated in Fig. 1, we in-
troduce a coarse-to-fine motion context to excavate addi-
tional conditions for non-rigid deformation. Typically, most
human 3D avatar methods use the current frame pose as a
condition to predict non-rigid deformation [22, 56]. While
this provides spatial information to distinguish the motion
of different body parts, it fails to capture temporal motion
changes, as discussed in [8]. Therefore, given a frame at
time t, we consider a sequence of regularly interval-sampled
frames T to model inter-frame body motion variations:

T = {t↑ s, t↑ 2s, ..., t↑ Ls}, (6)

where L is the sequence length and s is the time interval.
The coarse motion of body skeletons at each time step t → T
can be derived by calculating the difference of poses be-
tween adjacent frames as illustrated in Fig. 1, following

”P = {”P t = ϱ(P t, P t↔s)|t → T }, (7)

where P → RK→3 is the body pose and ϱ denotes the dif-
ference ”P between two poses in axis-angle form. We em-
ploy an MLP E!P to encode the sequential skeleton mo-
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Figure 2. Overview of the proposed method. We first initialize canonical Gaussian positions x with SMPL template vertexes. For each
Gaussian, we derive both coarse skeleton motion condition f!P and fine-grained vertex motion condition fV that sampled from the vertex
motion template FV (points in different colors represent different motions). Based on such hierarchical motion information, we utilize an
MLP Enon→rigid to better predict each Gaussian’s non-rigid deformation prediction. The non-rigid deformed Gaussians are then warped
into observation space via the standard LBS transformation for rendering.

tion ”P → RL→K→3, flattened along the temporal dimen-
sion, into a skeleton motion embedding f!P → R32,

f!P = E!P(”P), (8)

which serves as a condition for the subsequent non-rigid
deformation. Further details are provided in the supplemen-
tary material.
Fine Vertex Motion. Compared to previous implicit NeRF-
based methods, the point-based 3DGS representation en-
ables us to explore more fine-grained temporal motion in-
formation. We derive a point-wise velocity vector vi for
each Gaussian primitive Gi to model the fine-grained lo-
calized body motion, which is beyond the scope of pose
skeleton motion ”P . By measuring the position variations
across adjacent time steps, we calculate per-frame velocity

vt =
xo

t ↑ xo
t↔s

s
, (9)

where xo denotes the warped coordinates in observation
space. However, since the positions of Gaussian primitives
are updated during optimization, it is not stable to obtain
vi based on such a dynamic variable. Moreover, transform-
ing the canonical Gaussians into the observation space re-
quires non-rigid deformation first, which leads to a circu-
lar dependency and conflicts with the current velocity de-
sign. To this end, we introduce a motion template field
FV = {Vi}i=N

i=1 that stores the velocity of each SMPL
vertex, and vi for each Gaussian primitive is sampled from
FV based on the distance between query points and ver-
texes in this template. Specifically, given a time step t and
the corresponding body pose P t = {(Rt

k,b
t
k)|k → K},

the SMPL template vertexes in T can be warped into ob-
servation space with the template skinning weights W and

standard linear blend skinning, following

To
t = LBS(T,Bt,W), (10)

where Bt is the transformation matrix derived from rotation
and translation matrix Rt and bt. W is the template SMPL
LBS weights. The velocity V of each template vertexes T
can be further derived as

Vt =
To

t ↑To
t↔s

s
. (11)

We then sample each Gaussian’s velocity from this motion
template field FV, which is discussed in Sec. 4.2.

4.2. Spatio-temporal Multi-scale Sampling (STMS)
To enhance the robustness of human motion conditions, we
propose modeling both local region motion information of
the human body and motion patterns across different tem-
poral windows to mitigate overfitting and improve general-
ization by capturing more comprehensive motion dynamics.

In the spatial dimension, we sample the ς nearest tem-
plate to model the body’s local region motion more robustly.
Specifically, for each canonical Gaussian primitive Gi, the ς
nearest vertexes’ velocities are sampled as input to an MLP
Eknn to learn a local point-wise motion embedding

eti = Eknn({Vt
j}), j → KNN(T,xi), (12)

where KNN(T,xi) denotes the ς nearest SMPL template
vertexes of the canonical Gaussian position xi. Similar to
Eq. 7, we then apply an MLP EV to encode each Gaussian
primitive’s sequential motion embedding V = {et|t → T }
into a point-wise sequential condition fV → R96

fV = EV(V). (13)
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In the temporal dimension, to capture both the overall
motion trend and the inter-frame motion details, we adopt a
multi-scale sequence sampling strategy. In detail, we sam-
ple a series of sequences at several progressively increasing
intervals to get human motion information across different
temporal windows

S = {s = s0 + i”s}i=m
i=0 , (14)

where ”s is the increasing rate of sampling interval s. We
then input the multi-scale sampled sequence motions into
the skeleton motion encoder E!P and the point-wise mo-
tion encoder EV to obtain hierarchical temporal motion em-
beddings. Therefore, Eq. 7 and Eq. 13 can be revised as

f!P = E!P({”Ps}), s → S (15)
fV = EV({Vs}), s → S. (16)

In practice, we concatenate all skeleton motion conditions,
”Ps for s → S , and localized vertex motion conditions, Vs

for s → S , across different sampling scales. These are then
input to E!P and EV , respectively. More details are shown
in the supplementary material.
Non-Rigid Deformation. Given the coarse skeleton motion
f!P = E!P({”Ps}) condition and fine point-wise veloc-
ity condition fV = EV({Vs}), we utilize an MLP to predict
each Gaussian’s non-rigid deformation as

ϱx, ϱs, ϱr = Enon↔rigid(x, P, f!P , fv). (17)

The deformed canonical Gaussian G↑ is

x↑ = x+ ϱx, (18)
s↑ = s+ ϱs, (19)
r↑ = r · ϱr, (20)

where · denotes the multiplication of two quaternions.

4.3. Optimization
Rigid Deformation. We utilize the standard LBS opera-
tion to map the non-rigid deformed Gaussians Go into the
observation space, following

xo = LBS(x↑,B,ω), (21)

Ro =
K∑

k=1

ωk(x
↑)BkR

↑, (22)

where R↑ is the rotation matrix derived from the non-rigid
deformed Gaussian’s rotation quaternion r↑, and Ro repre-
sents the rotation matrix in observation space. Following
the previous method [22], we utilize an MLP Elbs to predict
the LBS weight offsets for each query canonical point and
update the sampled weights from the nearest SMPL vertex
as

ωk(x) = ωSMPL
k (x) + Elbs(x). (23)

Similar to [8, 22, 68], we introduce a pose refinement MLP
Epose to refine the pose estimate from SMPL for a better fit
to the human body.
Loss Function. With the transformed Gaussian primitives
Go in observation space, we apply the standard splitting [27]
to render images as

I = Splatting(xo,Ro, s
↑,ϑ, sh). (24)

During the optimization process, we employ a combination
of loss functions as supervision, summarized as

L = ϖ1Lcolor + ϖ2Lssim + ϖ3Llpips + Lmask, (25)

where ϖ is used to balance the weight of different losses.
Lmask [22] is an L2 loss between the rendered ϑ and human
body mask. Similar to [56], we apply Lisopos and Lisocov

to control the Gaussian primitive’s position and covariance.
Details are shown in the supplementary material.

5. Experiments
5.1. Datasets
DNA-Rendering [9] is a challenging human-centric ren-
dering dataset. It contains diverse scenes from everyday
life to professional occasions. We use 6 sequences with
loose-fitting garments (1 0206 04, 2 0007 04, 2 0019 10,
2 0044 11, 2 0051 09, 2 0813 05) for experiments. We
adopt 24 views for training and 6 views for testing.
I3D-Human [8] contains scenes closer to daily life, which
comprises multi-view video frames of humans with loose
clothing and complex movements. We conduct experiments
on 4 sequences and use 4-5 views for training and the rest
for testing. All training and testing data are retained to be
the same in comparisons following Dyco’s [8] data split.

5.2. Baselines and Metrics
We compare against the state-of-the-art human mod-
eling methods including Dyco [8], 3DGS-Avatar [56],
GART [31], and GauHuman [22]. Dyco is an implicit
NeRF-based method that adopts pose sequence informa-
tion for temporal modeling. We compare performance with
Dyco to showcase the better efficacy of our fine-grained mo-
tion condition design. 3DGS-Avatar, GART, and GauHu-
man are explicit 3DGS-based methods, and all of them are
originally designed for monocular inputs. For fairness, we
extend them to multi-view input under the same settings.
We report three key metrics: peak signal-to-noise ratio
(PSNR), structural similarity index measure (SSIM) [66],
and learned perceptual image patch similarity (LPIPS) [77].

5.3. Comparison
Comparison on DNA-Rendering. Tab. 1 shows the quan-
titative results on DNA-Rendering dataset. The proposed
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Table 1. Quantitative Results on DNA-Rendering Dataset. We report the performance of novel view rendering. Our method outperforms
previous state-of-the-art human modeling methods. We mark the best and the second best methods in cells. LPIPS*=LPIPS →103.

Subject: 1 0206 04 2 0007 04 2 0019 10 2 0044 11 2 0051 09 2 0813 05
Metric: PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔
3DGS-Avatar [56] 26.64 0.9439 50.09 28.06 0.9492 56.70 32.06 0.9710 31.12 28.23 0.9512 37.15 25.04 0.9534 42.22 31.75 0.9701 31.30
GART [31] 27.19 0.9454 56.47 28.22 0.9525 56.46 31.13 0.9686 35.16 28.90 0.9561 41.27 26.47 0.9628 42.21 32.06 0.9729 35.74
GauHuman [22] 27.96 0.9500 50.42 27.93 0.9496 56.93 31.63 0.9698 32.82 30.38 0.9641 34.19 25.99 0.9599 42.00 33.43 0.9764 29.42
Ours 30.81 0.9649 39.47 29.63 0.9566 43.72 34.97 0.9777 23.53 32.62 0.9747 23.83 28.45 0.9685 34.06 35.81 0.9843 20.83

Figure 3. Novel View Qualitative Results on DNA-Rendering. We zoom into the local region and compute the error maps compared
with ground truth images. The results show that our method achieves competitive results on both the overall and local region qualities.

method outperforms previous state-of-the-art human mod-
eling methods across all metrics. To demonstrate the visual
improvement, we compare the quality of rendering images
in Fig. 3. Previous methods, which lack the temporal mo-
tion information for non-rigid deformations, are unable to
predict the movement of Gaussian primitives properly, re-
sulting in blurred renderings in regions with complex tex-

tures (scene 1 0206 04 in Fig. 3). Besides, the results in
Fig. 3 show that the compared methods fail to capture the
proper shape variation caused by movement (e.g., the white
dress in scene 2 0051 09). Although these methods achieve
a smooth appearance in these areas, the error maps show
that they fail to match the actual shape closely. We leverage
the hierarchical motion context to predict Gaussian defor-
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Table 2. Novel View Rendering Quantitative Results on I3D-Human.

Subject: ID1 1 ID1 2 ID2 1 ID3 1
Metric: PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔ PSNR↓ SSIM↓ LPIPS*↔
3DGS-Avatar [56] 29.78 0.9600 31.40 31.29 0.9627 28.09 29.63 0.9604 37.33 32.73 0.9602 39.47
Dyco [8] 30.81 0.9617 28.29 31.45 0.9628 25.75 29.41 0.9618 33.26 32.50 0.9612 35.46
GauHuman [22] 29.47 0.9571 39.46 30.42 0.9585 38.87 28.51 0.9546 49.46 32.10 0.9546 53.67
Ours 31.81 0.9659 27.03 31.98 0.9660 27.84 31.53 0.9685 30.23 33.62 0.9651 34.02

OursGT Dyco GauHuman 3DGS-Avatar

Figure 4. Novel Pose Qualitative Results on I3D-Human. We compare the proposed method with previous SOTA approaches. The
rendered images and error maps demonstrate our robustness on novel pose rendering.

mations, allowing our method to capture detailed appear-
ance variations caused by human motions more accurately.
Comparison on I3D-Human. The quantitative results in
Tab. 2 show that our method surpasses the previous SOTA
method on most metrics, demonstrating our competitive
performance on the I3D-Human dataset. Previous NeRF-
based Dyco [8] utilizes pose variation as a condition to
model human motions. However, it is limited to capturing
only overall body motions and lacks the capacity for finer-
grained modeling in local regions. For example, in ID1 1
and ID2 1 shown in Fig. 8 (in the Supp. Mat.), our method
renders results that accurately reflect the true motion, while
Dyco fails to model the information in regions far from the
human body skeleton. Tab. 3 reports the quantitative results
of novel pose rendering on the I3D-Human dataset. Our
method achieves best performance among 3DGS-based hu-
man modeling methods and also enables real-time render-

ing (↗ 45 FPS on I3D-Human) compared to NeRF-based
Dyco (↗ 0.7 FPS). Fig. 4 shows the qualitative comparisons
of novel pose rendering. Different from Dyco [8], which re-
lies solely on joint motions as conditions, our method lever-
ages the motion state of each Gaussian primitive to predict
deformations, enabling more flexible modeling of motions
in regions distant from the human body.

To evaluate the generalizability, we also conduct experi-
ments on ZJU-MoCap [53]. Please refer to the supplemen-
tary materials for more details.
Out-of-Distribution Poses. To evaluate the generalization
ability to novel poses, we conduct experiments using ani-
mations with large pose variations. Specifically, we use a
model trained on one sequence to render target poses sam-
pled from other unseen sequences, as different sequences
in DNA-Rendering and I3D-Human contain distinct mo-
tion patterns. As illustrated in Fig. 6, the Target Pose is
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GT(a). Baseline (b). (a) + Vanilla Non-Rigid MLP. (c). (b) + ∆𝓟 Conditions (d). (c) + 𝓥 Conditions (e). (d) + STMS.

Figure 5. Qualitative Ablation Results. We compare the visual influence of different components on ID2 1 scene of I3D-Human dataset.

Ours Dyco Target Pose

ID3_1 ID1_2

ID2_1 ID1_1

Target PoseOurs GauHuman

2_0019_10 2_0051_09

2_0813_05 1_0206_04DNA-RenderingI3D-Human

Figure 6. Out-of-distribution Pose Animation.

drawn from an unseen sequence exhibiting different human
motions. The results suggest that our method is capable of
generalizing to these significant pose changes, even though
such poses were not observed during training.

Table 3. Metrics of Novel Pose Renderings on I3D-Human.

Methods PSNR ↓ SSIM ↓ LPIPS* ↔
Dyco [8] 30.09 0.9569 35.32
3DGS-Avatar [56] 29.54 0.9555 38.59
GauHuman [22] 29.31 0.9526 48.29
Ours 30.28 0.9583 36.07

5.4. Ablation Study
In this section, we ablate the influence of various compo-
nents in our methods on I3D-Human dataset. Tab. 4 shows
the average metrics of 4 sequences under different settings.
Skeleton motion condition ”P denotes the overall human
body movement. Compared to predicting non-rigid defor-
mation only with the Gaussian position, incorporating this
additional global temporal information allows our method
to better model the overall human shape and achieve higher
rendering quality, as demonstrated in Tab. 4 (c).
Fine-grained point-wise motion condition V describes the
local region’s variation in a more detailed manner. Such
point-based motion information captures the relationship
between motion and appearance variations in areas beyond
the human skeleton. Tab. 4 (d) and Fig. 5 (d) show that our

method achieves higher rendering details in local regions.
Spatio-temporal Multi-scale Sampling (STMS) is de-
signed to enhance the robustness of human motion condi-
tions by incorporating local region motion information and
motion patterns across different temporal windows. With
such a hierarchical motion context embedding design, our
method is able to predict each Gaussian’s deformation more
robustly, leading to better rendering quality as shown in Tab.
4 (e) and Fig. 5 (e). Please refer to the supplementary ma-
terials for more detailed ablation experiments.

Table 4. Quantitative Ablation Results on I3D-Human. (a) de-
notes experiments without non-rigid deformation. (b) only utilizes
Gaussian positions x and the current frame pose P as the condi-
tions for non-rigid MLP.

Methods PSNR ↓ SSIM ↓ LPIPS* ↔
(a) Baseline 29.76 0.9569 38.35
(b) (a)+Vanilla Non-Rigid MLP+P Conditions. 31.05 0.9617 34.35
(c) (b)+”P Conditions. 31.89 0.9645 32.17
(d) (c)+ V Conditions. 32.01 0.9651 31.23
(e) (d)+STMS. (Ours) 32.24 0.9664 29.78

6. Limitations and Conclusion
Limitations. The Gaussian-based representation used in
our method may introduce slight blur artifacts during ren-
dering, whereas NeRF’s ray-based volumetric integration
tends to produce sharper results. Moreover, our local ve-
locity cues are derived from the coarse SMPL model rather
than dense surface tracking [79], which may limit the accu-
racy of fine-scale garment deformation. Addressing these
limitations remains an open challenge for future work.
Conclusion. In this paper, we propose a 3DGS-based
framework that integrates hierarchical motion context for
3D human modeling. Specifically, the non-rigid defor-
mation for the Gaussian primitive is learned based on the
global human skeleton variations and fine-grained Gaus-
sian’s point-wise motions. To capture each Gaussian prim-
itive’s motion information more robustly, we introduce a
spatio-temporal multi-scale sampling strategy to incorpo-
rate both local region motion features and motion patterns
across different temporal intervals. Through the above de-
sign, the proposed method achieves state-of-the-art render-
ing of human avatars with complex garments and motions.
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